MachineScheduler.cpp revision 3bf23304ee80946409626cf64282a76c13a44352
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "llvm/CodeGen/MachineScheduler.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/PriorityQueue.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/RegisterClassInfo.h"
27#include "llvm/CodeGen/ScheduleDFS.h"
28#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GraphWriter.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include <queue>
36
37using namespace llvm;
38
39namespace llvm {
40cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
41                           cl::desc("Force top-down list scheduling"));
42cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
43                            cl::desc("Force bottom-up list scheduling"));
44}
45
46#ifndef NDEBUG
47static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
48  cl::desc("Pop up a window to show MISched dags after they are processed"));
49
50static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
51  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
52#else
53static bool ViewMISchedDAGs = false;
54#endif // NDEBUG
55
56static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
57  cl::desc("Enable load clustering."), cl::init(true));
58
59// Experimental heuristics
60static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
61  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
62
63static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
64  cl::desc("Verify machine instrs before and after machine scheduling"));
65
66// DAG subtrees must have at least this many nodes.
67static const unsigned MinSubtreeSize = 8;
68
69//===----------------------------------------------------------------------===//
70// Machine Instruction Scheduling Pass and Registry
71//===----------------------------------------------------------------------===//
72
73MachineSchedContext::MachineSchedContext():
74    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
75  RegClassInfo = new RegisterClassInfo();
76}
77
78MachineSchedContext::~MachineSchedContext() {
79  delete RegClassInfo;
80}
81
82namespace {
83/// MachineScheduler runs after coalescing and before register allocation.
84class MachineScheduler : public MachineSchedContext,
85                         public MachineFunctionPass {
86public:
87  MachineScheduler();
88
89  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
90
91  virtual void releaseMemory() {}
92
93  virtual bool runOnMachineFunction(MachineFunction&);
94
95  virtual void print(raw_ostream &O, const Module* = 0) const;
96
97  static char ID; // Class identification, replacement for typeinfo
98};
99} // namespace
100
101char MachineScheduler::ID = 0;
102
103char &llvm::MachineSchedulerID = MachineScheduler::ID;
104
105INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
106                      "Machine Instruction Scheduler", false, false)
107INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
108INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
109INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
110INITIALIZE_PASS_END(MachineScheduler, "misched",
111                    "Machine Instruction Scheduler", false, false)
112
113MachineScheduler::MachineScheduler()
114: MachineFunctionPass(ID) {
115  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
116}
117
118void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
119  AU.setPreservesCFG();
120  AU.addRequiredID(MachineDominatorsID);
121  AU.addRequired<MachineLoopInfo>();
122  AU.addRequired<AliasAnalysis>();
123  AU.addRequired<TargetPassConfig>();
124  AU.addRequired<SlotIndexes>();
125  AU.addPreserved<SlotIndexes>();
126  AU.addRequired<LiveIntervals>();
127  AU.addPreserved<LiveIntervals>();
128  MachineFunctionPass::getAnalysisUsage(AU);
129}
130
131MachinePassRegistry MachineSchedRegistry::Registry;
132
133/// A dummy default scheduler factory indicates whether the scheduler
134/// is overridden on the command line.
135static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
136  return 0;
137}
138
139/// MachineSchedOpt allows command line selection of the scheduler.
140static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
141               RegisterPassParser<MachineSchedRegistry> >
142MachineSchedOpt("misched",
143                cl::init(&useDefaultMachineSched), cl::Hidden,
144                cl::desc("Machine instruction scheduler to use"));
145
146static MachineSchedRegistry
147DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
148                     useDefaultMachineSched);
149
150/// Forward declare the standard machine scheduler. This will be used as the
151/// default scheduler if the target does not set a default.
152static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
153
154
155/// Decrement this iterator until reaching the top or a non-debug instr.
156static MachineBasicBlock::iterator
157priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
158  assert(I != Beg && "reached the top of the region, cannot decrement");
159  while (--I != Beg) {
160    if (!I->isDebugValue())
161      break;
162  }
163  return I;
164}
165
166/// If this iterator is a debug value, increment until reaching the End or a
167/// non-debug instruction.
168static MachineBasicBlock::iterator
169nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
170  for(; I != End; ++I) {
171    if (!I->isDebugValue())
172      break;
173  }
174  return I;
175}
176
177/// Top-level MachineScheduler pass driver.
178///
179/// Visit blocks in function order. Divide each block into scheduling regions
180/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
181/// consistent with the DAG builder, which traverses the interior of the
182/// scheduling regions bottom-up.
183///
184/// This design avoids exposing scheduling boundaries to the DAG builder,
185/// simplifying the DAG builder's support for "special" target instructions.
186/// At the same time the design allows target schedulers to operate across
187/// scheduling boundaries, for example to bundle the boudary instructions
188/// without reordering them. This creates complexity, because the target
189/// scheduler must update the RegionBegin and RegionEnd positions cached by
190/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
191/// design would be to split blocks at scheduling boundaries, but LLVM has a
192/// general bias against block splitting purely for implementation simplicity.
193bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
194  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
195
196  // Initialize the context of the pass.
197  MF = &mf;
198  MLI = &getAnalysis<MachineLoopInfo>();
199  MDT = &getAnalysis<MachineDominatorTree>();
200  PassConfig = &getAnalysis<TargetPassConfig>();
201  AA = &getAnalysis<AliasAnalysis>();
202
203  LIS = &getAnalysis<LiveIntervals>();
204  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
205
206  if (VerifyScheduling) {
207    DEBUG(LIS->print(dbgs()));
208    MF->verify(this, "Before machine scheduling.");
209  }
210  RegClassInfo->runOnMachineFunction(*MF);
211
212  // Select the scheduler, or set the default.
213  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
214  if (Ctor == useDefaultMachineSched) {
215    // Get the default scheduler set by the target.
216    Ctor = MachineSchedRegistry::getDefault();
217    if (!Ctor) {
218      Ctor = createConvergingSched;
219      MachineSchedRegistry::setDefault(Ctor);
220    }
221  }
222  // Instantiate the selected scheduler.
223  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
224
225  // Visit all machine basic blocks.
226  //
227  // TODO: Visit blocks in global postorder or postorder within the bottom-up
228  // loop tree. Then we can optionally compute global RegPressure.
229  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
230       MBB != MBBEnd; ++MBB) {
231
232    Scheduler->startBlock(MBB);
233
234    // Break the block into scheduling regions [I, RegionEnd), and schedule each
235    // region as soon as it is discovered. RegionEnd points the scheduling
236    // boundary at the bottom of the region. The DAG does not include RegionEnd,
237    // but the region does (i.e. the next RegionEnd is above the previous
238    // RegionBegin). If the current block has no terminator then RegionEnd ==
239    // MBB->end() for the bottom region.
240    //
241    // The Scheduler may insert instructions during either schedule() or
242    // exitRegion(), even for empty regions. So the local iterators 'I' and
243    // 'RegionEnd' are invalid across these calls.
244    unsigned RemainingInstrs = MBB->size();
245    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
246        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
247
248      // Avoid decrementing RegionEnd for blocks with no terminator.
249      if (RegionEnd != MBB->end()
250          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
251        --RegionEnd;
252        // Count the boundary instruction.
253        --RemainingInstrs;
254      }
255
256      // The next region starts above the previous region. Look backward in the
257      // instruction stream until we find the nearest boundary.
258      MachineBasicBlock::iterator I = RegionEnd;
259      for(;I != MBB->begin(); --I, --RemainingInstrs) {
260        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
261          break;
262      }
263      // Notify the scheduler of the region, even if we may skip scheduling
264      // it. Perhaps it still needs to be bundled.
265      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
266
267      // Skip empty scheduling regions (0 or 1 schedulable instructions).
268      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
269        // Close the current region. Bundle the terminator if needed.
270        // This invalidates 'RegionEnd' and 'I'.
271        Scheduler->exitRegion();
272        continue;
273      }
274      DEBUG(dbgs() << "********** MI Scheduling **********\n");
275      DEBUG(dbgs() << MF->getName()
276            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
277            << "\n  From: " << *I << "    To: ";
278            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
279            else dbgs() << "End";
280            dbgs() << " Remaining: " << RemainingInstrs << "\n");
281
282      // Schedule a region: possibly reorder instructions.
283      // This invalidates 'RegionEnd' and 'I'.
284      Scheduler->schedule();
285
286      // Close the current region.
287      Scheduler->exitRegion();
288
289      // Scheduling has invalidated the current iterator 'I'. Ask the
290      // scheduler for the top of it's scheduled region.
291      RegionEnd = Scheduler->begin();
292    }
293    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
294    Scheduler->finishBlock();
295  }
296  Scheduler->finalizeSchedule();
297  DEBUG(LIS->print(dbgs()));
298  if (VerifyScheduling)
299    MF->verify(this, "After machine scheduling.");
300  return true;
301}
302
303void MachineScheduler::print(raw_ostream &O, const Module* m) const {
304  // unimplemented
305}
306
307#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
308void ReadyQueue::dump() {
309  dbgs() << Name << ": ";
310  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
311    dbgs() << Queue[i]->NodeNum << " ";
312  dbgs() << "\n";
313}
314#endif
315
316//===----------------------------------------------------------------------===//
317// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
318// preservation.
319//===----------------------------------------------------------------------===//
320
321ScheduleDAGMI::~ScheduleDAGMI() {
322  delete DFSResult;
323  DeleteContainerPointers(Mutations);
324  delete SchedImpl;
325}
326
327bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
328  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
329}
330
331bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
332  if (SuccSU != &ExitSU) {
333    // Do not use WillCreateCycle, it assumes SD scheduling.
334    // If Pred is reachable from Succ, then the edge creates a cycle.
335    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
336      return false;
337    Topo.AddPred(SuccSU, PredDep.getSUnit());
338  }
339  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
340  // Return true regardless of whether a new edge needed to be inserted.
341  return true;
342}
343
344/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
345/// NumPredsLeft reaches zero, release the successor node.
346///
347/// FIXME: Adjust SuccSU height based on MinLatency.
348void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
349  SUnit *SuccSU = SuccEdge->getSUnit();
350
351  if (SuccEdge->isWeak()) {
352    --SuccSU->WeakPredsLeft;
353    if (SuccEdge->isCluster())
354      NextClusterSucc = SuccSU;
355    return;
356  }
357#ifndef NDEBUG
358  if (SuccSU->NumPredsLeft == 0) {
359    dbgs() << "*** Scheduling failed! ***\n";
360    SuccSU->dump(this);
361    dbgs() << " has been released too many times!\n";
362    llvm_unreachable(0);
363  }
364#endif
365  --SuccSU->NumPredsLeft;
366  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
367    SchedImpl->releaseTopNode(SuccSU);
368}
369
370/// releaseSuccessors - Call releaseSucc on each of SU's successors.
371void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
372  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
373       I != E; ++I) {
374    releaseSucc(SU, &*I);
375  }
376}
377
378/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
379/// NumSuccsLeft reaches zero, release the predecessor node.
380///
381/// FIXME: Adjust PredSU height based on MinLatency.
382void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
383  SUnit *PredSU = PredEdge->getSUnit();
384
385  if (PredEdge->isWeak()) {
386    --PredSU->WeakSuccsLeft;
387    if (PredEdge->isCluster())
388      NextClusterPred = PredSU;
389    return;
390  }
391#ifndef NDEBUG
392  if (PredSU->NumSuccsLeft == 0) {
393    dbgs() << "*** Scheduling failed! ***\n";
394    PredSU->dump(this);
395    dbgs() << " has been released too many times!\n";
396    llvm_unreachable(0);
397  }
398#endif
399  --PredSU->NumSuccsLeft;
400  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
401    SchedImpl->releaseBottomNode(PredSU);
402}
403
404/// releasePredecessors - Call releasePred on each of SU's predecessors.
405void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
406  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
407       I != E; ++I) {
408    releasePred(SU, &*I);
409  }
410}
411
412/// This is normally called from the main scheduler loop but may also be invoked
413/// by the scheduling strategy to perform additional code motion.
414void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
415                                    MachineBasicBlock::iterator InsertPos) {
416  // Advance RegionBegin if the first instruction moves down.
417  if (&*RegionBegin == MI)
418    ++RegionBegin;
419
420  // Update the instruction stream.
421  BB->splice(InsertPos, BB, MI);
422
423  // Update LiveIntervals
424  LIS->handleMove(MI, /*UpdateFlags=*/true);
425
426  // Recede RegionBegin if an instruction moves above the first.
427  if (RegionBegin == InsertPos)
428    RegionBegin = MI;
429}
430
431bool ScheduleDAGMI::checkSchedLimit() {
432#ifndef NDEBUG
433  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
434    CurrentTop = CurrentBottom;
435    return false;
436  }
437  ++NumInstrsScheduled;
438#endif
439  return true;
440}
441
442/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
443/// crossing a scheduling boundary. [begin, end) includes all instructions in
444/// the region, including the boundary itself and single-instruction regions
445/// that don't get scheduled.
446void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
447                                MachineBasicBlock::iterator begin,
448                                MachineBasicBlock::iterator end,
449                                unsigned endcount)
450{
451  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
452
453  // For convenience remember the end of the liveness region.
454  LiveRegionEnd =
455    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
456}
457
458// Setup the register pressure trackers for the top scheduled top and bottom
459// scheduled regions.
460void ScheduleDAGMI::initRegPressure() {
461  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
462  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
463
464  // Close the RPTracker to finalize live ins.
465  RPTracker.closeRegion();
466
467  DEBUG(RPTracker.getPressure().dump(TRI));
468
469  // Initialize the live ins and live outs.
470  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
471  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
472
473  // Close one end of the tracker so we can call
474  // getMaxUpward/DownwardPressureDelta before advancing across any
475  // instructions. This converts currently live regs into live ins/outs.
476  TopRPTracker.closeTop();
477  BotRPTracker.closeBottom();
478
479  // Account for liveness generated by the region boundary.
480  if (LiveRegionEnd != RegionEnd)
481    BotRPTracker.recede();
482
483  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
484
485  // Cache the list of excess pressure sets in this region. This will also track
486  // the max pressure in the scheduled code for these sets.
487  RegionCriticalPSets.clear();
488  const std::vector<unsigned> &RegionPressure =
489    RPTracker.getPressure().MaxSetPressure;
490  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
491    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
492    if (RegionPressure[i] > Limit) {
493      DEBUG(dbgs() << TRI->getRegPressureSetName(i)
494            << " Limit " << Limit
495            << " Actual " << RegionPressure[i] << "\n");
496      RegionCriticalPSets.push_back(PressureElement(i, 0));
497    }
498  }
499  DEBUG(dbgs() << "Excess PSets: ";
500        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
501          dbgs() << TRI->getRegPressureSetName(
502            RegionCriticalPSets[i].PSetID) << " ";
503        dbgs() << "\n");
504}
505
506// FIXME: When the pressure tracker deals in pressure differences then we won't
507// iterate over all RegionCriticalPSets[i].
508void ScheduleDAGMI::
509updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
510  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
511    unsigned ID = RegionCriticalPSets[i].PSetID;
512    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
513    if ((int)NewMaxPressure[ID] > MaxUnits)
514      MaxUnits = NewMaxPressure[ID];
515  }
516  DEBUG(
517    for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
518      unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
519      if (NewMaxPressure[i] > Limit ) {
520        dbgs() << "  " << TRI->getRegPressureSetName(i) << ": "
521               << NewMaxPressure[i] << " > " << Limit << "\n";
522      }
523    });
524}
525
526/// schedule - Called back from MachineScheduler::runOnMachineFunction
527/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
528/// only includes instructions that have DAG nodes, not scheduling boundaries.
529///
530/// This is a skeletal driver, with all the functionality pushed into helpers,
531/// so that it can be easilly extended by experimental schedulers. Generally,
532/// implementing MachineSchedStrategy should be sufficient to implement a new
533/// scheduling algorithm. However, if a scheduler further subclasses
534/// ScheduleDAGMI then it will want to override this virtual method in order to
535/// update any specialized state.
536void ScheduleDAGMI::schedule() {
537  buildDAGWithRegPressure();
538
539  Topo.InitDAGTopologicalSorting();
540
541  postprocessDAG();
542
543  SmallVector<SUnit*, 8> TopRoots, BotRoots;
544  findRootsAndBiasEdges(TopRoots, BotRoots);
545
546  // Initialize the strategy before modifying the DAG.
547  // This may initialize a DFSResult to be used for queue priority.
548  SchedImpl->initialize(this);
549
550  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
551          SUnits[su].dumpAll(this));
552  if (ViewMISchedDAGs) viewGraph();
553
554  // Initialize ready queues now that the DAG and priority data are finalized.
555  initQueues(TopRoots, BotRoots);
556
557  bool IsTopNode = false;
558  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
559    assert(!SU->isScheduled && "Node already scheduled");
560    if (!checkSchedLimit())
561      break;
562
563    scheduleMI(SU, IsTopNode);
564
565    updateQueues(SU, IsTopNode);
566  }
567  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
568
569  placeDebugValues();
570
571  DEBUG({
572      unsigned BBNum = begin()->getParent()->getNumber();
573      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
574      dumpSchedule();
575      dbgs() << '\n';
576    });
577}
578
579/// Build the DAG and setup three register pressure trackers.
580void ScheduleDAGMI::buildDAGWithRegPressure() {
581  // Initialize the register pressure tracker used by buildSchedGraph.
582  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
583
584  // Account for liveness generate by the region boundary.
585  if (LiveRegionEnd != RegionEnd)
586    RPTracker.recede();
587
588  // Build the DAG, and compute current register pressure.
589  buildSchedGraph(AA, &RPTracker);
590
591  // Initialize top/bottom trackers after computing region pressure.
592  initRegPressure();
593}
594
595/// Apply each ScheduleDAGMutation step in order.
596void ScheduleDAGMI::postprocessDAG() {
597  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
598    Mutations[i]->apply(this);
599  }
600}
601
602void ScheduleDAGMI::computeDFSResult() {
603  if (!DFSResult)
604    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
605  DFSResult->clear();
606  ScheduledTrees.clear();
607  DFSResult->resize(SUnits.size());
608  DFSResult->compute(SUnits);
609  ScheduledTrees.resize(DFSResult->getNumSubtrees());
610}
611
612void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
613                                          SmallVectorImpl<SUnit*> &BotRoots) {
614  for (std::vector<SUnit>::iterator
615         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
616    SUnit *SU = &(*I);
617    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
618
619    // Order predecessors so DFSResult follows the critical path.
620    SU->biasCriticalPath();
621
622    // A SUnit is ready to top schedule if it has no predecessors.
623    if (!I->NumPredsLeft)
624      TopRoots.push_back(SU);
625    // A SUnit is ready to bottom schedule if it has no successors.
626    if (!I->NumSuccsLeft)
627      BotRoots.push_back(SU);
628  }
629  ExitSU.biasCriticalPath();
630}
631
632/// Identify DAG roots and setup scheduler queues.
633void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
634                               ArrayRef<SUnit*> BotRoots) {
635  NextClusterSucc = NULL;
636  NextClusterPred = NULL;
637
638  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
639  //
640  // Nodes with unreleased weak edges can still be roots.
641  // Release top roots in forward order.
642  for (SmallVectorImpl<SUnit*>::const_iterator
643         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
644    SchedImpl->releaseTopNode(*I);
645  }
646  // Release bottom roots in reverse order so the higher priority nodes appear
647  // first. This is more natural and slightly more efficient.
648  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
649         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
650    SchedImpl->releaseBottomNode(*I);
651  }
652
653  releaseSuccessors(&EntrySU);
654  releasePredecessors(&ExitSU);
655
656  SchedImpl->registerRoots();
657
658  // Advance past initial DebugValues.
659  assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
660  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
661  TopRPTracker.setPos(CurrentTop);
662
663  CurrentBottom = RegionEnd;
664}
665
666/// Move an instruction and update register pressure.
667void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
668  // Move the instruction to its new location in the instruction stream.
669  MachineInstr *MI = SU->getInstr();
670
671  if (IsTopNode) {
672    assert(SU->isTopReady() && "node still has unscheduled dependencies");
673    if (&*CurrentTop == MI)
674      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
675    else {
676      moveInstruction(MI, CurrentTop);
677      TopRPTracker.setPos(MI);
678    }
679
680    // Update top scheduled pressure.
681    TopRPTracker.advance();
682    assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
683    updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
684  }
685  else {
686    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
687    MachineBasicBlock::iterator priorII =
688      priorNonDebug(CurrentBottom, CurrentTop);
689    if (&*priorII == MI)
690      CurrentBottom = priorII;
691    else {
692      if (&*CurrentTop == MI) {
693        CurrentTop = nextIfDebug(++CurrentTop, priorII);
694        TopRPTracker.setPos(CurrentTop);
695      }
696      moveInstruction(MI, CurrentBottom);
697      CurrentBottom = MI;
698    }
699    // Update bottom scheduled pressure.
700    BotRPTracker.recede();
701    assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
702    updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
703  }
704}
705
706/// Update scheduler queues after scheduling an instruction.
707void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
708  // Release dependent instructions for scheduling.
709  if (IsTopNode)
710    releaseSuccessors(SU);
711  else
712    releasePredecessors(SU);
713
714  SU->isScheduled = true;
715
716  if (DFSResult) {
717    unsigned SubtreeID = DFSResult->getSubtreeID(SU);
718    if (!ScheduledTrees.test(SubtreeID)) {
719      ScheduledTrees.set(SubtreeID);
720      DFSResult->scheduleTree(SubtreeID);
721      SchedImpl->scheduleTree(SubtreeID);
722    }
723  }
724
725  // Notify the scheduling strategy after updating the DAG.
726  SchedImpl->schedNode(SU, IsTopNode);
727}
728
729/// Reinsert any remaining debug_values, just like the PostRA scheduler.
730void ScheduleDAGMI::placeDebugValues() {
731  // If first instruction was a DBG_VALUE then put it back.
732  if (FirstDbgValue) {
733    BB->splice(RegionBegin, BB, FirstDbgValue);
734    RegionBegin = FirstDbgValue;
735  }
736
737  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
738         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
739    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
740    MachineInstr *DbgValue = P.first;
741    MachineBasicBlock::iterator OrigPrevMI = P.second;
742    if (&*RegionBegin == DbgValue)
743      ++RegionBegin;
744    BB->splice(++OrigPrevMI, BB, DbgValue);
745    if (OrigPrevMI == llvm::prior(RegionEnd))
746      RegionEnd = DbgValue;
747  }
748  DbgValues.clear();
749  FirstDbgValue = NULL;
750}
751
752#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
753void ScheduleDAGMI::dumpSchedule() const {
754  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
755    if (SUnit *SU = getSUnit(&(*MI)))
756      SU->dump(this);
757    else
758      dbgs() << "Missing SUnit\n";
759  }
760}
761#endif
762
763//===----------------------------------------------------------------------===//
764// LoadClusterMutation - DAG post-processing to cluster loads.
765//===----------------------------------------------------------------------===//
766
767namespace {
768/// \brief Post-process the DAG to create cluster edges between neighboring
769/// loads.
770class LoadClusterMutation : public ScheduleDAGMutation {
771  struct LoadInfo {
772    SUnit *SU;
773    unsigned BaseReg;
774    unsigned Offset;
775    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
776      : SU(su), BaseReg(reg), Offset(ofs) {}
777  };
778  static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
779                           const LoadClusterMutation::LoadInfo &RHS);
780
781  const TargetInstrInfo *TII;
782  const TargetRegisterInfo *TRI;
783public:
784  LoadClusterMutation(const TargetInstrInfo *tii,
785                      const TargetRegisterInfo *tri)
786    : TII(tii), TRI(tri) {}
787
788  virtual void apply(ScheduleDAGMI *DAG);
789protected:
790  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
791};
792} // anonymous
793
794bool LoadClusterMutation::LoadInfoLess(
795  const LoadClusterMutation::LoadInfo &LHS,
796  const LoadClusterMutation::LoadInfo &RHS) {
797  if (LHS.BaseReg != RHS.BaseReg)
798    return LHS.BaseReg < RHS.BaseReg;
799  return LHS.Offset < RHS.Offset;
800}
801
802void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
803                                                  ScheduleDAGMI *DAG) {
804  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
805  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
806    SUnit *SU = Loads[Idx];
807    unsigned BaseReg;
808    unsigned Offset;
809    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
810      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
811  }
812  if (LoadRecords.size() < 2)
813    return;
814  std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
815  unsigned ClusterLength = 1;
816  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
817    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
818      ClusterLength = 1;
819      continue;
820    }
821
822    SUnit *SUa = LoadRecords[Idx].SU;
823    SUnit *SUb = LoadRecords[Idx+1].SU;
824    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
825        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
826
827      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
828            << SUb->NodeNum << ")\n");
829      // Copy successor edges from SUa to SUb. Interleaving computation
830      // dependent on SUa can prevent load combining due to register reuse.
831      // Predecessor edges do not need to be copied from SUb to SUa since nearby
832      // loads should have effectively the same inputs.
833      for (SUnit::const_succ_iterator
834             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
835        if (SI->getSUnit() == SUb)
836          continue;
837        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
838        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
839      }
840      ++ClusterLength;
841    }
842    else
843      ClusterLength = 1;
844  }
845}
846
847/// \brief Callback from DAG postProcessing to create cluster edges for loads.
848void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
849  // Map DAG NodeNum to store chain ID.
850  DenseMap<unsigned, unsigned> StoreChainIDs;
851  // Map each store chain to a set of dependent loads.
852  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
853  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
854    SUnit *SU = &DAG->SUnits[Idx];
855    if (!SU->getInstr()->mayLoad())
856      continue;
857    unsigned ChainPredID = DAG->SUnits.size();
858    for (SUnit::const_pred_iterator
859           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
860      if (PI->isCtrl()) {
861        ChainPredID = PI->getSUnit()->NodeNum;
862        break;
863      }
864    }
865    // Check if this chain-like pred has been seen
866    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
867    unsigned NumChains = StoreChainDependents.size();
868    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
869      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
870    if (Result.second)
871      StoreChainDependents.resize(NumChains + 1);
872    StoreChainDependents[Result.first->second].push_back(SU);
873  }
874  // Iterate over the store chains.
875  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
876    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
877}
878
879//===----------------------------------------------------------------------===//
880// MacroFusion - DAG post-processing to encourage fusion of macro ops.
881//===----------------------------------------------------------------------===//
882
883namespace {
884/// \brief Post-process the DAG to create cluster edges between instructions
885/// that may be fused by the processor into a single operation.
886class MacroFusion : public ScheduleDAGMutation {
887  const TargetInstrInfo *TII;
888public:
889  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
890
891  virtual void apply(ScheduleDAGMI *DAG);
892};
893} // anonymous
894
895/// \brief Callback from DAG postProcessing to create cluster edges to encourage
896/// fused operations.
897void MacroFusion::apply(ScheduleDAGMI *DAG) {
898  // For now, assume targets can only fuse with the branch.
899  MachineInstr *Branch = DAG->ExitSU.getInstr();
900  if (!Branch)
901    return;
902
903  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
904    SUnit *SU = &DAG->SUnits[--Idx];
905    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
906      continue;
907
908    // Create a single weak edge from SU to ExitSU. The only effect is to cause
909    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
910    // need to copy predecessor edges from ExitSU to SU, since top-down
911    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
912    // of SU, we could create an artificial edge from the deepest root, but it
913    // hasn't been needed yet.
914    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
915    (void)Success;
916    assert(Success && "No DAG nodes should be reachable from ExitSU");
917
918    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
919    break;
920  }
921}
922
923//===----------------------------------------------------------------------===//
924// CopyConstrain - DAG post-processing to encourage copy elimination.
925//===----------------------------------------------------------------------===//
926
927namespace {
928/// \brief Post-process the DAG to create weak edges from all uses of a copy to
929/// the one use that defines the copy's source vreg, most likely an induction
930/// variable increment.
931class CopyConstrain : public ScheduleDAGMutation {
932  // Transient state.
933  SlotIndex RegionBeginIdx;
934  // RegionEndIdx is the slot index of the last non-debug instruction in the
935  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
936  SlotIndex RegionEndIdx;
937public:
938  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
939
940  virtual void apply(ScheduleDAGMI *DAG);
941
942protected:
943  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
944};
945} // anonymous
946
947/// constrainLocalCopy handles two possibilities:
948/// 1) Local src:
949/// I0:     = dst
950/// I1: src = ...
951/// I2:     = dst
952/// I3: dst = src (copy)
953/// (create pred->succ edges I0->I1, I2->I1)
954///
955/// 2) Local copy:
956/// I0: dst = src (copy)
957/// I1:     = dst
958/// I2: src = ...
959/// I3:     = dst
960/// (create pred->succ edges I1->I2, I3->I2)
961///
962/// Although the MachineScheduler is currently constrained to single blocks,
963/// this algorithm should handle extended blocks. An EBB is a set of
964/// contiguously numbered blocks such that the previous block in the EBB is
965/// always the single predecessor.
966void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
967  LiveIntervals *LIS = DAG->getLIS();
968  MachineInstr *Copy = CopySU->getInstr();
969
970  // Check for pure vreg copies.
971  unsigned SrcReg = Copy->getOperand(1).getReg();
972  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
973    return;
974
975  unsigned DstReg = Copy->getOperand(0).getReg();
976  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
977    return;
978
979  // Check if either the dest or source is local. If it's live across a back
980  // edge, it's not local. Note that if both vregs are live across the back
981  // edge, we cannot successfully contrain the copy without cyclic scheduling.
982  unsigned LocalReg = DstReg;
983  unsigned GlobalReg = SrcReg;
984  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
985  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
986    LocalReg = SrcReg;
987    GlobalReg = DstReg;
988    LocalLI = &LIS->getInterval(LocalReg);
989    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
990      return;
991  }
992  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
993
994  // Find the global segment after the start of the local LI.
995  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
996  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
997  // local live range. We could create edges from other global uses to the local
998  // start, but the coalescer should have already eliminated these cases, so
999  // don't bother dealing with it.
1000  if (GlobalSegment == GlobalLI->end())
1001    return;
1002
1003  // If GlobalSegment is killed at the LocalLI->start, the call to find()
1004  // returned the next global segment. But if GlobalSegment overlaps with
1005  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1006  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1007  if (GlobalSegment->contains(LocalLI->beginIndex()))
1008    ++GlobalSegment;
1009
1010  if (GlobalSegment == GlobalLI->end())
1011    return;
1012
1013  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1014  if (GlobalSegment != GlobalLI->begin()) {
1015    // Two address defs have no hole.
1016    if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
1017                               GlobalSegment->start)) {
1018      return;
1019    }
1020    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1021    // it would be a disconnected component in the live range.
1022    assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
1023           "Disconnected LRG within the scheduling region.");
1024  }
1025  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1026  if (!GlobalDef)
1027    return;
1028
1029  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1030  if (!GlobalSU)
1031    return;
1032
1033  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1034  // constraining the uses of the last local def to precede GlobalDef.
1035  SmallVector<SUnit*,8> LocalUses;
1036  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1037  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1038  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1039  for (SUnit::const_succ_iterator
1040         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1041       I != E; ++I) {
1042    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1043      continue;
1044    if (I->getSUnit() == GlobalSU)
1045      continue;
1046    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1047      return;
1048    LocalUses.push_back(I->getSUnit());
1049  }
1050  // Open the top of the GlobalLI hole by constraining any earlier global uses
1051  // to precede the start of LocalLI.
1052  SmallVector<SUnit*,8> GlobalUses;
1053  MachineInstr *FirstLocalDef =
1054    LIS->getInstructionFromIndex(LocalLI->beginIndex());
1055  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1056  for (SUnit::const_pred_iterator
1057         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1058    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1059      continue;
1060    if (I->getSUnit() == FirstLocalSU)
1061      continue;
1062    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1063      return;
1064    GlobalUses.push_back(I->getSUnit());
1065  }
1066  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1067  // Add the weak edges.
1068  for (SmallVectorImpl<SUnit*>::const_iterator
1069         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1070    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1071          << GlobalSU->NodeNum << ")\n");
1072    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1073  }
1074  for (SmallVectorImpl<SUnit*>::const_iterator
1075         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1076    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1077          << FirstLocalSU->NodeNum << ")\n");
1078    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1079  }
1080}
1081
1082/// \brief Callback from DAG postProcessing to create weak edges to encourage
1083/// copy elimination.
1084void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1085  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1086  if (FirstPos == DAG->end())
1087    return;
1088  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1089  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1090    &*priorNonDebug(DAG->end(), DAG->begin()));
1091
1092  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1093    SUnit *SU = &DAG->SUnits[Idx];
1094    if (!SU->getInstr()->isCopy())
1095      continue;
1096
1097    constrainLocalCopy(SU, DAG);
1098  }
1099}
1100
1101//===----------------------------------------------------------------------===//
1102// ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
1103//===----------------------------------------------------------------------===//
1104
1105namespace {
1106/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
1107/// the schedule.
1108class ConvergingScheduler : public MachineSchedStrategy {
1109public:
1110  /// Represent the type of SchedCandidate found within a single queue.
1111  /// pickNodeBidirectional depends on these listed by decreasing priority.
1112  enum CandReason {
1113    NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax,
1114    ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
1115    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
1116
1117#ifndef NDEBUG
1118  static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
1119#endif
1120
1121  /// Policy for scheduling the next instruction in the candidate's zone.
1122  struct CandPolicy {
1123    bool ReduceLatency;
1124    unsigned ReduceResIdx;
1125    unsigned DemandResIdx;
1126
1127    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
1128  };
1129
1130  /// Status of an instruction's critical resource consumption.
1131  struct SchedResourceDelta {
1132    // Count critical resources in the scheduled region required by SU.
1133    unsigned CritResources;
1134
1135    // Count critical resources from another region consumed by SU.
1136    unsigned DemandedResources;
1137
1138    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
1139
1140    bool operator==(const SchedResourceDelta &RHS) const {
1141      return CritResources == RHS.CritResources
1142        && DemandedResources == RHS.DemandedResources;
1143    }
1144    bool operator!=(const SchedResourceDelta &RHS) const {
1145      return !operator==(RHS);
1146    }
1147  };
1148
1149  /// Store the state used by ConvergingScheduler heuristics, required for the
1150  /// lifetime of one invocation of pickNode().
1151  struct SchedCandidate {
1152    CandPolicy Policy;
1153
1154    // The best SUnit candidate.
1155    SUnit *SU;
1156
1157    // The reason for this candidate.
1158    CandReason Reason;
1159
1160    // Set of reasons that apply to multiple candidates.
1161    uint32_t RepeatReasonSet;
1162
1163    // Register pressure values for the best candidate.
1164    RegPressureDelta RPDelta;
1165
1166    // Critical resource consumption of the best candidate.
1167    SchedResourceDelta ResDelta;
1168
1169    SchedCandidate(const CandPolicy &policy)
1170      : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {}
1171
1172    bool isValid() const { return SU; }
1173
1174    // Copy the status of another candidate without changing policy.
1175    void setBest(SchedCandidate &Best) {
1176      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
1177      SU = Best.SU;
1178      Reason = Best.Reason;
1179      RPDelta = Best.RPDelta;
1180      ResDelta = Best.ResDelta;
1181    }
1182
1183    bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
1184    void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
1185
1186    void initResourceDelta(const ScheduleDAGMI *DAG,
1187                           const TargetSchedModel *SchedModel);
1188  };
1189
1190  /// Summarize the unscheduled region.
1191  struct SchedRemainder {
1192    // Critical path through the DAG in expected latency.
1193    unsigned CriticalPath;
1194
1195    // Scaled count of micro-ops left to schedule.
1196    unsigned RemIssueCount;
1197
1198    // Unscheduled resources
1199    SmallVector<unsigned, 16> RemainingCounts;
1200
1201    void reset() {
1202      CriticalPath = 0;
1203      RemIssueCount = 0;
1204      RemainingCounts.clear();
1205    }
1206
1207    SchedRemainder() { reset(); }
1208
1209    void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
1210  };
1211
1212  /// Each Scheduling boundary is associated with ready queues. It tracks the
1213  /// current cycle in the direction of movement, and maintains the state
1214  /// of "hazards" and other interlocks at the current cycle.
1215  struct SchedBoundary {
1216    ScheduleDAGMI *DAG;
1217    const TargetSchedModel *SchedModel;
1218    SchedRemainder *Rem;
1219
1220    ReadyQueue Available;
1221    ReadyQueue Pending;
1222    bool CheckPending;
1223
1224    // For heuristics, keep a list of the nodes that immediately depend on the
1225    // most recently scheduled node.
1226    SmallPtrSet<const SUnit*, 8> NextSUs;
1227
1228    ScheduleHazardRecognizer *HazardRec;
1229
1230    /// Number of cycles it takes to issue the instructions scheduled in this
1231    /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
1232    /// See getStalls().
1233    unsigned CurrCycle;
1234
1235    /// Micro-ops issued in the current cycle
1236    unsigned CurrMOps;
1237
1238    /// MinReadyCycle - Cycle of the soonest available instruction.
1239    unsigned MinReadyCycle;
1240
1241    // The expected latency of the critical path in this scheduled zone.
1242    unsigned ExpectedLatency;
1243
1244    // The latency of dependence chains leading into this zone.
1245    // For each node scheduled top-down: DLat = max DLat, N.Depth.
1246    // For each cycle scheduled: DLat -= 1.
1247    unsigned DependentLatency;
1248
1249    /// Count the scheduled (issued) micro-ops that can be retired by
1250    /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
1251    unsigned RetiredMOps;
1252
1253    // Count scheduled resources that have been executed. Resources are
1254    // considered executed if they become ready in the time that it takes to
1255    // saturate any resource including the one in question. Counts are scaled
1256    // for direct comparison with other resources. Counts ca be compared with
1257    // MOps * getMicroOpFactor and Latency * getLatencyFactor.
1258    SmallVector<unsigned, 16> ExecutedResCounts;
1259
1260    /// Cache the max count for a single resource.
1261    unsigned MaxExecutedResCount;
1262
1263    // Cache the critical resources ID in this scheduled zone.
1264    unsigned ZoneCritResIdx;
1265
1266    // Is the scheduled region resource limited vs. latency limited.
1267    bool IsResourceLimited;
1268
1269#ifndef NDEBUG
1270    // Remember the greatest operand latency as an upper bound on the number of
1271    // times we should retry the pending queue because of a hazard.
1272    unsigned MaxObservedLatency;
1273#endif
1274
1275    void reset() {
1276      // A new HazardRec is created for each DAG and owned by SchedBoundary.
1277      delete HazardRec;
1278
1279      Available.clear();
1280      Pending.clear();
1281      CheckPending = false;
1282      NextSUs.clear();
1283      HazardRec = 0;
1284      CurrCycle = 0;
1285      CurrMOps = 0;
1286      MinReadyCycle = UINT_MAX;
1287      ExpectedLatency = 0;
1288      DependentLatency = 0;
1289      RetiredMOps = 0;
1290      MaxExecutedResCount = 0;
1291      ZoneCritResIdx = 0;
1292      IsResourceLimited = false;
1293#ifndef NDEBUG
1294      MaxObservedLatency = 0;
1295#endif
1296      // Reserve a zero-count for invalid CritResIdx.
1297      ExecutedResCounts.resize(1);
1298      assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1299    }
1300
1301    /// Pending queues extend the ready queues with the same ID and the
1302    /// PendingFlag set.
1303    SchedBoundary(unsigned ID, const Twine &Name):
1304      DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
1305      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
1306      HazardRec(0) {
1307      reset();
1308    }
1309
1310    ~SchedBoundary() { delete HazardRec; }
1311
1312    void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
1313              SchedRemainder *rem);
1314
1315    bool isTop() const {
1316      return Available.getID() == ConvergingScheduler::TopQID;
1317    }
1318
1319#ifndef NDEBUG
1320    const char *getResourceName(unsigned PIdx) {
1321      if (!PIdx)
1322        return "MOps";
1323      return SchedModel->getProcResource(PIdx)->Name;
1324    }
1325#endif
1326
1327    /// Get the number of latency cycles "covered" by the scheduled
1328    /// instructions. This is the larger of the critical path within the zone
1329    /// and the number of cycles required to issue the instructions.
1330    unsigned getScheduledLatency() const {
1331      return std::max(ExpectedLatency, CurrCycle);
1332    }
1333
1334    unsigned getUnscheduledLatency(SUnit *SU) const {
1335      return isTop() ? SU->getHeight() : SU->getDepth();
1336    }
1337
1338    unsigned getResourceCount(unsigned ResIdx) const {
1339      return ExecutedResCounts[ResIdx];
1340    }
1341
1342    /// Get the scaled count of scheduled micro-ops and resources, including
1343    /// executed resources.
1344    unsigned getCriticalCount() const {
1345      if (!ZoneCritResIdx)
1346        return RetiredMOps * SchedModel->getMicroOpFactor();
1347      return getResourceCount(ZoneCritResIdx);
1348    }
1349
1350    /// Get a scaled count for the minimum execution time of the scheduled
1351    /// micro-ops that are ready to execute by getExecutedCount. Notice the
1352    /// feedback loop.
1353    unsigned getExecutedCount() const {
1354      return std::max(CurrCycle * SchedModel->getLatencyFactor(),
1355                      MaxExecutedResCount);
1356    }
1357
1358    bool checkHazard(SUnit *SU);
1359
1360    unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
1361
1362    unsigned getOtherResourceCount(unsigned &OtherCritIdx);
1363
1364    void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone);
1365
1366    void releaseNode(SUnit *SU, unsigned ReadyCycle);
1367
1368    void bumpCycle(unsigned NextCycle);
1369
1370    void incExecutedResources(unsigned PIdx, unsigned Count);
1371
1372    unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
1373
1374    void bumpNode(SUnit *SU);
1375
1376    void releasePending();
1377
1378    void removeReady(SUnit *SU);
1379
1380    SUnit *pickOnlyChoice();
1381
1382#ifndef NDEBUG
1383    void dumpScheduledState();
1384#endif
1385  };
1386
1387private:
1388  ScheduleDAGMI *DAG;
1389  const TargetSchedModel *SchedModel;
1390  const TargetRegisterInfo *TRI;
1391
1392  // State of the top and bottom scheduled instruction boundaries.
1393  SchedRemainder Rem;
1394  SchedBoundary Top;
1395  SchedBoundary Bot;
1396
1397public:
1398  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
1399  enum {
1400    TopQID = 1,
1401    BotQID = 2,
1402    LogMaxQID = 2
1403  };
1404
1405  ConvergingScheduler():
1406    DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
1407
1408  virtual void initialize(ScheduleDAGMI *dag);
1409
1410  virtual SUnit *pickNode(bool &IsTopNode);
1411
1412  virtual void schedNode(SUnit *SU, bool IsTopNode);
1413
1414  virtual void releaseTopNode(SUnit *SU);
1415
1416  virtual void releaseBottomNode(SUnit *SU);
1417
1418  virtual void registerRoots();
1419
1420protected:
1421  void tryCandidate(SchedCandidate &Cand,
1422                    SchedCandidate &TryCand,
1423                    SchedBoundary &Zone,
1424                    const RegPressureTracker &RPTracker,
1425                    RegPressureTracker &TempTracker);
1426
1427  SUnit *pickNodeBidirectional(bool &IsTopNode);
1428
1429  void pickNodeFromQueue(SchedBoundary &Zone,
1430                         const RegPressureTracker &RPTracker,
1431                         SchedCandidate &Candidate);
1432
1433  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
1434
1435#ifndef NDEBUG
1436  void traceCandidate(const SchedCandidate &Cand);
1437#endif
1438};
1439} // namespace
1440
1441void ConvergingScheduler::SchedRemainder::
1442init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1443  reset();
1444  if (!SchedModel->hasInstrSchedModel())
1445    return;
1446  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1447  for (std::vector<SUnit>::iterator
1448         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1449    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1450    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1451      * SchedModel->getMicroOpFactor();
1452    for (TargetSchedModel::ProcResIter
1453           PI = SchedModel->getWriteProcResBegin(SC),
1454           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1455      unsigned PIdx = PI->ProcResourceIdx;
1456      unsigned Factor = SchedModel->getResourceFactor(PIdx);
1457      RemainingCounts[PIdx] += (Factor * PI->Cycles);
1458    }
1459  }
1460}
1461
1462void ConvergingScheduler::SchedBoundary::
1463init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1464  reset();
1465  DAG = dag;
1466  SchedModel = smodel;
1467  Rem = rem;
1468  if (SchedModel->hasInstrSchedModel())
1469    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1470}
1471
1472void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
1473  DAG = dag;
1474  SchedModel = DAG->getSchedModel();
1475  TRI = DAG->TRI;
1476
1477  Rem.init(DAG, SchedModel);
1478  Top.init(DAG, SchedModel, &Rem);
1479  Bot.init(DAG, SchedModel, &Rem);
1480
1481  // Initialize resource counts.
1482
1483  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
1484  // are disabled, then these HazardRecs will be disabled.
1485  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
1486  const TargetMachine &TM = DAG->MF.getTarget();
1487  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1488  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1489
1490  assert((!ForceTopDown || !ForceBottomUp) &&
1491         "-misched-topdown incompatible with -misched-bottomup");
1492}
1493
1494void ConvergingScheduler::releaseTopNode(SUnit *SU) {
1495  if (SU->isScheduled)
1496    return;
1497
1498  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1499       I != E; ++I) {
1500    if (I->isWeak())
1501      continue;
1502    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1503    unsigned Latency = I->getLatency();
1504#ifndef NDEBUG
1505    Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency);
1506#endif
1507    if (SU->TopReadyCycle < PredReadyCycle + Latency)
1508      SU->TopReadyCycle = PredReadyCycle + Latency;
1509  }
1510  Top.releaseNode(SU, SU->TopReadyCycle);
1511}
1512
1513void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
1514  if (SU->isScheduled)
1515    return;
1516
1517  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1518
1519  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1520       I != E; ++I) {
1521    if (I->isWeak())
1522      continue;
1523    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1524    unsigned Latency = I->getLatency();
1525#ifndef NDEBUG
1526    Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency);
1527#endif
1528    if (SU->BotReadyCycle < SuccReadyCycle + Latency)
1529      SU->BotReadyCycle = SuccReadyCycle + Latency;
1530  }
1531  Bot.releaseNode(SU, SU->BotReadyCycle);
1532}
1533
1534void ConvergingScheduler::registerRoots() {
1535  Rem.CriticalPath = DAG->ExitSU.getDepth();
1536  // Some roots may not feed into ExitSU. Check all of them in case.
1537  for (std::vector<SUnit*>::const_iterator
1538         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1539    if ((*I)->getDepth() > Rem.CriticalPath)
1540      Rem.CriticalPath = (*I)->getDepth();
1541  }
1542  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1543}
1544
1545/// Does this SU have a hazard within the current instruction group.
1546///
1547/// The scheduler supports two modes of hazard recognition. The first is the
1548/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1549/// supports highly complicated in-order reservation tables
1550/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1551///
1552/// The second is a streamlined mechanism that checks for hazards based on
1553/// simple counters that the scheduler itself maintains. It explicitly checks
1554/// for instruction dispatch limitations, including the number of micro-ops that
1555/// can dispatch per cycle.
1556///
1557/// TODO: Also check whether the SU must start a new group.
1558bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1559  if (HazardRec->isEnabled())
1560    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1561
1562  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1563  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1564    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1565          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1566    return true;
1567  }
1568  return false;
1569}
1570
1571// Find the unscheduled node in ReadySUs with the highest latency.
1572unsigned ConvergingScheduler::SchedBoundary::
1573findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1574  SUnit *LateSU = 0;
1575  unsigned RemLatency = 0;
1576  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1577       I != E; ++I) {
1578    unsigned L = getUnscheduledLatency(*I);
1579    if (L > RemLatency) {
1580      RemLatency = L;
1581      LateSU = *I;
1582    }
1583  }
1584  if (LateSU) {
1585    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1586          << LateSU->NodeNum << ") " << RemLatency << "c\n");
1587  }
1588  return RemLatency;
1589}
1590
1591// Count resources in this zone and the remaining unscheduled
1592// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1593// resource index, or zero if the zone is issue limited.
1594unsigned ConvergingScheduler::SchedBoundary::
1595getOtherResourceCount(unsigned &OtherCritIdx) {
1596  if (!SchedModel->hasInstrSchedModel())
1597    return 0;
1598
1599  unsigned OtherCritCount = Rem->RemIssueCount
1600    + (RetiredMOps * SchedModel->getMicroOpFactor());
1601  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1602        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1603  OtherCritIdx = 0;
1604  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1605       PIdx != PEnd; ++PIdx) {
1606    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1607    if (OtherCount > OtherCritCount) {
1608      OtherCritCount = OtherCount;
1609      OtherCritIdx = PIdx;
1610    }
1611  }
1612  if (OtherCritIdx) {
1613    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1614          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1615          << " " << getResourceName(OtherCritIdx) << "\n");
1616  }
1617  return OtherCritCount;
1618}
1619
1620/// Set the CandPolicy for this zone given the current resources and latencies
1621/// inside and outside the zone.
1622void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
1623                                                   SchedBoundary &OtherZone) {
1624  // Now that potential stalls have been considered, apply preemptive heuristics
1625  // based on the the total latency and resources inside and outside this
1626  // zone.
1627
1628  // Compute remaining latency. We need this both to determine whether the
1629  // overall schedule has become latency-limited and whether the instructions
1630  // outside this zone are resource or latency limited.
1631  //
1632  // The "dependent" latency is updated incrementally during scheduling as the
1633  // max height/depth of scheduled nodes minus the cycles since it was
1634  // scheduled:
1635  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
1636  //
1637  // The "independent" latency is the max ready queue depth:
1638  //   ILat = max N.depth for N in Available|Pending
1639  //
1640  // RemainingLatency is the greater of independent and dependent latency.
1641  unsigned RemLatency = DependentLatency;
1642  RemLatency = std::max(RemLatency, findMaxLatency(Available.elements()));
1643  RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements()));
1644
1645  // Compute the critical resource outside the zone.
1646  unsigned OtherCritIdx;
1647  unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx);
1648
1649  bool OtherResLimited = false;
1650  if (SchedModel->hasInstrSchedModel()) {
1651    unsigned LFactor = SchedModel->getLatencyFactor();
1652    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
1653  }
1654  if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) {
1655    Policy.ReduceLatency |= true;
1656    DEBUG(dbgs() << "  " << Available.getName() << " RemainingLatency "
1657          << RemLatency << " + " << CurrCycle << "c > CritPath "
1658          << Rem->CriticalPath << "\n");
1659  }
1660  // If the same resource is limiting inside and outside the zone, do nothing.
1661  if (IsResourceLimited && OtherResLimited && (ZoneCritResIdx == OtherCritIdx))
1662    return;
1663
1664  DEBUG(
1665    if (IsResourceLimited) {
1666      dbgs() << "  " << Available.getName() << " ResourceLimited: "
1667             << getResourceName(ZoneCritResIdx) << "\n";
1668    }
1669    if (OtherResLimited)
1670      dbgs() << "  RemainingLimit: " << getResourceName(OtherCritIdx) << "\n";
1671    if (!IsResourceLimited && !OtherResLimited)
1672      dbgs() << "  Latency limited both directions.\n");
1673
1674  if (IsResourceLimited && !Policy.ReduceResIdx)
1675    Policy.ReduceResIdx = ZoneCritResIdx;
1676
1677  if (OtherResLimited)
1678    Policy.DemandResIdx = OtherCritIdx;
1679}
1680
1681void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
1682                                                     unsigned ReadyCycle) {
1683  if (ReadyCycle < MinReadyCycle)
1684    MinReadyCycle = ReadyCycle;
1685
1686  // Check for interlocks first. For the purpose of other heuristics, an
1687  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1688  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1689  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1690    Pending.push(SU);
1691  else
1692    Available.push(SU);
1693
1694  // Record this node as an immediate dependent of the scheduled node.
1695  NextSUs.insert(SU);
1696}
1697
1698/// Move the boundary of scheduled code by one cycle.
1699void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
1700  if (SchedModel->getMicroOpBufferSize() == 0) {
1701    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1702    if (MinReadyCycle > NextCycle)
1703      NextCycle = MinReadyCycle;
1704  }
1705  // Update the current micro-ops, which will issue in the next cycle.
1706  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1707  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1708
1709  // Decrement DependentLatency based on the next cycle.
1710  if ((NextCycle - CurrCycle) > DependentLatency)
1711    DependentLatency = 0;
1712  else
1713    DependentLatency -= (NextCycle - CurrCycle);
1714
1715  if (!HazardRec->isEnabled()) {
1716    // Bypass HazardRec virtual calls.
1717    CurrCycle = NextCycle;
1718  }
1719  else {
1720    // Bypass getHazardType calls in case of long latency.
1721    for (; CurrCycle != NextCycle; ++CurrCycle) {
1722      if (isTop())
1723        HazardRec->AdvanceCycle();
1724      else
1725        HazardRec->RecedeCycle();
1726    }
1727  }
1728  CheckPending = true;
1729  unsigned LFactor = SchedModel->getLatencyFactor();
1730  IsResourceLimited =
1731    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1732    > (int)LFactor;
1733
1734  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1735}
1736
1737void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
1738                                                              unsigned Count) {
1739  ExecutedResCounts[PIdx] += Count;
1740  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1741    MaxExecutedResCount = ExecutedResCounts[PIdx];
1742}
1743
1744/// Add the given processor resource to this scheduled zone.
1745///
1746/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1747/// during which this resource is consumed.
1748///
1749/// \return the next cycle at which the instruction may execute without
1750/// oversubscribing resources.
1751unsigned ConvergingScheduler::SchedBoundary::
1752countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
1753  unsigned Factor = SchedModel->getResourceFactor(PIdx);
1754  unsigned Count = Factor * Cycles;
1755  DEBUG(dbgs() << "  " << getResourceName(PIdx)
1756        << " +" << Cycles << "x" << Factor << "u\n");
1757
1758  // Update Executed resources counts.
1759  incExecutedResources(PIdx, Count);
1760  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1761  Rem->RemainingCounts[PIdx] -= Count;
1762
1763  // Check if this resource exceeds the current critical resource by a full
1764  // cycle. If so, it becomes the critical resource.
1765  if (ZoneCritResIdx != PIdx
1766      && ((int)(getResourceCount(PIdx) - getCriticalCount())
1767          >= (int)SchedModel->getLatencyFactor())) {
1768    ZoneCritResIdx = PIdx;
1769    DEBUG(dbgs() << "  *** Critical resource "
1770          << getResourceName(PIdx) << ": "
1771          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1772  }
1773  // TODO: We don't yet model reserved resources. It's not hard though.
1774  return CurrCycle;
1775}
1776
1777/// Move the boundary of scheduled code by one SUnit.
1778void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
1779  // Update the reservation table.
1780  if (HazardRec->isEnabled()) {
1781    if (!isTop() && SU->isCall) {
1782      // Calls are scheduled with their preceding instructions. For bottom-up
1783      // scheduling, clear the pipeline state before emitting.
1784      HazardRec->Reset();
1785    }
1786    HazardRec->EmitInstruction(SU);
1787  }
1788  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1789  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1790  CurrMOps += IncMOps;
1791  // checkHazard prevents scheduling multiple instructions per cycle that exceed
1792  // issue width. However, we commonly reach the maximum. In this case
1793  // opportunistically bump the cycle to avoid uselessly checking everything in
1794  // the readyQ. Furthermore, a single instruction may produce more than one
1795  // cycle's worth of micro-ops.
1796  //
1797  // TODO: Also check if this SU must end a dispatch group.
1798  unsigned NextCycle = CurrCycle;
1799  if (CurrMOps >= SchedModel->getIssueWidth()) {
1800    ++NextCycle;
1801    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
1802          << " at cycle " << CurrCycle << '\n');
1803  }
1804  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1805  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
1806
1807  switch (SchedModel->getMicroOpBufferSize()) {
1808  case 0:
1809    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1810    break;
1811  case 1:
1812    if (ReadyCycle > NextCycle) {
1813      NextCycle = ReadyCycle;
1814      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
1815    }
1816    break;
1817  default:
1818    // We don't currently model the OOO reorder buffer, so consider all
1819    // scheduled MOps to be "retired".
1820    break;
1821  }
1822  RetiredMOps += IncMOps;
1823
1824  // Update resource counts and critical resource.
1825  if (SchedModel->hasInstrSchedModel()) {
1826    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1827    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1828    Rem->RemIssueCount -= DecRemIssue;
1829    if (ZoneCritResIdx) {
1830      // Scale scheduled micro-ops for comparing with the critical resource.
1831      unsigned ScaledMOps =
1832        RetiredMOps * SchedModel->getMicroOpFactor();
1833
1834      // If scaled micro-ops are now more than the previous critical resource by
1835      // a full cycle, then micro-ops issue becomes critical.
1836      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1837          >= (int)SchedModel->getLatencyFactor()) {
1838        ZoneCritResIdx = 0;
1839        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
1840              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1841      }
1842    }
1843    for (TargetSchedModel::ProcResIter
1844           PI = SchedModel->getWriteProcResBegin(SC),
1845           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1846      unsigned RCycle =
1847        countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle);
1848      if (RCycle > NextCycle)
1849        NextCycle = RCycle;
1850    }
1851  }
1852  // Update ExpectedLatency and DependentLatency.
1853  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
1854  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
1855  if (SU->getDepth() > TopLatency) {
1856    TopLatency = SU->getDepth();
1857    DEBUG(dbgs() << "  " << Available.getName()
1858          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
1859  }
1860  if (SU->getHeight() > BotLatency) {
1861    BotLatency = SU->getHeight();
1862    DEBUG(dbgs() << "  " << Available.getName()
1863          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
1864  }
1865  // If we stall for any reason, bump the cycle.
1866  if (NextCycle > CurrCycle) {
1867    bumpCycle(NextCycle);
1868  }
1869  else {
1870    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
1871    // resource limited. If a stall occured, bumpCycle does this.
1872    unsigned LFactor = SchedModel->getLatencyFactor();
1873    IsResourceLimited =
1874      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1875      > (int)LFactor;
1876  }
1877  DEBUG(dumpScheduledState());
1878}
1879
1880/// Release pending ready nodes in to the available queue. This makes them
1881/// visible to heuristics.
1882void ConvergingScheduler::SchedBoundary::releasePending() {
1883  // If the available queue is empty, it is safe to reset MinReadyCycle.
1884  if (Available.empty())
1885    MinReadyCycle = UINT_MAX;
1886
1887  // Check to see if any of the pending instructions are ready to issue.  If
1888  // so, add them to the available queue.
1889  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1890  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
1891    SUnit *SU = *(Pending.begin()+i);
1892    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
1893
1894    if (ReadyCycle < MinReadyCycle)
1895      MinReadyCycle = ReadyCycle;
1896
1897    if (!IsBuffered && ReadyCycle > CurrCycle)
1898      continue;
1899
1900    if (checkHazard(SU))
1901      continue;
1902
1903    Available.push(SU);
1904    Pending.remove(Pending.begin()+i);
1905    --i; --e;
1906  }
1907  DEBUG(if (!Pending.empty()) Pending.dump());
1908  CheckPending = false;
1909}
1910
1911/// Remove SU from the ready set for this boundary.
1912void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
1913  if (Available.isInQueue(SU))
1914    Available.remove(Available.find(SU));
1915  else {
1916    assert(Pending.isInQueue(SU) && "bad ready count");
1917    Pending.remove(Pending.find(SU));
1918  }
1919}
1920
1921/// If this queue only has one ready candidate, return it. As a side effect,
1922/// defer any nodes that now hit a hazard, and advance the cycle until at least
1923/// one node is ready. If multiple instructions are ready, return NULL.
1924SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
1925  if (CheckPending)
1926    releasePending();
1927
1928  if (CurrMOps > 0) {
1929    // Defer any ready instrs that now have a hazard.
1930    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
1931      if (checkHazard(*I)) {
1932        Pending.push(*I);
1933        I = Available.remove(I);
1934        continue;
1935      }
1936      ++I;
1937    }
1938  }
1939  for (unsigned i = 0; Available.empty(); ++i) {
1940    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
1941           "permanent hazard"); (void)i;
1942    bumpCycle(CurrCycle + 1);
1943    releasePending();
1944  }
1945  if (Available.size() == 1)
1946    return *Available.begin();
1947  return NULL;
1948}
1949
1950#ifndef NDEBUG
1951// This is useful information to dump after bumpNode.
1952// Note that the Queue contents are more useful before pickNodeFromQueue.
1953void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
1954  unsigned ResFactor;
1955  unsigned ResCount;
1956  if (ZoneCritResIdx) {
1957    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
1958    ResCount = getResourceCount(ZoneCritResIdx);
1959  }
1960  else {
1961    ResFactor = SchedModel->getMicroOpFactor();
1962    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
1963  }
1964  unsigned LFactor = SchedModel->getLatencyFactor();
1965  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
1966         << "  Retired: " << RetiredMOps;
1967  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
1968  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
1969         << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx)
1970         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
1971         << (IsResourceLimited ? "  - Resource" : "  - Latency")
1972         << " limited.\n";
1973}
1974#endif
1975
1976void ConvergingScheduler::SchedCandidate::
1977initResourceDelta(const ScheduleDAGMI *DAG,
1978                  const TargetSchedModel *SchedModel) {
1979  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
1980    return;
1981
1982  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1983  for (TargetSchedModel::ProcResIter
1984         PI = SchedModel->getWriteProcResBegin(SC),
1985         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1986    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
1987      ResDelta.CritResources += PI->Cycles;
1988    if (PI->ProcResourceIdx == Policy.DemandResIdx)
1989      ResDelta.DemandedResources += PI->Cycles;
1990  }
1991}
1992
1993
1994/// Return true if this heuristic determines order.
1995static bool tryLess(int TryVal, int CandVal,
1996                    ConvergingScheduler::SchedCandidate &TryCand,
1997                    ConvergingScheduler::SchedCandidate &Cand,
1998                    ConvergingScheduler::CandReason Reason) {
1999  if (TryVal < CandVal) {
2000    TryCand.Reason = Reason;
2001    return true;
2002  }
2003  if (TryVal > CandVal) {
2004    if (Cand.Reason > Reason)
2005      Cand.Reason = Reason;
2006    return true;
2007  }
2008  Cand.setRepeat(Reason);
2009  return false;
2010}
2011
2012static bool tryGreater(int TryVal, int CandVal,
2013                       ConvergingScheduler::SchedCandidate &TryCand,
2014                       ConvergingScheduler::SchedCandidate &Cand,
2015                       ConvergingScheduler::CandReason Reason) {
2016  if (TryVal > CandVal) {
2017    TryCand.Reason = Reason;
2018    return true;
2019  }
2020  if (TryVal < CandVal) {
2021    if (Cand.Reason > Reason)
2022      Cand.Reason = Reason;
2023    return true;
2024  }
2025  Cand.setRepeat(Reason);
2026  return false;
2027}
2028
2029static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2030  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2031}
2032
2033/// Minimize physical register live ranges. Regalloc wants them adjacent to
2034/// their physreg def/use.
2035///
2036/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2037/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2038/// with the operation that produces or consumes the physreg. We'll do this when
2039/// regalloc has support for parallel copies.
2040static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2041  const MachineInstr *MI = SU->getInstr();
2042  if (!MI->isCopy())
2043    return 0;
2044
2045  unsigned ScheduledOper = isTop ? 1 : 0;
2046  unsigned UnscheduledOper = isTop ? 0 : 1;
2047  // If we have already scheduled the physreg produce/consumer, immediately
2048  // schedule the copy.
2049  if (TargetRegisterInfo::isPhysicalRegister(
2050        MI->getOperand(ScheduledOper).getReg()))
2051    return 1;
2052  // If the physreg is at the boundary, defer it. Otherwise schedule it
2053  // immediately to free the dependent. We can hoist the copy later.
2054  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2055  if (TargetRegisterInfo::isPhysicalRegister(
2056        MI->getOperand(UnscheduledOper).getReg()))
2057    return AtBoundary ? -1 : 1;
2058  return 0;
2059}
2060
2061/// Apply a set of heursitics to a new candidate. Heuristics are currently
2062/// hierarchical. This may be more efficient than a graduated cost model because
2063/// we don't need to evaluate all aspects of the model for each node in the
2064/// queue. But it's really done to make the heuristics easier to debug and
2065/// statistically analyze.
2066///
2067/// \param Cand provides the policy and current best candidate.
2068/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2069/// \param Zone describes the scheduled zone that we are extending.
2070/// \param RPTracker describes reg pressure within the scheduled zone.
2071/// \param TempTracker is a scratch pressure tracker to reuse in queries.
2072void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
2073                                       SchedCandidate &TryCand,
2074                                       SchedBoundary &Zone,
2075                                       const RegPressureTracker &RPTracker,
2076                                       RegPressureTracker &TempTracker) {
2077
2078  // Always initialize TryCand's RPDelta.
2079  TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
2080                                  DAG->getRegionCriticalPSets(),
2081                                  DAG->getRegPressure().MaxSetPressure);
2082
2083  // Initialize the candidate if needed.
2084  if (!Cand.isValid()) {
2085    TryCand.Reason = NodeOrder;
2086    return;
2087  }
2088
2089  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2090                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2091                 TryCand, Cand, PhysRegCopy))
2092    return;
2093
2094  // Avoid exceeding the target's limit.
2095  if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
2096              Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, RegExcess))
2097    return;
2098
2099  // Avoid increasing the max critical pressure in the scheduled region.
2100  if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
2101              Cand.RPDelta.CriticalMax.UnitIncrease,
2102              TryCand, Cand, RegCritical))
2103    return;
2104
2105  // Keep clustered nodes together to encourage downstream peephole
2106  // optimizations which may reduce resource requirements.
2107  //
2108  // This is a best effort to set things up for a post-RA pass. Optimizations
2109  // like generating loads of multiple registers should ideally be done within
2110  // the scheduler pass by combining the loads during DAG postprocessing.
2111  const SUnit *NextClusterSU =
2112    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2113  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2114                 TryCand, Cand, Cluster))
2115    return;
2116
2117  // Weak edges are for clustering and other constraints.
2118  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2119              getWeakLeft(Cand.SU, Zone.isTop()),
2120              TryCand, Cand, Weak)) {
2121    return;
2122  }
2123  // Avoid increasing the max pressure of the entire region.
2124  if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
2125              Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, RegMax))
2126    return;
2127
2128  // Avoid critical resource consumption and balance the schedule.
2129  TryCand.initResourceDelta(DAG, SchedModel);
2130  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2131              TryCand, Cand, ResourceReduce))
2132    return;
2133  if (tryGreater(TryCand.ResDelta.DemandedResources,
2134                 Cand.ResDelta.DemandedResources,
2135                 TryCand, Cand, ResourceDemand))
2136    return;
2137
2138  // Avoid serializing long latency dependence chains.
2139  if (Cand.Policy.ReduceLatency) {
2140    if (Zone.isTop()) {
2141      if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2142        if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2143                    TryCand, Cand, TopDepthReduce))
2144          return;
2145      }
2146      if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2147                     TryCand, Cand, TopPathReduce))
2148        return;
2149    }
2150    else {
2151      if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2152        if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2153                    TryCand, Cand, BotHeightReduce))
2154          return;
2155      }
2156      if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2157                     TryCand, Cand, BotPathReduce))
2158        return;
2159    }
2160  }
2161
2162  // Prefer immediate defs/users of the last scheduled instruction. This is a
2163  // local pressure avoidance strategy that also makes the machine code
2164  // readable.
2165  if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
2166                 TryCand, Cand, NextDefUse))
2167    return;
2168
2169  // Fall through to original instruction order.
2170  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2171      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2172    TryCand.Reason = NodeOrder;
2173  }
2174}
2175
2176#ifndef NDEBUG
2177const char *ConvergingScheduler::getReasonStr(
2178  ConvergingScheduler::CandReason Reason) {
2179  switch (Reason) {
2180  case NoCand:         return "NOCAND    ";
2181  case PhysRegCopy:    return "PREG-COPY";
2182  case RegExcess:      return "REG-EXCESS";
2183  case RegCritical:    return "REG-CRIT  ";
2184  case Cluster:        return "CLUSTER   ";
2185  case Weak:           return "WEAK      ";
2186  case RegMax:         return "REG-MAX   ";
2187  case ResourceReduce: return "RES-REDUCE";
2188  case ResourceDemand: return "RES-DEMAND";
2189  case TopDepthReduce: return "TOP-DEPTH ";
2190  case TopPathReduce:  return "TOP-PATH  ";
2191  case BotHeightReduce:return "BOT-HEIGHT";
2192  case BotPathReduce:  return "BOT-PATH  ";
2193  case NextDefUse:     return "DEF-USE   ";
2194  case NodeOrder:      return "ORDER     ";
2195  };
2196  llvm_unreachable("Unknown reason!");
2197}
2198
2199void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
2200  PressureElement P;
2201  unsigned ResIdx = 0;
2202  unsigned Latency = 0;
2203  switch (Cand.Reason) {
2204  default:
2205    break;
2206  case RegExcess:
2207    P = Cand.RPDelta.Excess;
2208    break;
2209  case RegCritical:
2210    P = Cand.RPDelta.CriticalMax;
2211    break;
2212  case RegMax:
2213    P = Cand.RPDelta.CurrentMax;
2214    break;
2215  case ResourceReduce:
2216    ResIdx = Cand.Policy.ReduceResIdx;
2217    break;
2218  case ResourceDemand:
2219    ResIdx = Cand.Policy.DemandResIdx;
2220    break;
2221  case TopDepthReduce:
2222    Latency = Cand.SU->getDepth();
2223    break;
2224  case TopPathReduce:
2225    Latency = Cand.SU->getHeight();
2226    break;
2227  case BotHeightReduce:
2228    Latency = Cand.SU->getHeight();
2229    break;
2230  case BotPathReduce:
2231    Latency = Cand.SU->getDepth();
2232    break;
2233  }
2234  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2235  if (P.isValid())
2236    dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
2237           << ":" << P.UnitIncrease << " ";
2238  else
2239    dbgs() << "      ";
2240  if (ResIdx)
2241    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2242  else
2243    dbgs() << "         ";
2244  if (Latency)
2245    dbgs() << " " << Latency << " cycles ";
2246  else
2247    dbgs() << "          ";
2248  dbgs() << '\n';
2249}
2250#endif
2251
2252/// Pick the best candidate from the top queue.
2253///
2254/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2255/// DAG building. To adjust for the current scheduling location we need to
2256/// maintain the number of vreg uses remaining to be top-scheduled.
2257void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2258                                            const RegPressureTracker &RPTracker,
2259                                            SchedCandidate &Cand) {
2260  ReadyQueue &Q = Zone.Available;
2261
2262  DEBUG(Q.dump());
2263
2264  // getMaxPressureDelta temporarily modifies the tracker.
2265  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2266
2267  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2268
2269    SchedCandidate TryCand(Cand.Policy);
2270    TryCand.SU = *I;
2271    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2272    if (TryCand.Reason != NoCand) {
2273      // Initialize resource delta if needed in case future heuristics query it.
2274      if (TryCand.ResDelta == SchedResourceDelta())
2275        TryCand.initResourceDelta(DAG, SchedModel);
2276      Cand.setBest(TryCand);
2277      DEBUG(traceCandidate(Cand));
2278    }
2279  }
2280}
2281
2282static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
2283                      bool IsTop) {
2284  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2285        << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
2286}
2287
2288/// Pick the best candidate node from either the top or bottom queue.
2289SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
2290  // Schedule as far as possible in the direction of no choice. This is most
2291  // efficient, but also provides the best heuristics for CriticalPSets.
2292  if (SUnit *SU = Bot.pickOnlyChoice()) {
2293    IsTopNode = false;
2294    DEBUG(dbgs() << "Pick Bot NOCAND\n");
2295    return SU;
2296  }
2297  if (SUnit *SU = Top.pickOnlyChoice()) {
2298    IsTopNode = true;
2299    DEBUG(dbgs() << "Pick Top NOCAND\n");
2300    return SU;
2301  }
2302  CandPolicy NoPolicy;
2303  SchedCandidate BotCand(NoPolicy);
2304  SchedCandidate TopCand(NoPolicy);
2305  Bot.setPolicy(BotCand.Policy, Top);
2306  Top.setPolicy(TopCand.Policy, Bot);
2307
2308  // Prefer bottom scheduling when heuristics are silent.
2309  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2310  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2311
2312  // If either Q has a single candidate that provides the least increase in
2313  // Excess pressure, we can immediately schedule from that Q.
2314  //
2315  // RegionCriticalPSets summarizes the pressure within the scheduled region and
2316  // affects picking from either Q. If scheduling in one direction must
2317  // increase pressure for one of the excess PSets, then schedule in that
2318  // direction first to provide more freedom in the other direction.
2319  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2320      || (BotCand.Reason == RegCritical
2321          && !BotCand.isRepeat(RegCritical)))
2322  {
2323    IsTopNode = false;
2324    tracePick(BotCand, IsTopNode);
2325    return BotCand.SU;
2326  }
2327  // Check if the top Q has a better candidate.
2328  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2329  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2330
2331  // Choose the queue with the most important (lowest enum) reason.
2332  if (TopCand.Reason < BotCand.Reason) {
2333    IsTopNode = true;
2334    tracePick(TopCand, IsTopNode);
2335    return TopCand.SU;
2336  }
2337  // Otherwise prefer the bottom candidate, in node order if all else failed.
2338  IsTopNode = false;
2339  tracePick(BotCand, IsTopNode);
2340  return BotCand.SU;
2341}
2342
2343/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2344SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
2345  if (DAG->top() == DAG->bottom()) {
2346    assert(Top.Available.empty() && Top.Pending.empty() &&
2347           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2348    return NULL;
2349  }
2350  SUnit *SU;
2351  do {
2352    if (ForceTopDown) {
2353      SU = Top.pickOnlyChoice();
2354      if (!SU) {
2355        CandPolicy NoPolicy;
2356        SchedCandidate TopCand(NoPolicy);
2357        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2358        assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2359        SU = TopCand.SU;
2360      }
2361      IsTopNode = true;
2362    }
2363    else if (ForceBottomUp) {
2364      SU = Bot.pickOnlyChoice();
2365      if (!SU) {
2366        CandPolicy NoPolicy;
2367        SchedCandidate BotCand(NoPolicy);
2368        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2369        assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2370        SU = BotCand.SU;
2371      }
2372      IsTopNode = false;
2373    }
2374    else {
2375      SU = pickNodeBidirectional(IsTopNode);
2376    }
2377  } while (SU->isScheduled);
2378
2379  if (SU->isTopReady())
2380    Top.removeReady(SU);
2381  if (SU->isBottomReady())
2382    Bot.removeReady(SU);
2383
2384  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2385  return SU;
2386}
2387
2388void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2389
2390  MachineBasicBlock::iterator InsertPos = SU->getInstr();
2391  if (!isTop)
2392    ++InsertPos;
2393  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2394
2395  // Find already scheduled copies with a single physreg dependence and move
2396  // them just above the scheduled instruction.
2397  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2398       I != E; ++I) {
2399    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2400      continue;
2401    SUnit *DepSU = I->getSUnit();
2402    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2403      continue;
2404    MachineInstr *Copy = DepSU->getInstr();
2405    if (!Copy->isCopy())
2406      continue;
2407    DEBUG(dbgs() << "  Rescheduling physreg copy ";
2408          I->getSUnit()->dump(DAG));
2409    DAG->moveInstruction(Copy, InsertPos);
2410  }
2411}
2412
2413/// Update the scheduler's state after scheduling a node. This is the same node
2414/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
2415/// it's state based on the current cycle before MachineSchedStrategy does.
2416///
2417/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2418/// them here. See comments in biasPhysRegCopy.
2419void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2420  if (IsTopNode) {
2421    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
2422    Top.bumpNode(SU);
2423    if (SU->hasPhysRegUses)
2424      reschedulePhysRegCopies(SU, true);
2425  }
2426  else {
2427    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle);
2428    Bot.bumpNode(SU);
2429    if (SU->hasPhysRegDefs)
2430      reschedulePhysRegCopies(SU, false);
2431  }
2432}
2433
2434/// Create the standard converging machine scheduler. This will be used as the
2435/// default scheduler if the target does not set a default.
2436static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
2437  assert((!ForceTopDown || !ForceBottomUp) &&
2438         "-misched-topdown incompatible with -misched-bottomup");
2439  ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
2440  // Register DAG post-processors.
2441  //
2442  // FIXME: extend the mutation API to allow earlier mutations to instantiate
2443  // data and pass it to later mutations. Have a single mutation that gathers
2444  // the interesting nodes in one pass.
2445  DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
2446  if (EnableLoadCluster)
2447    DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
2448  if (EnableMacroFusion)
2449    DAG->addMutation(new MacroFusion(DAG->TII));
2450  return DAG;
2451}
2452static MachineSchedRegistry
2453ConvergingSchedRegistry("converge", "Standard converging scheduler.",
2454                        createConvergingSched);
2455
2456//===----------------------------------------------------------------------===//
2457// ILP Scheduler. Currently for experimental analysis of heuristics.
2458//===----------------------------------------------------------------------===//
2459
2460namespace {
2461/// \brief Order nodes by the ILP metric.
2462struct ILPOrder {
2463  const SchedDFSResult *DFSResult;
2464  const BitVector *ScheduledTrees;
2465  bool MaximizeILP;
2466
2467  ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
2468
2469  /// \brief Apply a less-than relation on node priority.
2470  ///
2471  /// (Return true if A comes after B in the Q.)
2472  bool operator()(const SUnit *A, const SUnit *B) const {
2473    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
2474    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
2475    if (SchedTreeA != SchedTreeB) {
2476      // Unscheduled trees have lower priority.
2477      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
2478        return ScheduledTrees->test(SchedTreeB);
2479
2480      // Trees with shallower connections have have lower priority.
2481      if (DFSResult->getSubtreeLevel(SchedTreeA)
2482          != DFSResult->getSubtreeLevel(SchedTreeB)) {
2483        return DFSResult->getSubtreeLevel(SchedTreeA)
2484          < DFSResult->getSubtreeLevel(SchedTreeB);
2485      }
2486    }
2487    if (MaximizeILP)
2488      return DFSResult->getILP(A) < DFSResult->getILP(B);
2489    else
2490      return DFSResult->getILP(A) > DFSResult->getILP(B);
2491  }
2492};
2493
2494/// \brief Schedule based on the ILP metric.
2495class ILPScheduler : public MachineSchedStrategy {
2496  /// In case all subtrees are eventually connected to a common root through
2497  /// data dependence (e.g. reduction), place an upper limit on their size.
2498  ///
2499  /// FIXME: A subtree limit is generally good, but in the situation commented
2500  /// above, where multiple similar subtrees feed a common root, we should
2501  /// only split at a point where the resulting subtrees will be balanced.
2502  /// (a motivating test case must be found).
2503  static const unsigned SubtreeLimit = 16;
2504
2505  ScheduleDAGMI *DAG;
2506  ILPOrder Cmp;
2507
2508  std::vector<SUnit*> ReadyQ;
2509public:
2510  ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
2511
2512  virtual void initialize(ScheduleDAGMI *dag) {
2513    DAG = dag;
2514    DAG->computeDFSResult();
2515    Cmp.DFSResult = DAG->getDFSResult();
2516    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
2517    ReadyQ.clear();
2518  }
2519
2520  virtual void registerRoots() {
2521    // Restore the heap in ReadyQ with the updated DFS results.
2522    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2523  }
2524
2525  /// Implement MachineSchedStrategy interface.
2526  /// -----------------------------------------
2527
2528  /// Callback to select the highest priority node from the ready Q.
2529  virtual SUnit *pickNode(bool &IsTopNode) {
2530    if (ReadyQ.empty()) return NULL;
2531    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2532    SUnit *SU = ReadyQ.back();
2533    ReadyQ.pop_back();
2534    IsTopNode = false;
2535    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
2536          << " ILP: " << DAG->getDFSResult()->getILP(SU)
2537          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
2538          << DAG->getDFSResult()->getSubtreeLevel(
2539            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
2540          << "Scheduling " << *SU->getInstr());
2541    return SU;
2542  }
2543
2544  /// \brief Scheduler callback to notify that a new subtree is scheduled.
2545  virtual void scheduleTree(unsigned SubtreeID) {
2546    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2547  }
2548
2549  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
2550  /// DFSResults, and resort the priority Q.
2551  virtual void schedNode(SUnit *SU, bool IsTopNode) {
2552    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
2553  }
2554
2555  virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
2556
2557  virtual void releaseBottomNode(SUnit *SU) {
2558    ReadyQ.push_back(SU);
2559    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2560  }
2561};
2562} // namespace
2563
2564static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
2565  return new ScheduleDAGMI(C, new ILPScheduler(true));
2566}
2567static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
2568  return new ScheduleDAGMI(C, new ILPScheduler(false));
2569}
2570static MachineSchedRegistry ILPMaxRegistry(
2571  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
2572static MachineSchedRegistry ILPMinRegistry(
2573  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
2574
2575//===----------------------------------------------------------------------===//
2576// Machine Instruction Shuffler for Correctness Testing
2577//===----------------------------------------------------------------------===//
2578
2579#ifndef NDEBUG
2580namespace {
2581/// Apply a less-than relation on the node order, which corresponds to the
2582/// instruction order prior to scheduling. IsReverse implements greater-than.
2583template<bool IsReverse>
2584struct SUnitOrder {
2585  bool operator()(SUnit *A, SUnit *B) const {
2586    if (IsReverse)
2587      return A->NodeNum > B->NodeNum;
2588    else
2589      return A->NodeNum < B->NodeNum;
2590  }
2591};
2592
2593/// Reorder instructions as much as possible.
2594class InstructionShuffler : public MachineSchedStrategy {
2595  bool IsAlternating;
2596  bool IsTopDown;
2597
2598  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
2599  // gives nodes with a higher number higher priority causing the latest
2600  // instructions to be scheduled first.
2601  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
2602    TopQ;
2603  // When scheduling bottom-up, use greater-than as the queue priority.
2604  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
2605    BottomQ;
2606public:
2607  InstructionShuffler(bool alternate, bool topdown)
2608    : IsAlternating(alternate), IsTopDown(topdown) {}
2609
2610  virtual void initialize(ScheduleDAGMI *) {
2611    TopQ.clear();
2612    BottomQ.clear();
2613  }
2614
2615  /// Implement MachineSchedStrategy interface.
2616  /// -----------------------------------------
2617
2618  virtual SUnit *pickNode(bool &IsTopNode) {
2619    SUnit *SU;
2620    if (IsTopDown) {
2621      do {
2622        if (TopQ.empty()) return NULL;
2623        SU = TopQ.top();
2624        TopQ.pop();
2625      } while (SU->isScheduled);
2626      IsTopNode = true;
2627    }
2628    else {
2629      do {
2630        if (BottomQ.empty()) return NULL;
2631        SU = BottomQ.top();
2632        BottomQ.pop();
2633      } while (SU->isScheduled);
2634      IsTopNode = false;
2635    }
2636    if (IsAlternating)
2637      IsTopDown = !IsTopDown;
2638    return SU;
2639  }
2640
2641  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
2642
2643  virtual void releaseTopNode(SUnit *SU) {
2644    TopQ.push(SU);
2645  }
2646  virtual void releaseBottomNode(SUnit *SU) {
2647    BottomQ.push(SU);
2648  }
2649};
2650} // namespace
2651
2652static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
2653  bool Alternate = !ForceTopDown && !ForceBottomUp;
2654  bool TopDown = !ForceBottomUp;
2655  assert((TopDown || !ForceTopDown) &&
2656         "-misched-topdown incompatible with -misched-bottomup");
2657  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
2658}
2659static MachineSchedRegistry ShufflerRegistry(
2660  "shuffle", "Shuffle machine instructions alternating directions",
2661  createInstructionShuffler);
2662#endif // !NDEBUG
2663
2664//===----------------------------------------------------------------------===//
2665// GraphWriter support for ScheduleDAGMI.
2666//===----------------------------------------------------------------------===//
2667
2668#ifndef NDEBUG
2669namespace llvm {
2670
2671template<> struct GraphTraits<
2672  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
2673
2674template<>
2675struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
2676
2677  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2678
2679  static std::string getGraphName(const ScheduleDAG *G) {
2680    return G->MF.getName();
2681  }
2682
2683  static bool renderGraphFromBottomUp() {
2684    return true;
2685  }
2686
2687  static bool isNodeHidden(const SUnit *Node) {
2688    return (Node->NumPreds > 10 || Node->NumSuccs > 10);
2689  }
2690
2691  static bool hasNodeAddressLabel(const SUnit *Node,
2692                                  const ScheduleDAG *Graph) {
2693    return false;
2694  }
2695
2696  /// If you want to override the dot attributes printed for a particular
2697  /// edge, override this method.
2698  static std::string getEdgeAttributes(const SUnit *Node,
2699                                       SUnitIterator EI,
2700                                       const ScheduleDAG *Graph) {
2701    if (EI.isArtificialDep())
2702      return "color=cyan,style=dashed";
2703    if (EI.isCtrlDep())
2704      return "color=blue,style=dashed";
2705    return "";
2706  }
2707
2708  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
2709    std::string Str;
2710    raw_string_ostream SS(Str);
2711    SS << "SU(" << SU->NodeNum << ')';
2712    return SS.str();
2713  }
2714  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
2715    return G->getGraphNodeLabel(SU);
2716  }
2717
2718  static std::string getNodeAttributes(const SUnit *N,
2719                                       const ScheduleDAG *Graph) {
2720    std::string Str("shape=Mrecord");
2721    const SchedDFSResult *DFS =
2722      static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
2723    if (DFS) {
2724      Str += ",style=filled,fillcolor=\"#";
2725      Str += DOT::getColorString(DFS->getSubtreeID(N));
2726      Str += '"';
2727    }
2728    return Str;
2729  }
2730};
2731} // namespace llvm
2732#endif // NDEBUG
2733
2734/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
2735/// rendered using 'dot'.
2736///
2737void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
2738#ifndef NDEBUG
2739  ViewGraph(this, Name, false, Title);
2740#else
2741  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
2742         << "systems with Graphviz or gv!\n";
2743#endif  // NDEBUG
2744}
2745
2746/// Out-of-line implementation with no arguments is handy for gdb.
2747void ScheduleDAGMI::viewGraph() {
2748  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
2749}
2750