MachineScheduler.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "llvm/CodeGen/MachineScheduler.h"
18#include "llvm/ADT/PriorityQueue.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/RegisterClassInfo.h"
26#include "llvm/CodeGen/ScheduleDFS.h"
27#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GraphWriter.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include <queue>
35
36using namespace llvm;
37
38namespace llvm {
39cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                           cl::desc("Force top-down list scheduling"));
41cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                            cl::desc("Force bottom-up list scheduling"));
43}
44
45#ifndef NDEBUG
46static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
47  cl::desc("Pop up a window to show MISched dags after they are processed"));
48
49static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
50  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
51
52static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
53  cl::desc("Only schedule this function"));
54static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
55  cl::desc("Only schedule this MBB#"));
56#else
57static bool ViewMISchedDAGs = false;
58#endif // NDEBUG
59
60static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
61  cl::desc("Enable register pressure scheduling."), cl::init(true));
62
63static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
64  cl::desc("Enable cyclic critical path analysis."), cl::init(true));
65
66static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
67  cl::desc("Enable load clustering."), cl::init(true));
68
69// Experimental heuristics
70static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
71  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
72
73static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
74  cl::desc("Verify machine instrs before and after machine scheduling"));
75
76// DAG subtrees must have at least this many nodes.
77static const unsigned MinSubtreeSize = 8;
78
79// Pin the vtables to this file.
80void MachineSchedStrategy::anchor() {}
81void ScheduleDAGMutation::anchor() {}
82
83//===----------------------------------------------------------------------===//
84// Machine Instruction Scheduling Pass and Registry
85//===----------------------------------------------------------------------===//
86
87MachineSchedContext::MachineSchedContext():
88    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
89  RegClassInfo = new RegisterClassInfo();
90}
91
92MachineSchedContext::~MachineSchedContext() {
93  delete RegClassInfo;
94}
95
96namespace {
97/// Base class for a machine scheduler class that can run at any point.
98class MachineSchedulerBase : public MachineSchedContext,
99                             public MachineFunctionPass {
100public:
101  MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
102
103  void print(raw_ostream &O, const Module* = 0) const override;
104
105protected:
106  void scheduleRegions(ScheduleDAGInstrs &Scheduler);
107};
108
109/// MachineScheduler runs after coalescing and before register allocation.
110class MachineScheduler : public MachineSchedulerBase {
111public:
112  MachineScheduler();
113
114  void getAnalysisUsage(AnalysisUsage &AU) const override;
115
116  bool runOnMachineFunction(MachineFunction&) override;
117
118  static char ID; // Class identification, replacement for typeinfo
119
120protected:
121  ScheduleDAGInstrs *createMachineScheduler();
122};
123
124/// PostMachineScheduler runs after shortly before code emission.
125class PostMachineScheduler : public MachineSchedulerBase {
126public:
127  PostMachineScheduler();
128
129  void getAnalysisUsage(AnalysisUsage &AU) const override;
130
131  bool runOnMachineFunction(MachineFunction&) override;
132
133  static char ID; // Class identification, replacement for typeinfo
134
135protected:
136  ScheduleDAGInstrs *createPostMachineScheduler();
137};
138} // namespace
139
140char MachineScheduler::ID = 0;
141
142char &llvm::MachineSchedulerID = MachineScheduler::ID;
143
144INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
145                      "Machine Instruction Scheduler", false, false)
146INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
147INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
148INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
149INITIALIZE_PASS_END(MachineScheduler, "misched",
150                    "Machine Instruction Scheduler", false, false)
151
152MachineScheduler::MachineScheduler()
153: MachineSchedulerBase(ID) {
154  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
155}
156
157void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
158  AU.setPreservesCFG();
159  AU.addRequiredID(MachineDominatorsID);
160  AU.addRequired<MachineLoopInfo>();
161  AU.addRequired<AliasAnalysis>();
162  AU.addRequired<TargetPassConfig>();
163  AU.addRequired<SlotIndexes>();
164  AU.addPreserved<SlotIndexes>();
165  AU.addRequired<LiveIntervals>();
166  AU.addPreserved<LiveIntervals>();
167  MachineFunctionPass::getAnalysisUsage(AU);
168}
169
170char PostMachineScheduler::ID = 0;
171
172char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
173
174INITIALIZE_PASS(PostMachineScheduler, "postmisched",
175                "PostRA Machine Instruction Scheduler", false, false)
176
177PostMachineScheduler::PostMachineScheduler()
178: MachineSchedulerBase(ID) {
179  initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
180}
181
182void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
183  AU.setPreservesCFG();
184  AU.addRequiredID(MachineDominatorsID);
185  AU.addRequired<MachineLoopInfo>();
186  AU.addRequired<TargetPassConfig>();
187  MachineFunctionPass::getAnalysisUsage(AU);
188}
189
190MachinePassRegistry MachineSchedRegistry::Registry;
191
192/// A dummy default scheduler factory indicates whether the scheduler
193/// is overridden on the command line.
194static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
195  return 0;
196}
197
198/// MachineSchedOpt allows command line selection of the scheduler.
199static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
200               RegisterPassParser<MachineSchedRegistry> >
201MachineSchedOpt("misched",
202                cl::init(&useDefaultMachineSched), cl::Hidden,
203                cl::desc("Machine instruction scheduler to use"));
204
205static MachineSchedRegistry
206DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
207                     useDefaultMachineSched);
208
209/// Forward declare the standard machine scheduler. This will be used as the
210/// default scheduler if the target does not set a default.
211static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
212static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
213
214/// Decrement this iterator until reaching the top or a non-debug instr.
215static MachineBasicBlock::const_iterator
216priorNonDebug(MachineBasicBlock::const_iterator I,
217              MachineBasicBlock::const_iterator Beg) {
218  assert(I != Beg && "reached the top of the region, cannot decrement");
219  while (--I != Beg) {
220    if (!I->isDebugValue())
221      break;
222  }
223  return I;
224}
225
226/// Non-const version.
227static MachineBasicBlock::iterator
228priorNonDebug(MachineBasicBlock::iterator I,
229              MachineBasicBlock::const_iterator Beg) {
230  return const_cast<MachineInstr*>(
231    &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
232}
233
234/// If this iterator is a debug value, increment until reaching the End or a
235/// non-debug instruction.
236static MachineBasicBlock::const_iterator
237nextIfDebug(MachineBasicBlock::const_iterator I,
238            MachineBasicBlock::const_iterator End) {
239  for(; I != End; ++I) {
240    if (!I->isDebugValue())
241      break;
242  }
243  return I;
244}
245
246/// Non-const version.
247static MachineBasicBlock::iterator
248nextIfDebug(MachineBasicBlock::iterator I,
249            MachineBasicBlock::const_iterator End) {
250  // Cast the return value to nonconst MachineInstr, then cast to an
251  // instr_iterator, which does not check for null, finally return a
252  // bundle_iterator.
253  return MachineBasicBlock::instr_iterator(
254    const_cast<MachineInstr*>(
255      &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
256}
257
258/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
259ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
260  // Select the scheduler, or set the default.
261  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
262  if (Ctor != useDefaultMachineSched)
263    return Ctor(this);
264
265  // Get the default scheduler set by the target for this function.
266  ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
267  if (Scheduler)
268    return Scheduler;
269
270  // Default to GenericScheduler.
271  return createGenericSchedLive(this);
272}
273
274/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
275/// the caller. We don't have a command line option to override the postRA
276/// scheduler. The Target must configure it.
277ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
278  // Get the postRA scheduler set by the target for this function.
279  ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
280  if (Scheduler)
281    return Scheduler;
282
283  // Default to GenericScheduler.
284  return createGenericSchedPostRA(this);
285}
286
287/// Top-level MachineScheduler pass driver.
288///
289/// Visit blocks in function order. Divide each block into scheduling regions
290/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
291/// consistent with the DAG builder, which traverses the interior of the
292/// scheduling regions bottom-up.
293///
294/// This design avoids exposing scheduling boundaries to the DAG builder,
295/// simplifying the DAG builder's support for "special" target instructions.
296/// At the same time the design allows target schedulers to operate across
297/// scheduling boundaries, for example to bundle the boudary instructions
298/// without reordering them. This creates complexity, because the target
299/// scheduler must update the RegionBegin and RegionEnd positions cached by
300/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
301/// design would be to split blocks at scheduling boundaries, but LLVM has a
302/// general bias against block splitting purely for implementation simplicity.
303bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
304  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
305
306  // Initialize the context of the pass.
307  MF = &mf;
308  MLI = &getAnalysis<MachineLoopInfo>();
309  MDT = &getAnalysis<MachineDominatorTree>();
310  PassConfig = &getAnalysis<TargetPassConfig>();
311  AA = &getAnalysis<AliasAnalysis>();
312
313  LIS = &getAnalysis<LiveIntervals>();
314
315  if (VerifyScheduling) {
316    DEBUG(LIS->dump());
317    MF->verify(this, "Before machine scheduling.");
318  }
319  RegClassInfo->runOnMachineFunction(*MF);
320
321  // Instantiate the selected scheduler for this target, function, and
322  // optimization level.
323  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
324  scheduleRegions(*Scheduler);
325
326  DEBUG(LIS->dump());
327  if (VerifyScheduling)
328    MF->verify(this, "After machine scheduling.");
329  return true;
330}
331
332bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
333  if (skipOptnoneFunction(*mf.getFunction()))
334    return false;
335
336  DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
337
338  // Initialize the context of the pass.
339  MF = &mf;
340  PassConfig = &getAnalysis<TargetPassConfig>();
341
342  if (VerifyScheduling)
343    MF->verify(this, "Before post machine scheduling.");
344
345  // Instantiate the selected scheduler for this target, function, and
346  // optimization level.
347  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
348  scheduleRegions(*Scheduler);
349
350  if (VerifyScheduling)
351    MF->verify(this, "After post machine scheduling.");
352  return true;
353}
354
355/// Return true of the given instruction should not be included in a scheduling
356/// region.
357///
358/// MachineScheduler does not currently support scheduling across calls. To
359/// handle calls, the DAG builder needs to be modified to create register
360/// anti/output dependencies on the registers clobbered by the call's regmask
361/// operand. In PreRA scheduling, the stack pointer adjustment already prevents
362/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
363/// the boundary, but there would be no benefit to postRA scheduling across
364/// calls this late anyway.
365static bool isSchedBoundary(MachineBasicBlock::iterator MI,
366                            MachineBasicBlock *MBB,
367                            MachineFunction *MF,
368                            const TargetInstrInfo *TII,
369                            bool IsPostRA) {
370  return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
371}
372
373/// Main driver for both MachineScheduler and PostMachineScheduler.
374void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
375  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
376  bool IsPostRA = Scheduler.isPostRA();
377
378  // Visit all machine basic blocks.
379  //
380  // TODO: Visit blocks in global postorder or postorder within the bottom-up
381  // loop tree. Then we can optionally compute global RegPressure.
382  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
383       MBB != MBBEnd; ++MBB) {
384
385    Scheduler.startBlock(MBB);
386
387#ifndef NDEBUG
388    if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
389      continue;
390    if (SchedOnlyBlock.getNumOccurrences()
391        && (int)SchedOnlyBlock != MBB->getNumber())
392      continue;
393#endif
394
395    // Break the block into scheduling regions [I, RegionEnd), and schedule each
396    // region as soon as it is discovered. RegionEnd points the scheduling
397    // boundary at the bottom of the region. The DAG does not include RegionEnd,
398    // but the region does (i.e. the next RegionEnd is above the previous
399    // RegionBegin). If the current block has no terminator then RegionEnd ==
400    // MBB->end() for the bottom region.
401    //
402    // The Scheduler may insert instructions during either schedule() or
403    // exitRegion(), even for empty regions. So the local iterators 'I' and
404    // 'RegionEnd' are invalid across these calls.
405    //
406    // MBB::size() uses instr_iterator to count. Here we need a bundle to count
407    // as a single instruction.
408    unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
409    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
410        RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
411
412      // Avoid decrementing RegionEnd for blocks with no terminator.
413      if (RegionEnd != MBB->end() ||
414          isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
415        --RegionEnd;
416        // Count the boundary instruction.
417        --RemainingInstrs;
418      }
419
420      // The next region starts above the previous region. Look backward in the
421      // instruction stream until we find the nearest boundary.
422      unsigned NumRegionInstrs = 0;
423      MachineBasicBlock::iterator I = RegionEnd;
424      for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
425        if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
426          break;
427      }
428      // Notify the scheduler of the region, even if we may skip scheduling
429      // it. Perhaps it still needs to be bundled.
430      Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
431
432      // Skip empty scheduling regions (0 or 1 schedulable instructions).
433      if (I == RegionEnd || I == std::prev(RegionEnd)) {
434        // Close the current region. Bundle the terminator if needed.
435        // This invalidates 'RegionEnd' and 'I'.
436        Scheduler.exitRegion();
437        continue;
438      }
439      DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
440            << "MI Scheduling **********\n");
441      DEBUG(dbgs() << MF->getName()
442            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
443            << "\n  From: " << *I << "    To: ";
444            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
445            else dbgs() << "End";
446            dbgs() << " RegionInstrs: " << NumRegionInstrs
447            << " Remaining: " << RemainingInstrs << "\n");
448
449      // Schedule a region: possibly reorder instructions.
450      // This invalidates 'RegionEnd' and 'I'.
451      Scheduler.schedule();
452
453      // Close the current region.
454      Scheduler.exitRegion();
455
456      // Scheduling has invalidated the current iterator 'I'. Ask the
457      // scheduler for the top of it's scheduled region.
458      RegionEnd = Scheduler.begin();
459    }
460    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
461    Scheduler.finishBlock();
462    if (Scheduler.isPostRA()) {
463      // FIXME: Ideally, no further passes should rely on kill flags. However,
464      // thumb2 size reduction is currently an exception.
465      Scheduler.fixupKills(MBB);
466    }
467  }
468  Scheduler.finalizeSchedule();
469}
470
471void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
472  // unimplemented
473}
474
475#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
476void ReadyQueue::dump() {
477  dbgs() << Name << ": ";
478  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
479    dbgs() << Queue[i]->NodeNum << " ";
480  dbgs() << "\n";
481}
482#endif
483
484//===----------------------------------------------------------------------===//
485// ScheduleDAGMI - Basic machine instruction scheduling. This is
486// independent of PreRA/PostRA scheduling and involves no extra book-keeping for
487// virtual registers.
488// ===----------------------------------------------------------------------===/
489
490ScheduleDAGMI::~ScheduleDAGMI() {
491  DeleteContainerPointers(Mutations);
492  delete SchedImpl;
493}
494
495bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
496  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
497}
498
499bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
500  if (SuccSU != &ExitSU) {
501    // Do not use WillCreateCycle, it assumes SD scheduling.
502    // If Pred is reachable from Succ, then the edge creates a cycle.
503    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
504      return false;
505    Topo.AddPred(SuccSU, PredDep.getSUnit());
506  }
507  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
508  // Return true regardless of whether a new edge needed to be inserted.
509  return true;
510}
511
512/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
513/// NumPredsLeft reaches zero, release the successor node.
514///
515/// FIXME: Adjust SuccSU height based on MinLatency.
516void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
517  SUnit *SuccSU = SuccEdge->getSUnit();
518
519  if (SuccEdge->isWeak()) {
520    --SuccSU->WeakPredsLeft;
521    if (SuccEdge->isCluster())
522      NextClusterSucc = SuccSU;
523    return;
524  }
525#ifndef NDEBUG
526  if (SuccSU->NumPredsLeft == 0) {
527    dbgs() << "*** Scheduling failed! ***\n";
528    SuccSU->dump(this);
529    dbgs() << " has been released too many times!\n";
530    llvm_unreachable(0);
531  }
532#endif
533  --SuccSU->NumPredsLeft;
534  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
535    SchedImpl->releaseTopNode(SuccSU);
536}
537
538/// releaseSuccessors - Call releaseSucc on each of SU's successors.
539void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
540  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
541       I != E; ++I) {
542    releaseSucc(SU, &*I);
543  }
544}
545
546/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
547/// NumSuccsLeft reaches zero, release the predecessor node.
548///
549/// FIXME: Adjust PredSU height based on MinLatency.
550void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
551  SUnit *PredSU = PredEdge->getSUnit();
552
553  if (PredEdge->isWeak()) {
554    --PredSU->WeakSuccsLeft;
555    if (PredEdge->isCluster())
556      NextClusterPred = PredSU;
557    return;
558  }
559#ifndef NDEBUG
560  if (PredSU->NumSuccsLeft == 0) {
561    dbgs() << "*** Scheduling failed! ***\n";
562    PredSU->dump(this);
563    dbgs() << " has been released too many times!\n";
564    llvm_unreachable(0);
565  }
566#endif
567  --PredSU->NumSuccsLeft;
568  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
569    SchedImpl->releaseBottomNode(PredSU);
570}
571
572/// releasePredecessors - Call releasePred on each of SU's predecessors.
573void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
574  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
575       I != E; ++I) {
576    releasePred(SU, &*I);
577  }
578}
579
580/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
581/// crossing a scheduling boundary. [begin, end) includes all instructions in
582/// the region, including the boundary itself and single-instruction regions
583/// that don't get scheduled.
584void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
585                                     MachineBasicBlock::iterator begin,
586                                     MachineBasicBlock::iterator end,
587                                     unsigned regioninstrs)
588{
589  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
590
591  SchedImpl->initPolicy(begin, end, regioninstrs);
592}
593
594/// This is normally called from the main scheduler loop but may also be invoked
595/// by the scheduling strategy to perform additional code motion.
596void ScheduleDAGMI::moveInstruction(
597  MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
598  // Advance RegionBegin if the first instruction moves down.
599  if (&*RegionBegin == MI)
600    ++RegionBegin;
601
602  // Update the instruction stream.
603  BB->splice(InsertPos, BB, MI);
604
605  // Update LiveIntervals
606  if (LIS)
607    LIS->handleMove(MI, /*UpdateFlags=*/true);
608
609  // Recede RegionBegin if an instruction moves above the first.
610  if (RegionBegin == InsertPos)
611    RegionBegin = MI;
612}
613
614bool ScheduleDAGMI::checkSchedLimit() {
615#ifndef NDEBUG
616  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
617    CurrentTop = CurrentBottom;
618    return false;
619  }
620  ++NumInstrsScheduled;
621#endif
622  return true;
623}
624
625/// Per-region scheduling driver, called back from
626/// MachineScheduler::runOnMachineFunction. This is a simplified driver that
627/// does not consider liveness or register pressure. It is useful for PostRA
628/// scheduling and potentially other custom schedulers.
629void ScheduleDAGMI::schedule() {
630  // Build the DAG.
631  buildSchedGraph(AA);
632
633  Topo.InitDAGTopologicalSorting();
634
635  postprocessDAG();
636
637  SmallVector<SUnit*, 8> TopRoots, BotRoots;
638  findRootsAndBiasEdges(TopRoots, BotRoots);
639
640  // Initialize the strategy before modifying the DAG.
641  // This may initialize a DFSResult to be used for queue priority.
642  SchedImpl->initialize(this);
643
644  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
645          SUnits[su].dumpAll(this));
646  if (ViewMISchedDAGs) viewGraph();
647
648  // Initialize ready queues now that the DAG and priority data are finalized.
649  initQueues(TopRoots, BotRoots);
650
651  bool IsTopNode = false;
652  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
653    assert(!SU->isScheduled && "Node already scheduled");
654    if (!checkSchedLimit())
655      break;
656
657    MachineInstr *MI = SU->getInstr();
658    if (IsTopNode) {
659      assert(SU->isTopReady() && "node still has unscheduled dependencies");
660      if (&*CurrentTop == MI)
661        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
662      else
663        moveInstruction(MI, CurrentTop);
664    }
665    else {
666      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
667      MachineBasicBlock::iterator priorII =
668        priorNonDebug(CurrentBottom, CurrentTop);
669      if (&*priorII == MI)
670        CurrentBottom = priorII;
671      else {
672        if (&*CurrentTop == MI)
673          CurrentTop = nextIfDebug(++CurrentTop, priorII);
674        moveInstruction(MI, CurrentBottom);
675        CurrentBottom = MI;
676      }
677    }
678    updateQueues(SU, IsTopNode);
679
680    // Notify the scheduling strategy after updating the DAG.
681    SchedImpl->schedNode(SU, IsTopNode);
682  }
683  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
684
685  placeDebugValues();
686
687  DEBUG({
688      unsigned BBNum = begin()->getParent()->getNumber();
689      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
690      dumpSchedule();
691      dbgs() << '\n';
692    });
693}
694
695/// Apply each ScheduleDAGMutation step in order.
696void ScheduleDAGMI::postprocessDAG() {
697  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
698    Mutations[i]->apply(this);
699  }
700}
701
702void ScheduleDAGMI::
703findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
704                      SmallVectorImpl<SUnit*> &BotRoots) {
705  for (std::vector<SUnit>::iterator
706         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
707    SUnit *SU = &(*I);
708    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
709
710    // Order predecessors so DFSResult follows the critical path.
711    SU->biasCriticalPath();
712
713    // A SUnit is ready to top schedule if it has no predecessors.
714    if (!I->NumPredsLeft)
715      TopRoots.push_back(SU);
716    // A SUnit is ready to bottom schedule if it has no successors.
717    if (!I->NumSuccsLeft)
718      BotRoots.push_back(SU);
719  }
720  ExitSU.biasCriticalPath();
721}
722
723/// Identify DAG roots and setup scheduler queues.
724void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
725                               ArrayRef<SUnit*> BotRoots) {
726  NextClusterSucc = NULL;
727  NextClusterPred = NULL;
728
729  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
730  //
731  // Nodes with unreleased weak edges can still be roots.
732  // Release top roots in forward order.
733  for (SmallVectorImpl<SUnit*>::const_iterator
734         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
735    SchedImpl->releaseTopNode(*I);
736  }
737  // Release bottom roots in reverse order so the higher priority nodes appear
738  // first. This is more natural and slightly more efficient.
739  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
740         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
741    SchedImpl->releaseBottomNode(*I);
742  }
743
744  releaseSuccessors(&EntrySU);
745  releasePredecessors(&ExitSU);
746
747  SchedImpl->registerRoots();
748
749  // Advance past initial DebugValues.
750  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
751  CurrentBottom = RegionEnd;
752}
753
754/// Update scheduler queues after scheduling an instruction.
755void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
756  // Release dependent instructions for scheduling.
757  if (IsTopNode)
758    releaseSuccessors(SU);
759  else
760    releasePredecessors(SU);
761
762  SU->isScheduled = true;
763}
764
765/// Reinsert any remaining debug_values, just like the PostRA scheduler.
766void ScheduleDAGMI::placeDebugValues() {
767  // If first instruction was a DBG_VALUE then put it back.
768  if (FirstDbgValue) {
769    BB->splice(RegionBegin, BB, FirstDbgValue);
770    RegionBegin = FirstDbgValue;
771  }
772
773  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
774         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
775    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
776    MachineInstr *DbgValue = P.first;
777    MachineBasicBlock::iterator OrigPrevMI = P.second;
778    if (&*RegionBegin == DbgValue)
779      ++RegionBegin;
780    BB->splice(++OrigPrevMI, BB, DbgValue);
781    if (OrigPrevMI == std::prev(RegionEnd))
782      RegionEnd = DbgValue;
783  }
784  DbgValues.clear();
785  FirstDbgValue = NULL;
786}
787
788#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
789void ScheduleDAGMI::dumpSchedule() const {
790  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
791    if (SUnit *SU = getSUnit(&(*MI)))
792      SU->dump(this);
793    else
794      dbgs() << "Missing SUnit\n";
795  }
796}
797#endif
798
799//===----------------------------------------------------------------------===//
800// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
801// preservation.
802//===----------------------------------------------------------------------===//
803
804ScheduleDAGMILive::~ScheduleDAGMILive() {
805  delete DFSResult;
806}
807
808/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
809/// crossing a scheduling boundary. [begin, end) includes all instructions in
810/// the region, including the boundary itself and single-instruction regions
811/// that don't get scheduled.
812void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
813                                MachineBasicBlock::iterator begin,
814                                MachineBasicBlock::iterator end,
815                                unsigned regioninstrs)
816{
817  // ScheduleDAGMI initializes SchedImpl's per-region policy.
818  ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
819
820  // For convenience remember the end of the liveness region.
821  LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
822
823  SUPressureDiffs.clear();
824
825  ShouldTrackPressure = SchedImpl->shouldTrackPressure();
826}
827
828// Setup the register pressure trackers for the top scheduled top and bottom
829// scheduled regions.
830void ScheduleDAGMILive::initRegPressure() {
831  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
832  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
833
834  // Close the RPTracker to finalize live ins.
835  RPTracker.closeRegion();
836
837  DEBUG(RPTracker.dump());
838
839  // Initialize the live ins and live outs.
840  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
841  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
842
843  // Close one end of the tracker so we can call
844  // getMaxUpward/DownwardPressureDelta before advancing across any
845  // instructions. This converts currently live regs into live ins/outs.
846  TopRPTracker.closeTop();
847  BotRPTracker.closeBottom();
848
849  BotRPTracker.initLiveThru(RPTracker);
850  if (!BotRPTracker.getLiveThru().empty()) {
851    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
852    DEBUG(dbgs() << "Live Thru: ";
853          dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
854  };
855
856  // For each live out vreg reduce the pressure change associated with other
857  // uses of the same vreg below the live-out reaching def.
858  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
859
860  // Account for liveness generated by the region boundary.
861  if (LiveRegionEnd != RegionEnd) {
862    SmallVector<unsigned, 8> LiveUses;
863    BotRPTracker.recede(&LiveUses);
864    updatePressureDiffs(LiveUses);
865  }
866
867  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
868
869  // Cache the list of excess pressure sets in this region. This will also track
870  // the max pressure in the scheduled code for these sets.
871  RegionCriticalPSets.clear();
872  const std::vector<unsigned> &RegionPressure =
873    RPTracker.getPressure().MaxSetPressure;
874  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
875    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
876    if (RegionPressure[i] > Limit) {
877      DEBUG(dbgs() << TRI->getRegPressureSetName(i)
878            << " Limit " << Limit
879            << " Actual " << RegionPressure[i] << "\n");
880      RegionCriticalPSets.push_back(PressureChange(i));
881    }
882  }
883  DEBUG(dbgs() << "Excess PSets: ";
884        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
885          dbgs() << TRI->getRegPressureSetName(
886            RegionCriticalPSets[i].getPSet()) << " ";
887        dbgs() << "\n");
888}
889
890void ScheduleDAGMILive::
891updateScheduledPressure(const SUnit *SU,
892                        const std::vector<unsigned> &NewMaxPressure) {
893  const PressureDiff &PDiff = getPressureDiff(SU);
894  unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
895  for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
896       I != E; ++I) {
897    if (!I->isValid())
898      break;
899    unsigned ID = I->getPSet();
900    while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
901      ++CritIdx;
902    if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
903      if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
904          && NewMaxPressure[ID] <= INT16_MAX)
905        RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
906    }
907    unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
908    if (NewMaxPressure[ID] >= Limit - 2) {
909      DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
910            << NewMaxPressure[ID] << " > " << Limit << "(+ "
911            << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
912    }
913  }
914}
915
916/// Update the PressureDiff array for liveness after scheduling this
917/// instruction.
918void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
919  for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
920    /// FIXME: Currently assuming single-use physregs.
921    unsigned Reg = LiveUses[LUIdx];
922    DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
923    if (!TRI->isVirtualRegister(Reg))
924      continue;
925
926    // This may be called before CurrentBottom has been initialized. However,
927    // BotRPTracker must have a valid position. We want the value live into the
928    // instruction or live out of the block, so ask for the previous
929    // instruction's live-out.
930    const LiveInterval &LI = LIS->getInterval(Reg);
931    VNInfo *VNI;
932    MachineBasicBlock::const_iterator I =
933      nextIfDebug(BotRPTracker.getPos(), BB->end());
934    if (I == BB->end())
935      VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
936    else {
937      LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
938      VNI = LRQ.valueIn();
939    }
940    // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
941    assert(VNI && "No live value at use.");
942    for (VReg2UseMap::iterator
943           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
944      SUnit *SU = UI->SU;
945      DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
946            << *SU->getInstr());
947      // If this use comes before the reaching def, it cannot be a last use, so
948      // descrease its pressure change.
949      if (!SU->isScheduled && SU != &ExitSU) {
950        LiveQueryResult LRQ
951          = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
952        if (LRQ.valueIn() == VNI)
953          getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
954      }
955    }
956  }
957}
958
959/// schedule - Called back from MachineScheduler::runOnMachineFunction
960/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
961/// only includes instructions that have DAG nodes, not scheduling boundaries.
962///
963/// This is a skeletal driver, with all the functionality pushed into helpers,
964/// so that it can be easilly extended by experimental schedulers. Generally,
965/// implementing MachineSchedStrategy should be sufficient to implement a new
966/// scheduling algorithm. However, if a scheduler further subclasses
967/// ScheduleDAGMILive then it will want to override this virtual method in order
968/// to update any specialized state.
969void ScheduleDAGMILive::schedule() {
970  buildDAGWithRegPressure();
971
972  Topo.InitDAGTopologicalSorting();
973
974  postprocessDAG();
975
976  SmallVector<SUnit*, 8> TopRoots, BotRoots;
977  findRootsAndBiasEdges(TopRoots, BotRoots);
978
979  // Initialize the strategy before modifying the DAG.
980  // This may initialize a DFSResult to be used for queue priority.
981  SchedImpl->initialize(this);
982
983  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
984          SUnits[su].dumpAll(this));
985  if (ViewMISchedDAGs) viewGraph();
986
987  // Initialize ready queues now that the DAG and priority data are finalized.
988  initQueues(TopRoots, BotRoots);
989
990  if (ShouldTrackPressure) {
991    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
992    TopRPTracker.setPos(CurrentTop);
993  }
994
995  bool IsTopNode = false;
996  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
997    assert(!SU->isScheduled && "Node already scheduled");
998    if (!checkSchedLimit())
999      break;
1000
1001    scheduleMI(SU, IsTopNode);
1002
1003    updateQueues(SU, IsTopNode);
1004
1005    if (DFSResult) {
1006      unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1007      if (!ScheduledTrees.test(SubtreeID)) {
1008        ScheduledTrees.set(SubtreeID);
1009        DFSResult->scheduleTree(SubtreeID);
1010        SchedImpl->scheduleTree(SubtreeID);
1011      }
1012    }
1013
1014    // Notify the scheduling strategy after updating the DAG.
1015    SchedImpl->schedNode(SU, IsTopNode);
1016  }
1017  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1018
1019  placeDebugValues();
1020
1021  DEBUG({
1022      unsigned BBNum = begin()->getParent()->getNumber();
1023      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1024      dumpSchedule();
1025      dbgs() << '\n';
1026    });
1027}
1028
1029/// Build the DAG and setup three register pressure trackers.
1030void ScheduleDAGMILive::buildDAGWithRegPressure() {
1031  if (!ShouldTrackPressure) {
1032    RPTracker.reset();
1033    RegionCriticalPSets.clear();
1034    buildSchedGraph(AA);
1035    return;
1036  }
1037
1038  // Initialize the register pressure tracker used by buildSchedGraph.
1039  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1040                 /*TrackUntiedDefs=*/true);
1041
1042  // Account for liveness generate by the region boundary.
1043  if (LiveRegionEnd != RegionEnd)
1044    RPTracker.recede();
1045
1046  // Build the DAG, and compute current register pressure.
1047  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1048
1049  // Initialize top/bottom trackers after computing region pressure.
1050  initRegPressure();
1051}
1052
1053void ScheduleDAGMILive::computeDFSResult() {
1054  if (!DFSResult)
1055    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1056  DFSResult->clear();
1057  ScheduledTrees.clear();
1058  DFSResult->resize(SUnits.size());
1059  DFSResult->compute(SUnits);
1060  ScheduledTrees.resize(DFSResult->getNumSubtrees());
1061}
1062
1063/// Compute the max cyclic critical path through the DAG. The scheduling DAG
1064/// only provides the critical path for single block loops. To handle loops that
1065/// span blocks, we could use the vreg path latencies provided by
1066/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1067/// available for use in the scheduler.
1068///
1069/// The cyclic path estimation identifies a def-use pair that crosses the back
1070/// edge and considers the depth and height of the nodes. For example, consider
1071/// the following instruction sequence where each instruction has unit latency
1072/// and defines an epomymous virtual register:
1073///
1074/// a->b(a,c)->c(b)->d(c)->exit
1075///
1076/// The cyclic critical path is a two cycles: b->c->b
1077/// The acyclic critical path is four cycles: a->b->c->d->exit
1078/// LiveOutHeight = height(c) = len(c->d->exit) = 2
1079/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1080/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1081/// LiveInDepth = depth(b) = len(a->b) = 1
1082///
1083/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1084/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1085/// CyclicCriticalPath = min(2, 2) = 2
1086///
1087/// This could be relevant to PostRA scheduling, but is currently implemented
1088/// assuming LiveIntervals.
1089unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1090  // This only applies to single block loop.
1091  if (!BB->isSuccessor(BB))
1092    return 0;
1093
1094  unsigned MaxCyclicLatency = 0;
1095  // Visit each live out vreg def to find def/use pairs that cross iterations.
1096  ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1097  for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1098       RI != RE; ++RI) {
1099    unsigned Reg = *RI;
1100    if (!TRI->isVirtualRegister(Reg))
1101        continue;
1102    const LiveInterval &LI = LIS->getInterval(Reg);
1103    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1104    if (!DefVNI)
1105      continue;
1106
1107    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1108    const SUnit *DefSU = getSUnit(DefMI);
1109    if (!DefSU)
1110      continue;
1111
1112    unsigned LiveOutHeight = DefSU->getHeight();
1113    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1114    // Visit all local users of the vreg def.
1115    for (VReg2UseMap::iterator
1116           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
1117      if (UI->SU == &ExitSU)
1118        continue;
1119
1120      // Only consider uses of the phi.
1121      LiveQueryResult LRQ =
1122        LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
1123      if (!LRQ.valueIn()->isPHIDef())
1124        continue;
1125
1126      // Assume that a path spanning two iterations is a cycle, which could
1127      // overestimate in strange cases. This allows cyclic latency to be
1128      // estimated as the minimum slack of the vreg's depth or height.
1129      unsigned CyclicLatency = 0;
1130      if (LiveOutDepth > UI->SU->getDepth())
1131        CyclicLatency = LiveOutDepth - UI->SU->getDepth();
1132
1133      unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
1134      if (LiveInHeight > LiveOutHeight) {
1135        if (LiveInHeight - LiveOutHeight < CyclicLatency)
1136          CyclicLatency = LiveInHeight - LiveOutHeight;
1137      }
1138      else
1139        CyclicLatency = 0;
1140
1141      DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1142            << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
1143      if (CyclicLatency > MaxCyclicLatency)
1144        MaxCyclicLatency = CyclicLatency;
1145    }
1146  }
1147  DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1148  return MaxCyclicLatency;
1149}
1150
1151/// Move an instruction and update register pressure.
1152void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1153  // Move the instruction to its new location in the instruction stream.
1154  MachineInstr *MI = SU->getInstr();
1155
1156  if (IsTopNode) {
1157    assert(SU->isTopReady() && "node still has unscheduled dependencies");
1158    if (&*CurrentTop == MI)
1159      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1160    else {
1161      moveInstruction(MI, CurrentTop);
1162      TopRPTracker.setPos(MI);
1163    }
1164
1165    if (ShouldTrackPressure) {
1166      // Update top scheduled pressure.
1167      TopRPTracker.advance();
1168      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1169      updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1170    }
1171  }
1172  else {
1173    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1174    MachineBasicBlock::iterator priorII =
1175      priorNonDebug(CurrentBottom, CurrentTop);
1176    if (&*priorII == MI)
1177      CurrentBottom = priorII;
1178    else {
1179      if (&*CurrentTop == MI) {
1180        CurrentTop = nextIfDebug(++CurrentTop, priorII);
1181        TopRPTracker.setPos(CurrentTop);
1182      }
1183      moveInstruction(MI, CurrentBottom);
1184      CurrentBottom = MI;
1185    }
1186    if (ShouldTrackPressure) {
1187      // Update bottom scheduled pressure.
1188      SmallVector<unsigned, 8> LiveUses;
1189      BotRPTracker.recede(&LiveUses);
1190      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1191      updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1192      updatePressureDiffs(LiveUses);
1193    }
1194  }
1195}
1196
1197//===----------------------------------------------------------------------===//
1198// LoadClusterMutation - DAG post-processing to cluster loads.
1199//===----------------------------------------------------------------------===//
1200
1201namespace {
1202/// \brief Post-process the DAG to create cluster edges between neighboring
1203/// loads.
1204class LoadClusterMutation : public ScheduleDAGMutation {
1205  struct LoadInfo {
1206    SUnit *SU;
1207    unsigned BaseReg;
1208    unsigned Offset;
1209    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1210      : SU(su), BaseReg(reg), Offset(ofs) {}
1211
1212    bool operator<(const LoadInfo &RHS) const {
1213      return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1214    }
1215  };
1216
1217  const TargetInstrInfo *TII;
1218  const TargetRegisterInfo *TRI;
1219public:
1220  LoadClusterMutation(const TargetInstrInfo *tii,
1221                      const TargetRegisterInfo *tri)
1222    : TII(tii), TRI(tri) {}
1223
1224  void apply(ScheduleDAGMI *DAG) override;
1225protected:
1226  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1227};
1228} // anonymous
1229
1230void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1231                                                  ScheduleDAGMI *DAG) {
1232  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1233  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1234    SUnit *SU = Loads[Idx];
1235    unsigned BaseReg;
1236    unsigned Offset;
1237    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1238      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1239  }
1240  if (LoadRecords.size() < 2)
1241    return;
1242  std::sort(LoadRecords.begin(), LoadRecords.end());
1243  unsigned ClusterLength = 1;
1244  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1245    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1246      ClusterLength = 1;
1247      continue;
1248    }
1249
1250    SUnit *SUa = LoadRecords[Idx].SU;
1251    SUnit *SUb = LoadRecords[Idx+1].SU;
1252    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1253        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1254
1255      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1256            << SUb->NodeNum << ")\n");
1257      // Copy successor edges from SUa to SUb. Interleaving computation
1258      // dependent on SUa can prevent load combining due to register reuse.
1259      // Predecessor edges do not need to be copied from SUb to SUa since nearby
1260      // loads should have effectively the same inputs.
1261      for (SUnit::const_succ_iterator
1262             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1263        if (SI->getSUnit() == SUb)
1264          continue;
1265        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1266        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1267      }
1268      ++ClusterLength;
1269    }
1270    else
1271      ClusterLength = 1;
1272  }
1273}
1274
1275/// \brief Callback from DAG postProcessing to create cluster edges for loads.
1276void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1277  // Map DAG NodeNum to store chain ID.
1278  DenseMap<unsigned, unsigned> StoreChainIDs;
1279  // Map each store chain to a set of dependent loads.
1280  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1281  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1282    SUnit *SU = &DAG->SUnits[Idx];
1283    if (!SU->getInstr()->mayLoad())
1284      continue;
1285    unsigned ChainPredID = DAG->SUnits.size();
1286    for (SUnit::const_pred_iterator
1287           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1288      if (PI->isCtrl()) {
1289        ChainPredID = PI->getSUnit()->NodeNum;
1290        break;
1291      }
1292    }
1293    // Check if this chain-like pred has been seen
1294    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1295    unsigned NumChains = StoreChainDependents.size();
1296    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1297      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1298    if (Result.second)
1299      StoreChainDependents.resize(NumChains + 1);
1300    StoreChainDependents[Result.first->second].push_back(SU);
1301  }
1302  // Iterate over the store chains.
1303  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1304    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1305}
1306
1307//===----------------------------------------------------------------------===//
1308// MacroFusion - DAG post-processing to encourage fusion of macro ops.
1309//===----------------------------------------------------------------------===//
1310
1311namespace {
1312/// \brief Post-process the DAG to create cluster edges between instructions
1313/// that may be fused by the processor into a single operation.
1314class MacroFusion : public ScheduleDAGMutation {
1315  const TargetInstrInfo *TII;
1316public:
1317  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
1318
1319  void apply(ScheduleDAGMI *DAG) override;
1320};
1321} // anonymous
1322
1323/// \brief Callback from DAG postProcessing to create cluster edges to encourage
1324/// fused operations.
1325void MacroFusion::apply(ScheduleDAGMI *DAG) {
1326  // For now, assume targets can only fuse with the branch.
1327  MachineInstr *Branch = DAG->ExitSU.getInstr();
1328  if (!Branch)
1329    return;
1330
1331  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
1332    SUnit *SU = &DAG->SUnits[--Idx];
1333    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
1334      continue;
1335
1336    // Create a single weak edge from SU to ExitSU. The only effect is to cause
1337    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1338    // need to copy predecessor edges from ExitSU to SU, since top-down
1339    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1340    // of SU, we could create an artificial edge from the deepest root, but it
1341    // hasn't been needed yet.
1342    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
1343    (void)Success;
1344    assert(Success && "No DAG nodes should be reachable from ExitSU");
1345
1346    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
1347    break;
1348  }
1349}
1350
1351//===----------------------------------------------------------------------===//
1352// CopyConstrain - DAG post-processing to encourage copy elimination.
1353//===----------------------------------------------------------------------===//
1354
1355namespace {
1356/// \brief Post-process the DAG to create weak edges from all uses of a copy to
1357/// the one use that defines the copy's source vreg, most likely an induction
1358/// variable increment.
1359class CopyConstrain : public ScheduleDAGMutation {
1360  // Transient state.
1361  SlotIndex RegionBeginIdx;
1362  // RegionEndIdx is the slot index of the last non-debug instruction in the
1363  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1364  SlotIndex RegionEndIdx;
1365public:
1366  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1367
1368  void apply(ScheduleDAGMI *DAG) override;
1369
1370protected:
1371  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1372};
1373} // anonymous
1374
1375/// constrainLocalCopy handles two possibilities:
1376/// 1) Local src:
1377/// I0:     = dst
1378/// I1: src = ...
1379/// I2:     = dst
1380/// I3: dst = src (copy)
1381/// (create pred->succ edges I0->I1, I2->I1)
1382///
1383/// 2) Local copy:
1384/// I0: dst = src (copy)
1385/// I1:     = dst
1386/// I2: src = ...
1387/// I3:     = dst
1388/// (create pred->succ edges I1->I2, I3->I2)
1389///
1390/// Although the MachineScheduler is currently constrained to single blocks,
1391/// this algorithm should handle extended blocks. An EBB is a set of
1392/// contiguously numbered blocks such that the previous block in the EBB is
1393/// always the single predecessor.
1394void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1395  LiveIntervals *LIS = DAG->getLIS();
1396  MachineInstr *Copy = CopySU->getInstr();
1397
1398  // Check for pure vreg copies.
1399  unsigned SrcReg = Copy->getOperand(1).getReg();
1400  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1401    return;
1402
1403  unsigned DstReg = Copy->getOperand(0).getReg();
1404  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1405    return;
1406
1407  // Check if either the dest or source is local. If it's live across a back
1408  // edge, it's not local. Note that if both vregs are live across the back
1409  // edge, we cannot successfully contrain the copy without cyclic scheduling.
1410  unsigned LocalReg = DstReg;
1411  unsigned GlobalReg = SrcReg;
1412  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1413  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1414    LocalReg = SrcReg;
1415    GlobalReg = DstReg;
1416    LocalLI = &LIS->getInterval(LocalReg);
1417    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1418      return;
1419  }
1420  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1421
1422  // Find the global segment after the start of the local LI.
1423  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1424  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1425  // local live range. We could create edges from other global uses to the local
1426  // start, but the coalescer should have already eliminated these cases, so
1427  // don't bother dealing with it.
1428  if (GlobalSegment == GlobalLI->end())
1429    return;
1430
1431  // If GlobalSegment is killed at the LocalLI->start, the call to find()
1432  // returned the next global segment. But if GlobalSegment overlaps with
1433  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1434  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1435  if (GlobalSegment->contains(LocalLI->beginIndex()))
1436    ++GlobalSegment;
1437
1438  if (GlobalSegment == GlobalLI->end())
1439    return;
1440
1441  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1442  if (GlobalSegment != GlobalLI->begin()) {
1443    // Two address defs have no hole.
1444    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1445                               GlobalSegment->start)) {
1446      return;
1447    }
1448    // If the prior global segment may be defined by the same two-address
1449    // instruction that also defines LocalLI, then can't make a hole here.
1450    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1451                               LocalLI->beginIndex())) {
1452      return;
1453    }
1454    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1455    // it would be a disconnected component in the live range.
1456    assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1457           "Disconnected LRG within the scheduling region.");
1458  }
1459  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1460  if (!GlobalDef)
1461    return;
1462
1463  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1464  if (!GlobalSU)
1465    return;
1466
1467  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1468  // constraining the uses of the last local def to precede GlobalDef.
1469  SmallVector<SUnit*,8> LocalUses;
1470  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1471  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1472  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1473  for (SUnit::const_succ_iterator
1474         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1475       I != E; ++I) {
1476    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1477      continue;
1478    if (I->getSUnit() == GlobalSU)
1479      continue;
1480    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1481      return;
1482    LocalUses.push_back(I->getSUnit());
1483  }
1484  // Open the top of the GlobalLI hole by constraining any earlier global uses
1485  // to precede the start of LocalLI.
1486  SmallVector<SUnit*,8> GlobalUses;
1487  MachineInstr *FirstLocalDef =
1488    LIS->getInstructionFromIndex(LocalLI->beginIndex());
1489  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1490  for (SUnit::const_pred_iterator
1491         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1492    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1493      continue;
1494    if (I->getSUnit() == FirstLocalSU)
1495      continue;
1496    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1497      return;
1498    GlobalUses.push_back(I->getSUnit());
1499  }
1500  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1501  // Add the weak edges.
1502  for (SmallVectorImpl<SUnit*>::const_iterator
1503         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1504    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1505          << GlobalSU->NodeNum << ")\n");
1506    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1507  }
1508  for (SmallVectorImpl<SUnit*>::const_iterator
1509         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1510    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1511          << FirstLocalSU->NodeNum << ")\n");
1512    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1513  }
1514}
1515
1516/// \brief Callback from DAG postProcessing to create weak edges to encourage
1517/// copy elimination.
1518void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1519  assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1520
1521  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1522  if (FirstPos == DAG->end())
1523    return;
1524  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1525  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1526    &*priorNonDebug(DAG->end(), DAG->begin()));
1527
1528  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1529    SUnit *SU = &DAG->SUnits[Idx];
1530    if (!SU->getInstr()->isCopy())
1531      continue;
1532
1533    constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1534  }
1535}
1536
1537//===----------------------------------------------------------------------===//
1538// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1539// and possibly other custom schedulers.
1540//===----------------------------------------------------------------------===//
1541
1542static const unsigned InvalidCycle = ~0U;
1543
1544SchedBoundary::~SchedBoundary() { delete HazardRec; }
1545
1546void SchedBoundary::reset() {
1547  // A new HazardRec is created for each DAG and owned by SchedBoundary.
1548  // Destroying and reconstructing it is very expensive though. So keep
1549  // invalid, placeholder HazardRecs.
1550  if (HazardRec && HazardRec->isEnabled()) {
1551    delete HazardRec;
1552    HazardRec = 0;
1553  }
1554  Available.clear();
1555  Pending.clear();
1556  CheckPending = false;
1557  NextSUs.clear();
1558  CurrCycle = 0;
1559  CurrMOps = 0;
1560  MinReadyCycle = UINT_MAX;
1561  ExpectedLatency = 0;
1562  DependentLatency = 0;
1563  RetiredMOps = 0;
1564  MaxExecutedResCount = 0;
1565  ZoneCritResIdx = 0;
1566  IsResourceLimited = false;
1567  ReservedCycles.clear();
1568#ifndef NDEBUG
1569  // Track the maximum number of stall cycles that could arise either from the
1570  // latency of a DAG edge or the number of cycles that a processor resource is
1571  // reserved (SchedBoundary::ReservedCycles).
1572  MaxObservedLatency = 0;
1573#endif
1574  // Reserve a zero-count for invalid CritResIdx.
1575  ExecutedResCounts.resize(1);
1576  assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1577}
1578
1579void SchedRemainder::
1580init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1581  reset();
1582  if (!SchedModel->hasInstrSchedModel())
1583    return;
1584  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1585  for (std::vector<SUnit>::iterator
1586         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1587    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1588    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1589      * SchedModel->getMicroOpFactor();
1590    for (TargetSchedModel::ProcResIter
1591           PI = SchedModel->getWriteProcResBegin(SC),
1592           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1593      unsigned PIdx = PI->ProcResourceIdx;
1594      unsigned Factor = SchedModel->getResourceFactor(PIdx);
1595      RemainingCounts[PIdx] += (Factor * PI->Cycles);
1596    }
1597  }
1598}
1599
1600void SchedBoundary::
1601init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1602  reset();
1603  DAG = dag;
1604  SchedModel = smodel;
1605  Rem = rem;
1606  if (SchedModel->hasInstrSchedModel()) {
1607    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1608    ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1609  }
1610}
1611
1612/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1613/// these "soft stalls" differently than the hard stall cycles based on CPU
1614/// resources and computed by checkHazard(). A fully in-order model
1615/// (MicroOpBufferSize==0) will not make use of this since instructions are not
1616/// available for scheduling until they are ready. However, a weaker in-order
1617/// model may use this for heuristics. For example, if a processor has in-order
1618/// behavior when reading certain resources, this may come into play.
1619unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1620  if (!SU->isUnbuffered)
1621    return 0;
1622
1623  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1624  if (ReadyCycle > CurrCycle)
1625    return ReadyCycle - CurrCycle;
1626  return 0;
1627}
1628
1629/// Compute the next cycle at which the given processor resource can be
1630/// scheduled.
1631unsigned SchedBoundary::
1632getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1633  unsigned NextUnreserved = ReservedCycles[PIdx];
1634  // If this resource has never been used, always return cycle zero.
1635  if (NextUnreserved == InvalidCycle)
1636    return 0;
1637  // For bottom-up scheduling add the cycles needed for the current operation.
1638  if (!isTop())
1639    NextUnreserved += Cycles;
1640  return NextUnreserved;
1641}
1642
1643/// Does this SU have a hazard within the current instruction group.
1644///
1645/// The scheduler supports two modes of hazard recognition. The first is the
1646/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1647/// supports highly complicated in-order reservation tables
1648/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1649///
1650/// The second is a streamlined mechanism that checks for hazards based on
1651/// simple counters that the scheduler itself maintains. It explicitly checks
1652/// for instruction dispatch limitations, including the number of micro-ops that
1653/// can dispatch per cycle.
1654///
1655/// TODO: Also check whether the SU must start a new group.
1656bool SchedBoundary::checkHazard(SUnit *SU) {
1657  if (HazardRec->isEnabled()
1658      && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1659    return true;
1660  }
1661  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1662  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1663    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1664          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1665    return true;
1666  }
1667  if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1668    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1669    for (TargetSchedModel::ProcResIter
1670           PI = SchedModel->getWriteProcResBegin(SC),
1671           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1672      if (getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles) > CurrCycle)
1673        return true;
1674    }
1675  }
1676  return false;
1677}
1678
1679// Find the unscheduled node in ReadySUs with the highest latency.
1680unsigned SchedBoundary::
1681findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1682  SUnit *LateSU = 0;
1683  unsigned RemLatency = 0;
1684  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1685       I != E; ++I) {
1686    unsigned L = getUnscheduledLatency(*I);
1687    if (L > RemLatency) {
1688      RemLatency = L;
1689      LateSU = *I;
1690    }
1691  }
1692  if (LateSU) {
1693    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1694          << LateSU->NodeNum << ") " << RemLatency << "c\n");
1695  }
1696  return RemLatency;
1697}
1698
1699// Count resources in this zone and the remaining unscheduled
1700// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1701// resource index, or zero if the zone is issue limited.
1702unsigned SchedBoundary::
1703getOtherResourceCount(unsigned &OtherCritIdx) {
1704  OtherCritIdx = 0;
1705  if (!SchedModel->hasInstrSchedModel())
1706    return 0;
1707
1708  unsigned OtherCritCount = Rem->RemIssueCount
1709    + (RetiredMOps * SchedModel->getMicroOpFactor());
1710  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1711        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1712  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1713       PIdx != PEnd; ++PIdx) {
1714    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1715    if (OtherCount > OtherCritCount) {
1716      OtherCritCount = OtherCount;
1717      OtherCritIdx = PIdx;
1718    }
1719  }
1720  if (OtherCritIdx) {
1721    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1722          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1723          << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1724  }
1725  return OtherCritCount;
1726}
1727
1728void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1729  if (ReadyCycle < MinReadyCycle)
1730    MinReadyCycle = ReadyCycle;
1731
1732  // Check for interlocks first. For the purpose of other heuristics, an
1733  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1734  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1735  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1736    Pending.push(SU);
1737  else
1738    Available.push(SU);
1739
1740  // Record this node as an immediate dependent of the scheduled node.
1741  NextSUs.insert(SU);
1742}
1743
1744void SchedBoundary::releaseTopNode(SUnit *SU) {
1745  if (SU->isScheduled)
1746    return;
1747
1748  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1749       I != E; ++I) {
1750    if (I->isWeak())
1751      continue;
1752    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1753    unsigned Latency = I->getLatency();
1754#ifndef NDEBUG
1755    MaxObservedLatency = std::max(Latency, MaxObservedLatency);
1756#endif
1757    if (SU->TopReadyCycle < PredReadyCycle + Latency)
1758      SU->TopReadyCycle = PredReadyCycle + Latency;
1759  }
1760  releaseNode(SU, SU->TopReadyCycle);
1761}
1762
1763void SchedBoundary::releaseBottomNode(SUnit *SU) {
1764  if (SU->isScheduled)
1765    return;
1766
1767  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1768
1769  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1770       I != E; ++I) {
1771    if (I->isWeak())
1772      continue;
1773    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1774    unsigned Latency = I->getLatency();
1775#ifndef NDEBUG
1776    MaxObservedLatency = std::max(Latency, MaxObservedLatency);
1777#endif
1778    if (SU->BotReadyCycle < SuccReadyCycle + Latency)
1779      SU->BotReadyCycle = SuccReadyCycle + Latency;
1780  }
1781  releaseNode(SU, SU->BotReadyCycle);
1782}
1783
1784/// Move the boundary of scheduled code by one cycle.
1785void SchedBoundary::bumpCycle(unsigned NextCycle) {
1786  if (SchedModel->getMicroOpBufferSize() == 0) {
1787    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1788    if (MinReadyCycle > NextCycle)
1789      NextCycle = MinReadyCycle;
1790  }
1791  // Update the current micro-ops, which will issue in the next cycle.
1792  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1793  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1794
1795  // Decrement DependentLatency based on the next cycle.
1796  if ((NextCycle - CurrCycle) > DependentLatency)
1797    DependentLatency = 0;
1798  else
1799    DependentLatency -= (NextCycle - CurrCycle);
1800
1801  if (!HazardRec->isEnabled()) {
1802    // Bypass HazardRec virtual calls.
1803    CurrCycle = NextCycle;
1804  }
1805  else {
1806    // Bypass getHazardType calls in case of long latency.
1807    for (; CurrCycle != NextCycle; ++CurrCycle) {
1808      if (isTop())
1809        HazardRec->AdvanceCycle();
1810      else
1811        HazardRec->RecedeCycle();
1812    }
1813  }
1814  CheckPending = true;
1815  unsigned LFactor = SchedModel->getLatencyFactor();
1816  IsResourceLimited =
1817    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1818    > (int)LFactor;
1819
1820  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1821}
1822
1823void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1824  ExecutedResCounts[PIdx] += Count;
1825  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1826    MaxExecutedResCount = ExecutedResCounts[PIdx];
1827}
1828
1829/// Add the given processor resource to this scheduled zone.
1830///
1831/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1832/// during which this resource is consumed.
1833///
1834/// \return the next cycle at which the instruction may execute without
1835/// oversubscribing resources.
1836unsigned SchedBoundary::
1837countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1838  unsigned Factor = SchedModel->getResourceFactor(PIdx);
1839  unsigned Count = Factor * Cycles;
1840  DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
1841        << " +" << Cycles << "x" << Factor << "u\n");
1842
1843  // Update Executed resources counts.
1844  incExecutedResources(PIdx, Count);
1845  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1846  Rem->RemainingCounts[PIdx] -= Count;
1847
1848  // Check if this resource exceeds the current critical resource. If so, it
1849  // becomes the critical resource.
1850  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1851    ZoneCritResIdx = PIdx;
1852    DEBUG(dbgs() << "  *** Critical resource "
1853          << SchedModel->getResourceName(PIdx) << ": "
1854          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1855  }
1856  // For reserved resources, record the highest cycle using the resource.
1857  unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1858  if (NextAvailable > CurrCycle) {
1859    DEBUG(dbgs() << "  Resource conflict: "
1860          << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1861          << NextAvailable << "\n");
1862  }
1863  return NextAvailable;
1864}
1865
1866/// Move the boundary of scheduled code by one SUnit.
1867void SchedBoundary::bumpNode(SUnit *SU) {
1868  // Update the reservation table.
1869  if (HazardRec->isEnabled()) {
1870    if (!isTop() && SU->isCall) {
1871      // Calls are scheduled with their preceding instructions. For bottom-up
1872      // scheduling, clear the pipeline state before emitting.
1873      HazardRec->Reset();
1874    }
1875    HazardRec->EmitInstruction(SU);
1876  }
1877  // checkHazard should prevent scheduling multiple instructions per cycle that
1878  // exceed the issue width.
1879  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1880  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1881  assert(
1882      (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1883      "Cannot schedule this instruction's MicroOps in the current cycle.");
1884
1885  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1886  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
1887
1888  unsigned NextCycle = CurrCycle;
1889  switch (SchedModel->getMicroOpBufferSize()) {
1890  case 0:
1891    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1892    break;
1893  case 1:
1894    if (ReadyCycle > NextCycle) {
1895      NextCycle = ReadyCycle;
1896      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
1897    }
1898    break;
1899  default:
1900    // We don't currently model the OOO reorder buffer, so consider all
1901    // scheduled MOps to be "retired". We do loosely model in-order resource
1902    // latency. If this instruction uses an in-order resource, account for any
1903    // likely stall cycles.
1904    if (SU->isUnbuffered && ReadyCycle > NextCycle)
1905      NextCycle = ReadyCycle;
1906    break;
1907  }
1908  RetiredMOps += IncMOps;
1909
1910  // Update resource counts and critical resource.
1911  if (SchedModel->hasInstrSchedModel()) {
1912    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1913    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1914    Rem->RemIssueCount -= DecRemIssue;
1915    if (ZoneCritResIdx) {
1916      // Scale scheduled micro-ops for comparing with the critical resource.
1917      unsigned ScaledMOps =
1918        RetiredMOps * SchedModel->getMicroOpFactor();
1919
1920      // If scaled micro-ops are now more than the previous critical resource by
1921      // a full cycle, then micro-ops issue becomes critical.
1922      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1923          >= (int)SchedModel->getLatencyFactor()) {
1924        ZoneCritResIdx = 0;
1925        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
1926              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1927      }
1928    }
1929    for (TargetSchedModel::ProcResIter
1930           PI = SchedModel->getWriteProcResBegin(SC),
1931           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1932      unsigned RCycle =
1933        countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
1934      if (RCycle > NextCycle)
1935        NextCycle = RCycle;
1936    }
1937    if (SU->hasReservedResource) {
1938      // For reserved resources, record the highest cycle using the resource.
1939      // For top-down scheduling, this is the cycle in which we schedule this
1940      // instruction plus the number of cycles the operations reserves the
1941      // resource. For bottom-up is it simply the instruction's cycle.
1942      for (TargetSchedModel::ProcResIter
1943             PI = SchedModel->getWriteProcResBegin(SC),
1944             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1945        unsigned PIdx = PI->ProcResourceIdx;
1946        if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
1947          ReservedCycles[PIdx] = isTop() ? NextCycle + PI->Cycles : NextCycle;
1948#ifndef NDEBUG
1949          MaxObservedLatency = std::max(PI->Cycles, MaxObservedLatency);
1950#endif
1951        }
1952      }
1953    }
1954  }
1955  // Update ExpectedLatency and DependentLatency.
1956  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
1957  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
1958  if (SU->getDepth() > TopLatency) {
1959    TopLatency = SU->getDepth();
1960    DEBUG(dbgs() << "  " << Available.getName()
1961          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
1962  }
1963  if (SU->getHeight() > BotLatency) {
1964    BotLatency = SU->getHeight();
1965    DEBUG(dbgs() << "  " << Available.getName()
1966          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
1967  }
1968  // If we stall for any reason, bump the cycle.
1969  if (NextCycle > CurrCycle) {
1970    bumpCycle(NextCycle);
1971  }
1972  else {
1973    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
1974    // resource limited. If a stall occurred, bumpCycle does this.
1975    unsigned LFactor = SchedModel->getLatencyFactor();
1976    IsResourceLimited =
1977      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1978      > (int)LFactor;
1979  }
1980  // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
1981  // resets CurrMOps. Loop to handle instructions with more MOps than issue in
1982  // one cycle.  Since we commonly reach the max MOps here, opportunistically
1983  // bump the cycle to avoid uselessly checking everything in the readyQ.
1984  CurrMOps += IncMOps;
1985  while (CurrMOps >= SchedModel->getIssueWidth()) {
1986    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
1987          << " at cycle " << CurrCycle << '\n');
1988    bumpCycle(++NextCycle);
1989  }
1990  DEBUG(dumpScheduledState());
1991}
1992
1993/// Release pending ready nodes in to the available queue. This makes them
1994/// visible to heuristics.
1995void SchedBoundary::releasePending() {
1996  // If the available queue is empty, it is safe to reset MinReadyCycle.
1997  if (Available.empty())
1998    MinReadyCycle = UINT_MAX;
1999
2000  // Check to see if any of the pending instructions are ready to issue.  If
2001  // so, add them to the available queue.
2002  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2003  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2004    SUnit *SU = *(Pending.begin()+i);
2005    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2006
2007    if (ReadyCycle < MinReadyCycle)
2008      MinReadyCycle = ReadyCycle;
2009
2010    if (!IsBuffered && ReadyCycle > CurrCycle)
2011      continue;
2012
2013    if (checkHazard(SU))
2014      continue;
2015
2016    Available.push(SU);
2017    Pending.remove(Pending.begin()+i);
2018    --i; --e;
2019  }
2020  DEBUG(if (!Pending.empty()) Pending.dump());
2021  CheckPending = false;
2022}
2023
2024/// Remove SU from the ready set for this boundary.
2025void SchedBoundary::removeReady(SUnit *SU) {
2026  if (Available.isInQueue(SU))
2027    Available.remove(Available.find(SU));
2028  else {
2029    assert(Pending.isInQueue(SU) && "bad ready count");
2030    Pending.remove(Pending.find(SU));
2031  }
2032}
2033
2034/// If this queue only has one ready candidate, return it. As a side effect,
2035/// defer any nodes that now hit a hazard, and advance the cycle until at least
2036/// one node is ready. If multiple instructions are ready, return NULL.
2037SUnit *SchedBoundary::pickOnlyChoice() {
2038  if (CheckPending)
2039    releasePending();
2040
2041  if (CurrMOps > 0) {
2042    // Defer any ready instrs that now have a hazard.
2043    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2044      if (checkHazard(*I)) {
2045        Pending.push(*I);
2046        I = Available.remove(I);
2047        continue;
2048      }
2049      ++I;
2050    }
2051  }
2052  for (unsigned i = 0; Available.empty(); ++i) {
2053    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
2054           "permanent hazard"); (void)i;
2055    bumpCycle(CurrCycle + 1);
2056    releasePending();
2057  }
2058  if (Available.size() == 1)
2059    return *Available.begin();
2060  return NULL;
2061}
2062
2063#ifndef NDEBUG
2064// This is useful information to dump after bumpNode.
2065// Note that the Queue contents are more useful before pickNodeFromQueue.
2066void SchedBoundary::dumpScheduledState() {
2067  unsigned ResFactor;
2068  unsigned ResCount;
2069  if (ZoneCritResIdx) {
2070    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2071    ResCount = getResourceCount(ZoneCritResIdx);
2072  }
2073  else {
2074    ResFactor = SchedModel->getMicroOpFactor();
2075    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2076  }
2077  unsigned LFactor = SchedModel->getLatencyFactor();
2078  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2079         << "  Retired: " << RetiredMOps;
2080  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2081  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2082         << ResCount / ResFactor << " "
2083         << SchedModel->getResourceName(ZoneCritResIdx)
2084         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2085         << (IsResourceLimited ? "  - Resource" : "  - Latency")
2086         << " limited.\n";
2087}
2088#endif
2089
2090//===----------------------------------------------------------------------===//
2091// GenericScheduler - Generic implementation of MachineSchedStrategy.
2092//===----------------------------------------------------------------------===//
2093
2094namespace {
2095/// Base class for GenericScheduler. This class maintains information about
2096/// scheduling candidates based on TargetSchedModel making it easy to implement
2097/// heuristics for either preRA or postRA scheduling.
2098class GenericSchedulerBase : public MachineSchedStrategy {
2099public:
2100  /// Represent the type of SchedCandidate found within a single queue.
2101  /// pickNodeBidirectional depends on these listed by decreasing priority.
2102  enum CandReason {
2103    NoCand, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax,
2104    ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
2105    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
2106
2107#ifndef NDEBUG
2108  static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
2109#endif
2110
2111  /// Policy for scheduling the next instruction in the candidate's zone.
2112  struct CandPolicy {
2113    bool ReduceLatency;
2114    unsigned ReduceResIdx;
2115    unsigned DemandResIdx;
2116
2117    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
2118  };
2119
2120  /// Status of an instruction's critical resource consumption.
2121  struct SchedResourceDelta {
2122    // Count critical resources in the scheduled region required by SU.
2123    unsigned CritResources;
2124
2125    // Count critical resources from another region consumed by SU.
2126    unsigned DemandedResources;
2127
2128    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
2129
2130    bool operator==(const SchedResourceDelta &RHS) const {
2131      return CritResources == RHS.CritResources
2132        && DemandedResources == RHS.DemandedResources;
2133    }
2134    bool operator!=(const SchedResourceDelta &RHS) const {
2135      return !operator==(RHS);
2136    }
2137  };
2138
2139  /// Store the state used by GenericScheduler heuristics, required for the
2140  /// lifetime of one invocation of pickNode().
2141  struct SchedCandidate {
2142    CandPolicy Policy;
2143
2144    // The best SUnit candidate.
2145    SUnit *SU;
2146
2147    // The reason for this candidate.
2148    CandReason Reason;
2149
2150    // Set of reasons that apply to multiple candidates.
2151    uint32_t RepeatReasonSet;
2152
2153    // Register pressure values for the best candidate.
2154    RegPressureDelta RPDelta;
2155
2156    // Critical resource consumption of the best candidate.
2157    SchedResourceDelta ResDelta;
2158
2159    SchedCandidate(const CandPolicy &policy)
2160      : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {}
2161
2162    bool isValid() const { return SU; }
2163
2164    // Copy the status of another candidate without changing policy.
2165    void setBest(SchedCandidate &Best) {
2166      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
2167      SU = Best.SU;
2168      Reason = Best.Reason;
2169      RPDelta = Best.RPDelta;
2170      ResDelta = Best.ResDelta;
2171    }
2172
2173    bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
2174    void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
2175
2176    void initResourceDelta(const ScheduleDAGMI *DAG,
2177                           const TargetSchedModel *SchedModel);
2178  };
2179
2180protected:
2181  const MachineSchedContext *Context;
2182  const TargetSchedModel *SchedModel;
2183  const TargetRegisterInfo *TRI;
2184
2185  SchedRemainder Rem;
2186protected:
2187  GenericSchedulerBase(const MachineSchedContext *C):
2188    Context(C), SchedModel(0), TRI(0) {}
2189
2190  void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
2191                 SchedBoundary *OtherZone);
2192
2193#ifndef NDEBUG
2194  void traceCandidate(const SchedCandidate &Cand);
2195#endif
2196};
2197} // namespace
2198
2199void GenericSchedulerBase::SchedCandidate::
2200initResourceDelta(const ScheduleDAGMI *DAG,
2201                  const TargetSchedModel *SchedModel) {
2202  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2203    return;
2204
2205  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2206  for (TargetSchedModel::ProcResIter
2207         PI = SchedModel->getWriteProcResBegin(SC),
2208         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2209    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2210      ResDelta.CritResources += PI->Cycles;
2211    if (PI->ProcResourceIdx == Policy.DemandResIdx)
2212      ResDelta.DemandedResources += PI->Cycles;
2213  }
2214}
2215
2216/// Set the CandPolicy given a scheduling zone given the current resources and
2217/// latencies inside and outside the zone.
2218void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2219                                     bool IsPostRA,
2220                                     SchedBoundary &CurrZone,
2221                                     SchedBoundary *OtherZone) {
2222  // Apply preemptive heuristics based on the the total latency and resources
2223  // inside and outside this zone. Potential stalls should be considered before
2224  // following this policy.
2225
2226  // Compute remaining latency. We need this both to determine whether the
2227  // overall schedule has become latency-limited and whether the instructions
2228  // outside this zone are resource or latency limited.
2229  //
2230  // The "dependent" latency is updated incrementally during scheduling as the
2231  // max height/depth of scheduled nodes minus the cycles since it was
2232  // scheduled:
2233  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2234  //
2235  // The "independent" latency is the max ready queue depth:
2236  //   ILat = max N.depth for N in Available|Pending
2237  //
2238  // RemainingLatency is the greater of independent and dependent latency.
2239  unsigned RemLatency = CurrZone.getDependentLatency();
2240  RemLatency = std::max(RemLatency,
2241                        CurrZone.findMaxLatency(CurrZone.Available.elements()));
2242  RemLatency = std::max(RemLatency,
2243                        CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2244
2245  // Compute the critical resource outside the zone.
2246  unsigned OtherCritIdx = 0;
2247  unsigned OtherCount =
2248    OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2249
2250  bool OtherResLimited = false;
2251  if (SchedModel->hasInstrSchedModel()) {
2252    unsigned LFactor = SchedModel->getLatencyFactor();
2253    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2254  }
2255  // Schedule aggressively for latency in PostRA mode. We don't check for
2256  // acyclic latency during PostRA, and highly out-of-order processors will
2257  // skip PostRA scheduling.
2258  if (!OtherResLimited) {
2259    if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2260      Policy.ReduceLatency |= true;
2261      DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2262            << " RemainingLatency " << RemLatency << " + "
2263            << CurrZone.getCurrCycle() << "c > CritPath "
2264            << Rem.CriticalPath << "\n");
2265    }
2266  }
2267  // If the same resource is limiting inside and outside the zone, do nothing.
2268  if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2269    return;
2270
2271  DEBUG(
2272    if (CurrZone.isResourceLimited()) {
2273      dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2274             << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2275             << "\n";
2276    }
2277    if (OtherResLimited)
2278      dbgs() << "  RemainingLimit: "
2279             << SchedModel->getResourceName(OtherCritIdx) << "\n";
2280    if (!CurrZone.isResourceLimited() && !OtherResLimited)
2281      dbgs() << "  Latency limited both directions.\n");
2282
2283  if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2284    Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2285
2286  if (OtherResLimited)
2287    Policy.DemandResIdx = OtherCritIdx;
2288}
2289
2290#ifndef NDEBUG
2291const char *GenericSchedulerBase::getReasonStr(
2292  GenericSchedulerBase::CandReason Reason) {
2293  switch (Reason) {
2294  case NoCand:         return "NOCAND    ";
2295  case PhysRegCopy:    return "PREG-COPY";
2296  case RegExcess:      return "REG-EXCESS";
2297  case RegCritical:    return "REG-CRIT  ";
2298  case Stall:          return "STALL     ";
2299  case Cluster:        return "CLUSTER   ";
2300  case Weak:           return "WEAK      ";
2301  case RegMax:         return "REG-MAX   ";
2302  case ResourceReduce: return "RES-REDUCE";
2303  case ResourceDemand: return "RES-DEMAND";
2304  case TopDepthReduce: return "TOP-DEPTH ";
2305  case TopPathReduce:  return "TOP-PATH  ";
2306  case BotHeightReduce:return "BOT-HEIGHT";
2307  case BotPathReduce:  return "BOT-PATH  ";
2308  case NextDefUse:     return "DEF-USE   ";
2309  case NodeOrder:      return "ORDER     ";
2310  };
2311  llvm_unreachable("Unknown reason!");
2312}
2313
2314void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2315  PressureChange P;
2316  unsigned ResIdx = 0;
2317  unsigned Latency = 0;
2318  switch (Cand.Reason) {
2319  default:
2320    break;
2321  case RegExcess:
2322    P = Cand.RPDelta.Excess;
2323    break;
2324  case RegCritical:
2325    P = Cand.RPDelta.CriticalMax;
2326    break;
2327  case RegMax:
2328    P = Cand.RPDelta.CurrentMax;
2329    break;
2330  case ResourceReduce:
2331    ResIdx = Cand.Policy.ReduceResIdx;
2332    break;
2333  case ResourceDemand:
2334    ResIdx = Cand.Policy.DemandResIdx;
2335    break;
2336  case TopDepthReduce:
2337    Latency = Cand.SU->getDepth();
2338    break;
2339  case TopPathReduce:
2340    Latency = Cand.SU->getHeight();
2341    break;
2342  case BotHeightReduce:
2343    Latency = Cand.SU->getHeight();
2344    break;
2345  case BotPathReduce:
2346    Latency = Cand.SU->getDepth();
2347    break;
2348  }
2349  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2350  if (P.isValid())
2351    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2352           << ":" << P.getUnitInc() << " ";
2353  else
2354    dbgs() << "      ";
2355  if (ResIdx)
2356    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2357  else
2358    dbgs() << "         ";
2359  if (Latency)
2360    dbgs() << " " << Latency << " cycles ";
2361  else
2362    dbgs() << "          ";
2363  dbgs() << '\n';
2364}
2365#endif
2366
2367/// Return true if this heuristic determines order.
2368static bool tryLess(int TryVal, int CandVal,
2369                    GenericSchedulerBase::SchedCandidate &TryCand,
2370                    GenericSchedulerBase::SchedCandidate &Cand,
2371                    GenericSchedulerBase::CandReason Reason) {
2372  if (TryVal < CandVal) {
2373    TryCand.Reason = Reason;
2374    return true;
2375  }
2376  if (TryVal > CandVal) {
2377    if (Cand.Reason > Reason)
2378      Cand.Reason = Reason;
2379    return true;
2380  }
2381  Cand.setRepeat(Reason);
2382  return false;
2383}
2384
2385static bool tryGreater(int TryVal, int CandVal,
2386                       GenericSchedulerBase::SchedCandidate &TryCand,
2387                       GenericSchedulerBase::SchedCandidate &Cand,
2388                       GenericSchedulerBase::CandReason Reason) {
2389  if (TryVal > CandVal) {
2390    TryCand.Reason = Reason;
2391    return true;
2392  }
2393  if (TryVal < CandVal) {
2394    if (Cand.Reason > Reason)
2395      Cand.Reason = Reason;
2396    return true;
2397  }
2398  Cand.setRepeat(Reason);
2399  return false;
2400}
2401
2402static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2403                       GenericSchedulerBase::SchedCandidate &Cand,
2404                       SchedBoundary &Zone) {
2405  if (Zone.isTop()) {
2406    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2407      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2408                  TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2409        return true;
2410    }
2411    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2412                   TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2413      return true;
2414  }
2415  else {
2416    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2417      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2418                  TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2419        return true;
2420    }
2421    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2422                   TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2423      return true;
2424  }
2425  return false;
2426}
2427
2428static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2429                      bool IsTop) {
2430  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2431        << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2432}
2433
2434namespace {
2435/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
2436/// the schedule.
2437class GenericScheduler : public GenericSchedulerBase {
2438  ScheduleDAGMILive *DAG;
2439
2440  // State of the top and bottom scheduled instruction boundaries.
2441  SchedBoundary Top;
2442  SchedBoundary Bot;
2443
2444  MachineSchedPolicy RegionPolicy;
2445public:
2446  GenericScheduler(const MachineSchedContext *C):
2447    GenericSchedulerBase(C), DAG(0), Top(SchedBoundary::TopQID, "TopQ"),
2448    Bot(SchedBoundary::BotQID, "BotQ") {}
2449
2450  void initPolicy(MachineBasicBlock::iterator Begin,
2451                  MachineBasicBlock::iterator End,
2452                  unsigned NumRegionInstrs) override;
2453
2454  bool shouldTrackPressure() const override {
2455    return RegionPolicy.ShouldTrackPressure;
2456  }
2457
2458  void initialize(ScheduleDAGMI *dag) override;
2459
2460  SUnit *pickNode(bool &IsTopNode) override;
2461
2462  void schedNode(SUnit *SU, bool IsTopNode) override;
2463
2464  void releaseTopNode(SUnit *SU) override {
2465    Top.releaseTopNode(SU);
2466  }
2467
2468  void releaseBottomNode(SUnit *SU) override {
2469    Bot.releaseBottomNode(SU);
2470  }
2471
2472  void registerRoots() override;
2473
2474protected:
2475  void checkAcyclicLatency();
2476
2477  void tryCandidate(SchedCandidate &Cand,
2478                    SchedCandidate &TryCand,
2479                    SchedBoundary &Zone,
2480                    const RegPressureTracker &RPTracker,
2481                    RegPressureTracker &TempTracker);
2482
2483  SUnit *pickNodeBidirectional(bool &IsTopNode);
2484
2485  void pickNodeFromQueue(SchedBoundary &Zone,
2486                         const RegPressureTracker &RPTracker,
2487                         SchedCandidate &Candidate);
2488
2489  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
2490};
2491} // namespace
2492
2493void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2494  assert(dag->hasVRegLiveness() &&
2495         "(PreRA)GenericScheduler needs vreg liveness");
2496  DAG = static_cast<ScheduleDAGMILive*>(dag);
2497  SchedModel = DAG->getSchedModel();
2498  TRI = DAG->TRI;
2499
2500  Rem.init(DAG, SchedModel);
2501  Top.init(DAG, SchedModel, &Rem);
2502  Bot.init(DAG, SchedModel, &Rem);
2503
2504  // Initialize resource counts.
2505
2506  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2507  // are disabled, then these HazardRecs will be disabled.
2508  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2509  const TargetMachine &TM = DAG->MF.getTarget();
2510  if (!Top.HazardRec) {
2511    Top.HazardRec =
2512      TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
2513  }
2514  if (!Bot.HazardRec) {
2515    Bot.HazardRec =
2516      TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
2517  }
2518}
2519
2520/// Initialize the per-region scheduling policy.
2521void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2522                                  MachineBasicBlock::iterator End,
2523                                  unsigned NumRegionInstrs) {
2524  const TargetMachine &TM = Context->MF->getTarget();
2525  const TargetLowering *TLI = TM.getTargetLowering();
2526
2527  // Avoid setting up the register pressure tracker for small regions to save
2528  // compile time. As a rough heuristic, only track pressure when the number of
2529  // schedulable instructions exceeds half the integer register file.
2530  RegionPolicy.ShouldTrackPressure = true;
2531  for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2532    MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2533    if (TLI->isTypeLegal(LegalIntVT)) {
2534      unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2535        TLI->getRegClassFor(LegalIntVT));
2536      RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2537    }
2538  }
2539
2540  // For generic targets, we default to bottom-up, because it's simpler and more
2541  // compile-time optimizations have been implemented in that direction.
2542  RegionPolicy.OnlyBottomUp = true;
2543
2544  // Allow the subtarget to override default policy.
2545  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
2546  ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
2547
2548  // After subtarget overrides, apply command line options.
2549  if (!EnableRegPressure)
2550    RegionPolicy.ShouldTrackPressure = false;
2551
2552  // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2553  // e.g. -misched-bottomup=false allows scheduling in both directions.
2554  assert((!ForceTopDown || !ForceBottomUp) &&
2555         "-misched-topdown incompatible with -misched-bottomup");
2556  if (ForceBottomUp.getNumOccurrences() > 0) {
2557    RegionPolicy.OnlyBottomUp = ForceBottomUp;
2558    if (RegionPolicy.OnlyBottomUp)
2559      RegionPolicy.OnlyTopDown = false;
2560  }
2561  if (ForceTopDown.getNumOccurrences() > 0) {
2562    RegionPolicy.OnlyTopDown = ForceTopDown;
2563    if (RegionPolicy.OnlyTopDown)
2564      RegionPolicy.OnlyBottomUp = false;
2565  }
2566}
2567
2568/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2569/// critical path by more cycles than it takes to drain the instruction buffer.
2570/// We estimate an upper bounds on in-flight instructions as:
2571///
2572/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2573/// InFlightIterations = AcyclicPath / CyclesPerIteration
2574/// InFlightResources = InFlightIterations * LoopResources
2575///
2576/// TODO: Check execution resources in addition to IssueCount.
2577void GenericScheduler::checkAcyclicLatency() {
2578  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2579    return;
2580
2581  // Scaled number of cycles per loop iteration.
2582  unsigned IterCount =
2583    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2584             Rem.RemIssueCount);
2585  // Scaled acyclic critical path.
2586  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2587  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2588  unsigned InFlightCount =
2589    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2590  unsigned BufferLimit =
2591    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2592
2593  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2594
2595  DEBUG(dbgs() << "IssueCycles="
2596        << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2597        << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2598        << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2599        << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2600        << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2601        if (Rem.IsAcyclicLatencyLimited)
2602          dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2603}
2604
2605void GenericScheduler::registerRoots() {
2606  Rem.CriticalPath = DAG->ExitSU.getDepth();
2607
2608  // Some roots may not feed into ExitSU. Check all of them in case.
2609  for (std::vector<SUnit*>::const_iterator
2610         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2611    if ((*I)->getDepth() > Rem.CriticalPath)
2612      Rem.CriticalPath = (*I)->getDepth();
2613  }
2614  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
2615
2616  if (EnableCyclicPath) {
2617    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2618    checkAcyclicLatency();
2619  }
2620}
2621
2622static bool tryPressure(const PressureChange &TryP,
2623                        const PressureChange &CandP,
2624                        GenericSchedulerBase::SchedCandidate &TryCand,
2625                        GenericSchedulerBase::SchedCandidate &Cand,
2626                        GenericSchedulerBase::CandReason Reason) {
2627  int TryRank = TryP.getPSetOrMax();
2628  int CandRank = CandP.getPSetOrMax();
2629  // If both candidates affect the same set, go with the smallest increase.
2630  if (TryRank == CandRank) {
2631    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2632                   Reason);
2633  }
2634  // If one candidate decreases and the other increases, go with it.
2635  // Invalid candidates have UnitInc==0.
2636  if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2637              Reason)) {
2638    return true;
2639  }
2640  // If the candidates are decreasing pressure, reverse priority.
2641  if (TryP.getUnitInc() < 0)
2642    std::swap(TryRank, CandRank);
2643  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2644}
2645
2646static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2647  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2648}
2649
2650/// Minimize physical register live ranges. Regalloc wants them adjacent to
2651/// their physreg def/use.
2652///
2653/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2654/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2655/// with the operation that produces or consumes the physreg. We'll do this when
2656/// regalloc has support for parallel copies.
2657static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2658  const MachineInstr *MI = SU->getInstr();
2659  if (!MI->isCopy())
2660    return 0;
2661
2662  unsigned ScheduledOper = isTop ? 1 : 0;
2663  unsigned UnscheduledOper = isTop ? 0 : 1;
2664  // If we have already scheduled the physreg produce/consumer, immediately
2665  // schedule the copy.
2666  if (TargetRegisterInfo::isPhysicalRegister(
2667        MI->getOperand(ScheduledOper).getReg()))
2668    return 1;
2669  // If the physreg is at the boundary, defer it. Otherwise schedule it
2670  // immediately to free the dependent. We can hoist the copy later.
2671  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2672  if (TargetRegisterInfo::isPhysicalRegister(
2673        MI->getOperand(UnscheduledOper).getReg()))
2674    return AtBoundary ? -1 : 1;
2675  return 0;
2676}
2677
2678/// Apply a set of heursitics to a new candidate. Heuristics are currently
2679/// hierarchical. This may be more efficient than a graduated cost model because
2680/// we don't need to evaluate all aspects of the model for each node in the
2681/// queue. But it's really done to make the heuristics easier to debug and
2682/// statistically analyze.
2683///
2684/// \param Cand provides the policy and current best candidate.
2685/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2686/// \param Zone describes the scheduled zone that we are extending.
2687/// \param RPTracker describes reg pressure within the scheduled zone.
2688/// \param TempTracker is a scratch pressure tracker to reuse in queries.
2689void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2690                                    SchedCandidate &TryCand,
2691                                    SchedBoundary &Zone,
2692                                    const RegPressureTracker &RPTracker,
2693                                    RegPressureTracker &TempTracker) {
2694
2695  if (DAG->isTrackingPressure()) {
2696    // Always initialize TryCand's RPDelta.
2697    if (Zone.isTop()) {
2698      TempTracker.getMaxDownwardPressureDelta(
2699        TryCand.SU->getInstr(),
2700        TryCand.RPDelta,
2701        DAG->getRegionCriticalPSets(),
2702        DAG->getRegPressure().MaxSetPressure);
2703    }
2704    else {
2705      if (VerifyScheduling) {
2706        TempTracker.getMaxUpwardPressureDelta(
2707          TryCand.SU->getInstr(),
2708          &DAG->getPressureDiff(TryCand.SU),
2709          TryCand.RPDelta,
2710          DAG->getRegionCriticalPSets(),
2711          DAG->getRegPressure().MaxSetPressure);
2712      }
2713      else {
2714        RPTracker.getUpwardPressureDelta(
2715          TryCand.SU->getInstr(),
2716          DAG->getPressureDiff(TryCand.SU),
2717          TryCand.RPDelta,
2718          DAG->getRegionCriticalPSets(),
2719          DAG->getRegPressure().MaxSetPressure);
2720      }
2721    }
2722  }
2723  DEBUG(if (TryCand.RPDelta.Excess.isValid())
2724          dbgs() << "  SU(" << TryCand.SU->NodeNum << ") "
2725                 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2726                 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2727
2728  // Initialize the candidate if needed.
2729  if (!Cand.isValid()) {
2730    TryCand.Reason = NodeOrder;
2731    return;
2732  }
2733
2734  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2735                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2736                 TryCand, Cand, PhysRegCopy))
2737    return;
2738
2739  // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2740  // invalid; convert it to INT_MAX to give it lowest priority.
2741  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2742                                               Cand.RPDelta.Excess,
2743                                               TryCand, Cand, RegExcess))
2744    return;
2745
2746  // Avoid increasing the max critical pressure in the scheduled region.
2747  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2748                                               Cand.RPDelta.CriticalMax,
2749                                               TryCand, Cand, RegCritical))
2750    return;
2751
2752  // For loops that are acyclic path limited, aggressively schedule for latency.
2753  // This can result in very long dependence chains scheduled in sequence, so
2754  // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2755  if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2756      && tryLatency(TryCand, Cand, Zone))
2757    return;
2758
2759  // Prioritize instructions that read unbuffered resources by stall cycles.
2760  if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2761              Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2762    return;
2763
2764  // Keep clustered nodes together to encourage downstream peephole
2765  // optimizations which may reduce resource requirements.
2766  //
2767  // This is a best effort to set things up for a post-RA pass. Optimizations
2768  // like generating loads of multiple registers should ideally be done within
2769  // the scheduler pass by combining the loads during DAG postprocessing.
2770  const SUnit *NextClusterSU =
2771    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2772  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2773                 TryCand, Cand, Cluster))
2774    return;
2775
2776  // Weak edges are for clustering and other constraints.
2777  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2778              getWeakLeft(Cand.SU, Zone.isTop()),
2779              TryCand, Cand, Weak)) {
2780    return;
2781  }
2782  // Avoid increasing the max pressure of the entire region.
2783  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2784                                               Cand.RPDelta.CurrentMax,
2785                                               TryCand, Cand, RegMax))
2786    return;
2787
2788  // Avoid critical resource consumption and balance the schedule.
2789  TryCand.initResourceDelta(DAG, SchedModel);
2790  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2791              TryCand, Cand, ResourceReduce))
2792    return;
2793  if (tryGreater(TryCand.ResDelta.DemandedResources,
2794                 Cand.ResDelta.DemandedResources,
2795                 TryCand, Cand, ResourceDemand))
2796    return;
2797
2798  // Avoid serializing long latency dependence chains.
2799  // For acyclic path limited loops, latency was already checked above.
2800  if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2801      && tryLatency(TryCand, Cand, Zone)) {
2802    return;
2803  }
2804
2805  // Prefer immediate defs/users of the last scheduled instruction. This is a
2806  // local pressure avoidance strategy that also makes the machine code
2807  // readable.
2808  if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2809                 TryCand, Cand, NextDefUse))
2810    return;
2811
2812  // Fall through to original instruction order.
2813  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2814      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2815    TryCand.Reason = NodeOrder;
2816  }
2817}
2818
2819/// Pick the best candidate from the queue.
2820///
2821/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2822/// DAG building. To adjust for the current scheduling location we need to
2823/// maintain the number of vreg uses remaining to be top-scheduled.
2824void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2825                                         const RegPressureTracker &RPTracker,
2826                                         SchedCandidate &Cand) {
2827  ReadyQueue &Q = Zone.Available;
2828
2829  DEBUG(Q.dump());
2830
2831  // getMaxPressureDelta temporarily modifies the tracker.
2832  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2833
2834  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2835
2836    SchedCandidate TryCand(Cand.Policy);
2837    TryCand.SU = *I;
2838    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2839    if (TryCand.Reason != NoCand) {
2840      // Initialize resource delta if needed in case future heuristics query it.
2841      if (TryCand.ResDelta == SchedResourceDelta())
2842        TryCand.initResourceDelta(DAG, SchedModel);
2843      Cand.setBest(TryCand);
2844      DEBUG(traceCandidate(Cand));
2845    }
2846  }
2847}
2848
2849/// Pick the best candidate node from either the top or bottom queue.
2850SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2851  // Schedule as far as possible in the direction of no choice. This is most
2852  // efficient, but also provides the best heuristics for CriticalPSets.
2853  if (SUnit *SU = Bot.pickOnlyChoice()) {
2854    IsTopNode = false;
2855    DEBUG(dbgs() << "Pick Bot NOCAND\n");
2856    return SU;
2857  }
2858  if (SUnit *SU = Top.pickOnlyChoice()) {
2859    IsTopNode = true;
2860    DEBUG(dbgs() << "Pick Top NOCAND\n");
2861    return SU;
2862  }
2863  CandPolicy NoPolicy;
2864  SchedCandidate BotCand(NoPolicy);
2865  SchedCandidate TopCand(NoPolicy);
2866  // Set the bottom-up policy based on the state of the current bottom zone and
2867  // the instructions outside the zone, including the top zone.
2868  setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2869  // Set the top-down policy based on the state of the current top zone and
2870  // the instructions outside the zone, including the bottom zone.
2871  setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2872
2873  // Prefer bottom scheduling when heuristics are silent.
2874  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2875  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2876
2877  // If either Q has a single candidate that provides the least increase in
2878  // Excess pressure, we can immediately schedule from that Q.
2879  //
2880  // RegionCriticalPSets summarizes the pressure within the scheduled region and
2881  // affects picking from either Q. If scheduling in one direction must
2882  // increase pressure for one of the excess PSets, then schedule in that
2883  // direction first to provide more freedom in the other direction.
2884  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2885      || (BotCand.Reason == RegCritical
2886          && !BotCand.isRepeat(RegCritical)))
2887  {
2888    IsTopNode = false;
2889    tracePick(BotCand, IsTopNode);
2890    return BotCand.SU;
2891  }
2892  // Check if the top Q has a better candidate.
2893  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2894  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2895
2896  // Choose the queue with the most important (lowest enum) reason.
2897  if (TopCand.Reason < BotCand.Reason) {
2898    IsTopNode = true;
2899    tracePick(TopCand, IsTopNode);
2900    return TopCand.SU;
2901  }
2902  // Otherwise prefer the bottom candidate, in node order if all else failed.
2903  IsTopNode = false;
2904  tracePick(BotCand, IsTopNode);
2905  return BotCand.SU;
2906}
2907
2908/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2909SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2910  if (DAG->top() == DAG->bottom()) {
2911    assert(Top.Available.empty() && Top.Pending.empty() &&
2912           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2913    return NULL;
2914  }
2915  SUnit *SU;
2916  do {
2917    if (RegionPolicy.OnlyTopDown) {
2918      SU = Top.pickOnlyChoice();
2919      if (!SU) {
2920        CandPolicy NoPolicy;
2921        SchedCandidate TopCand(NoPolicy);
2922        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2923        assert(TopCand.Reason != NoCand && "failed to find a candidate");
2924        tracePick(TopCand, true);
2925        SU = TopCand.SU;
2926      }
2927      IsTopNode = true;
2928    }
2929    else if (RegionPolicy.OnlyBottomUp) {
2930      SU = Bot.pickOnlyChoice();
2931      if (!SU) {
2932        CandPolicy NoPolicy;
2933        SchedCandidate BotCand(NoPolicy);
2934        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2935        assert(BotCand.Reason != NoCand && "failed to find a candidate");
2936        tracePick(BotCand, false);
2937        SU = BotCand.SU;
2938      }
2939      IsTopNode = false;
2940    }
2941    else {
2942      SU = pickNodeBidirectional(IsTopNode);
2943    }
2944  } while (SU->isScheduled);
2945
2946  if (SU->isTopReady())
2947    Top.removeReady(SU);
2948  if (SU->isBottomReady())
2949    Bot.removeReady(SU);
2950
2951  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2952  return SU;
2953}
2954
2955void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2956
2957  MachineBasicBlock::iterator InsertPos = SU->getInstr();
2958  if (!isTop)
2959    ++InsertPos;
2960  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2961
2962  // Find already scheduled copies with a single physreg dependence and move
2963  // them just above the scheduled instruction.
2964  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2965       I != E; ++I) {
2966    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2967      continue;
2968    SUnit *DepSU = I->getSUnit();
2969    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2970      continue;
2971    MachineInstr *Copy = DepSU->getInstr();
2972    if (!Copy->isCopy())
2973      continue;
2974    DEBUG(dbgs() << "  Rescheduling physreg copy ";
2975          I->getSUnit()->dump(DAG));
2976    DAG->moveInstruction(Copy, InsertPos);
2977  }
2978}
2979
2980/// Update the scheduler's state after scheduling a node. This is the same node
2981/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2982/// update it's state based on the current cycle before MachineSchedStrategy
2983/// does.
2984///
2985/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2986/// them here. See comments in biasPhysRegCopy.
2987void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2988  if (IsTopNode) {
2989    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2990    Top.bumpNode(SU);
2991    if (SU->hasPhysRegUses)
2992      reschedulePhysRegCopies(SU, true);
2993  }
2994  else {
2995    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2996    Bot.bumpNode(SU);
2997    if (SU->hasPhysRegDefs)
2998      reschedulePhysRegCopies(SU, false);
2999  }
3000}
3001
3002/// Create the standard converging machine scheduler. This will be used as the
3003/// default scheduler if the target does not set a default.
3004static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
3005  ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, new GenericScheduler(C));
3006  // Register DAG post-processors.
3007  //
3008  // FIXME: extend the mutation API to allow earlier mutations to instantiate
3009  // data and pass it to later mutations. Have a single mutation that gathers
3010  // the interesting nodes in one pass.
3011  DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
3012  if (EnableLoadCluster && DAG->TII->enableClusterLoads())
3013    DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
3014  if (EnableMacroFusion)
3015    DAG->addMutation(new MacroFusion(DAG->TII));
3016  return DAG;
3017}
3018
3019static MachineSchedRegistry
3020GenericSchedRegistry("converge", "Standard converging scheduler.",
3021                     createGenericSchedLive);
3022
3023//===----------------------------------------------------------------------===//
3024// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3025//===----------------------------------------------------------------------===//
3026
3027namespace {
3028/// PostGenericScheduler - Interface to the scheduling algorithm used by
3029/// ScheduleDAGMI.
3030///
3031/// Callbacks from ScheduleDAGMI:
3032///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
3033class PostGenericScheduler : public GenericSchedulerBase {
3034  ScheduleDAGMI *DAG;
3035  SchedBoundary Top;
3036  SmallVector<SUnit*, 8> BotRoots;
3037public:
3038  PostGenericScheduler(const MachineSchedContext *C):
3039    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
3040
3041  virtual ~PostGenericScheduler() {}
3042
3043  void initPolicy(MachineBasicBlock::iterator Begin,
3044                  MachineBasicBlock::iterator End,
3045                  unsigned NumRegionInstrs) override {
3046    /* no configurable policy */
3047  };
3048
3049  /// PostRA scheduling does not track pressure.
3050  bool shouldTrackPressure() const override { return false; }
3051
3052  void initialize(ScheduleDAGMI *Dag) override {
3053    DAG = Dag;
3054    SchedModel = DAG->getSchedModel();
3055    TRI = DAG->TRI;
3056
3057    Rem.init(DAG, SchedModel);
3058    Top.init(DAG, SchedModel, &Rem);
3059    BotRoots.clear();
3060
3061    // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3062    // or are disabled, then these HazardRecs will be disabled.
3063    const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3064    const TargetMachine &TM = DAG->MF.getTarget();
3065    if (!Top.HazardRec) {
3066      Top.HazardRec =
3067        TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
3068    }
3069  }
3070
3071  void registerRoots() override;
3072
3073  SUnit *pickNode(bool &IsTopNode) override;
3074
3075  void scheduleTree(unsigned SubtreeID) override {
3076    llvm_unreachable("PostRA scheduler does not support subtree analysis.");
3077  }
3078
3079  void schedNode(SUnit *SU, bool IsTopNode) override;
3080
3081  void releaseTopNode(SUnit *SU) override {
3082    Top.releaseTopNode(SU);
3083  }
3084
3085  // Only called for roots.
3086  void releaseBottomNode(SUnit *SU) override {
3087    BotRoots.push_back(SU);
3088  }
3089
3090protected:
3091  void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
3092
3093  void pickNodeFromQueue(SchedCandidate &Cand);
3094};
3095} // namespace
3096
3097void PostGenericScheduler::registerRoots() {
3098  Rem.CriticalPath = DAG->ExitSU.getDepth();
3099
3100  // Some roots may not feed into ExitSU. Check all of them in case.
3101  for (SmallVectorImpl<SUnit*>::const_iterator
3102         I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3103    if ((*I)->getDepth() > Rem.CriticalPath)
3104      Rem.CriticalPath = (*I)->getDepth();
3105  }
3106  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
3107}
3108
3109/// Apply a set of heursitics to a new candidate for PostRA scheduling.
3110///
3111/// \param Cand provides the policy and current best candidate.
3112/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3113void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3114                                        SchedCandidate &TryCand) {
3115
3116  // Initialize the candidate if needed.
3117  if (!Cand.isValid()) {
3118    TryCand.Reason = NodeOrder;
3119    return;
3120  }
3121
3122  // Prioritize instructions that read unbuffered resources by stall cycles.
3123  if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3124              Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3125    return;
3126
3127  // Avoid critical resource consumption and balance the schedule.
3128  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3129              TryCand, Cand, ResourceReduce))
3130    return;
3131  if (tryGreater(TryCand.ResDelta.DemandedResources,
3132                 Cand.ResDelta.DemandedResources,
3133                 TryCand, Cand, ResourceDemand))
3134    return;
3135
3136  // Avoid serializing long latency dependence chains.
3137  if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3138    return;
3139  }
3140
3141  // Fall through to original instruction order.
3142  if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3143    TryCand.Reason = NodeOrder;
3144}
3145
3146void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3147  ReadyQueue &Q = Top.Available;
3148
3149  DEBUG(Q.dump());
3150
3151  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3152    SchedCandidate TryCand(Cand.Policy);
3153    TryCand.SU = *I;
3154    TryCand.initResourceDelta(DAG, SchedModel);
3155    tryCandidate(Cand, TryCand);
3156    if (TryCand.Reason != NoCand) {
3157      Cand.setBest(TryCand);
3158      DEBUG(traceCandidate(Cand));
3159    }
3160  }
3161}
3162
3163/// Pick the next node to schedule.
3164SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3165  if (DAG->top() == DAG->bottom()) {
3166    assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3167    return NULL;
3168  }
3169  SUnit *SU;
3170  do {
3171    SU = Top.pickOnlyChoice();
3172    if (!SU) {
3173      CandPolicy NoPolicy;
3174      SchedCandidate TopCand(NoPolicy);
3175      // Set the top-down policy based on the state of the current top zone and
3176      // the instructions outside the zone, including the bottom zone.
3177      setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, NULL);
3178      pickNodeFromQueue(TopCand);
3179      assert(TopCand.Reason != NoCand && "failed to find a candidate");
3180      tracePick(TopCand, true);
3181      SU = TopCand.SU;
3182    }
3183  } while (SU->isScheduled);
3184
3185  IsTopNode = true;
3186  Top.removeReady(SU);
3187
3188  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3189  return SU;
3190}
3191
3192/// Called after ScheduleDAGMI has scheduled an instruction and updated
3193/// scheduled/remaining flags in the DAG nodes.
3194void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3195  SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3196  Top.bumpNode(SU);
3197}
3198
3199/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3200static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3201  return new ScheduleDAGMI(C, new PostGenericScheduler(C), /*IsPostRA=*/true);
3202}
3203
3204//===----------------------------------------------------------------------===//
3205// ILP Scheduler. Currently for experimental analysis of heuristics.
3206//===----------------------------------------------------------------------===//
3207
3208namespace {
3209/// \brief Order nodes by the ILP metric.
3210struct ILPOrder {
3211  const SchedDFSResult *DFSResult;
3212  const BitVector *ScheduledTrees;
3213  bool MaximizeILP;
3214
3215  ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
3216
3217  /// \brief Apply a less-than relation on node priority.
3218  ///
3219  /// (Return true if A comes after B in the Q.)
3220  bool operator()(const SUnit *A, const SUnit *B) const {
3221    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3222    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3223    if (SchedTreeA != SchedTreeB) {
3224      // Unscheduled trees have lower priority.
3225      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3226        return ScheduledTrees->test(SchedTreeB);
3227
3228      // Trees with shallower connections have have lower priority.
3229      if (DFSResult->getSubtreeLevel(SchedTreeA)
3230          != DFSResult->getSubtreeLevel(SchedTreeB)) {
3231        return DFSResult->getSubtreeLevel(SchedTreeA)
3232          < DFSResult->getSubtreeLevel(SchedTreeB);
3233      }
3234    }
3235    if (MaximizeILP)
3236      return DFSResult->getILP(A) < DFSResult->getILP(B);
3237    else
3238      return DFSResult->getILP(A) > DFSResult->getILP(B);
3239  }
3240};
3241
3242/// \brief Schedule based on the ILP metric.
3243class ILPScheduler : public MachineSchedStrategy {
3244  ScheduleDAGMILive *DAG;
3245  ILPOrder Cmp;
3246
3247  std::vector<SUnit*> ReadyQ;
3248public:
3249  ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
3250
3251  void initialize(ScheduleDAGMI *dag) override {
3252    assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3253    DAG = static_cast<ScheduleDAGMILive*>(dag);
3254    DAG->computeDFSResult();
3255    Cmp.DFSResult = DAG->getDFSResult();
3256    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3257    ReadyQ.clear();
3258  }
3259
3260  void registerRoots() override {
3261    // Restore the heap in ReadyQ with the updated DFS results.
3262    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3263  }
3264
3265  /// Implement MachineSchedStrategy interface.
3266  /// -----------------------------------------
3267
3268  /// Callback to select the highest priority node from the ready Q.
3269  SUnit *pickNode(bool &IsTopNode) override {
3270    if (ReadyQ.empty()) return NULL;
3271    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3272    SUnit *SU = ReadyQ.back();
3273    ReadyQ.pop_back();
3274    IsTopNode = false;
3275    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3276          << " ILP: " << DAG->getDFSResult()->getILP(SU)
3277          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3278          << DAG->getDFSResult()->getSubtreeLevel(
3279            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3280          << "Scheduling " << *SU->getInstr());
3281    return SU;
3282  }
3283
3284  /// \brief Scheduler callback to notify that a new subtree is scheduled.
3285  void scheduleTree(unsigned SubtreeID) override {
3286    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3287  }
3288
3289  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3290  /// DFSResults, and resort the priority Q.
3291  void schedNode(SUnit *SU, bool IsTopNode) override {
3292    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3293  }
3294
3295  void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3296
3297  void releaseBottomNode(SUnit *SU) override {
3298    ReadyQ.push_back(SU);
3299    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3300  }
3301};
3302} // namespace
3303
3304static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3305  return new ScheduleDAGMILive(C, new ILPScheduler(true));
3306}
3307static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3308  return new ScheduleDAGMILive(C, new ILPScheduler(false));
3309}
3310static MachineSchedRegistry ILPMaxRegistry(
3311  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3312static MachineSchedRegistry ILPMinRegistry(
3313  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3314
3315//===----------------------------------------------------------------------===//
3316// Machine Instruction Shuffler for Correctness Testing
3317//===----------------------------------------------------------------------===//
3318
3319#ifndef NDEBUG
3320namespace {
3321/// Apply a less-than relation on the node order, which corresponds to the
3322/// instruction order prior to scheduling. IsReverse implements greater-than.
3323template<bool IsReverse>
3324struct SUnitOrder {
3325  bool operator()(SUnit *A, SUnit *B) const {
3326    if (IsReverse)
3327      return A->NodeNum > B->NodeNum;
3328    else
3329      return A->NodeNum < B->NodeNum;
3330  }
3331};
3332
3333/// Reorder instructions as much as possible.
3334class InstructionShuffler : public MachineSchedStrategy {
3335  bool IsAlternating;
3336  bool IsTopDown;
3337
3338  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3339  // gives nodes with a higher number higher priority causing the latest
3340  // instructions to be scheduled first.
3341  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3342    TopQ;
3343  // When scheduling bottom-up, use greater-than as the queue priority.
3344  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3345    BottomQ;
3346public:
3347  InstructionShuffler(bool alternate, bool topdown)
3348    : IsAlternating(alternate), IsTopDown(topdown) {}
3349
3350  virtual void initialize(ScheduleDAGMI*) {
3351    TopQ.clear();
3352    BottomQ.clear();
3353  }
3354
3355  /// Implement MachineSchedStrategy interface.
3356  /// -----------------------------------------
3357
3358  virtual SUnit *pickNode(bool &IsTopNode) {
3359    SUnit *SU;
3360    if (IsTopDown) {
3361      do {
3362        if (TopQ.empty()) return NULL;
3363        SU = TopQ.top();
3364        TopQ.pop();
3365      } while (SU->isScheduled);
3366      IsTopNode = true;
3367    }
3368    else {
3369      do {
3370        if (BottomQ.empty()) return NULL;
3371        SU = BottomQ.top();
3372        BottomQ.pop();
3373      } while (SU->isScheduled);
3374      IsTopNode = false;
3375    }
3376    if (IsAlternating)
3377      IsTopDown = !IsTopDown;
3378    return SU;
3379  }
3380
3381  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
3382
3383  virtual void releaseTopNode(SUnit *SU) {
3384    TopQ.push(SU);
3385  }
3386  virtual void releaseBottomNode(SUnit *SU) {
3387    BottomQ.push(SU);
3388  }
3389};
3390} // namespace
3391
3392static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3393  bool Alternate = !ForceTopDown && !ForceBottomUp;
3394  bool TopDown = !ForceBottomUp;
3395  assert((TopDown || !ForceTopDown) &&
3396         "-misched-topdown incompatible with -misched-bottomup");
3397  return new ScheduleDAGMILive(C, new InstructionShuffler(Alternate, TopDown));
3398}
3399static MachineSchedRegistry ShufflerRegistry(
3400  "shuffle", "Shuffle machine instructions alternating directions",
3401  createInstructionShuffler);
3402#endif // !NDEBUG
3403
3404//===----------------------------------------------------------------------===//
3405// GraphWriter support for ScheduleDAGMILive.
3406//===----------------------------------------------------------------------===//
3407
3408#ifndef NDEBUG
3409namespace llvm {
3410
3411template<> struct GraphTraits<
3412  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3413
3414template<>
3415struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3416
3417  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3418
3419  static std::string getGraphName(const ScheduleDAG *G) {
3420    return G->MF.getName();
3421  }
3422
3423  static bool renderGraphFromBottomUp() {
3424    return true;
3425  }
3426
3427  static bool isNodeHidden(const SUnit *Node) {
3428    return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
3429  }
3430
3431  static bool hasNodeAddressLabel(const SUnit *Node,
3432                                  const ScheduleDAG *Graph) {
3433    return false;
3434  }
3435
3436  /// If you want to override the dot attributes printed for a particular
3437  /// edge, override this method.
3438  static std::string getEdgeAttributes(const SUnit *Node,
3439                                       SUnitIterator EI,
3440                                       const ScheduleDAG *Graph) {
3441    if (EI.isArtificialDep())
3442      return "color=cyan,style=dashed";
3443    if (EI.isCtrlDep())
3444      return "color=blue,style=dashed";
3445    return "";
3446  }
3447
3448  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3449    std::string Str;
3450    raw_string_ostream SS(Str);
3451    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3452    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3453      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : 0;
3454    SS << "SU:" << SU->NodeNum;
3455    if (DFS)
3456      SS << " I:" << DFS->getNumInstrs(SU);
3457    return SS.str();
3458  }
3459  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3460    return G->getGraphNodeLabel(SU);
3461  }
3462
3463  static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3464    std::string Str("shape=Mrecord");
3465    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3466    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3467      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : 0;
3468    if (DFS) {
3469      Str += ",style=filled,fillcolor=\"#";
3470      Str += DOT::getColorString(DFS->getSubtreeID(N));
3471      Str += '"';
3472    }
3473    return Str;
3474  }
3475};
3476} // namespace llvm
3477#endif // NDEBUG
3478
3479/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3480/// rendered using 'dot'.
3481///
3482void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3483#ifndef NDEBUG
3484  ViewGraph(this, Name, false, Title);
3485#else
3486  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3487         << "systems with Graphviz or gv!\n";
3488#endif  // NDEBUG
3489}
3490
3491/// Out-of-line implementation with no arguments is handy for gdb.
3492void ScheduleDAGMI::viewGraph() {
3493  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3494}
3495