MachineScheduler.cpp revision 3d6e70c857ded2605699f7de1b18269f4fb390bf
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "llvm/CodeGen/MachineScheduler.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/PriorityQueue.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/RegisterClassInfo.h"
27#include "llvm/CodeGen/ScheduleDFS.h"
28#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GraphWriter.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include <queue>
36
37using namespace llvm;
38
39namespace llvm {
40cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
41                           cl::desc("Force top-down list scheduling"));
42cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
43                            cl::desc("Force bottom-up list scheduling"));
44}
45
46#ifndef NDEBUG
47static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
48  cl::desc("Pop up a window to show MISched dags after they are processed"));
49
50static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
51  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
52#else
53static bool ViewMISchedDAGs = false;
54#endif // NDEBUG
55
56static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
57  cl::desc("Enable register pressure scheduling."), cl::init(true));
58
59static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
60  cl::desc("Enable cyclic critical path analysis."), cl::init(false));
61
62static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
63  cl::desc("Enable load clustering."), cl::init(true));
64
65// Experimental heuristics
66static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
67  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
68
69static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
70  cl::desc("Verify machine instrs before and after machine scheduling"));
71
72// DAG subtrees must have at least this many nodes.
73static const unsigned MinSubtreeSize = 8;
74
75//===----------------------------------------------------------------------===//
76// Machine Instruction Scheduling Pass and Registry
77//===----------------------------------------------------------------------===//
78
79MachineSchedContext::MachineSchedContext():
80    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
81  RegClassInfo = new RegisterClassInfo();
82}
83
84MachineSchedContext::~MachineSchedContext() {
85  delete RegClassInfo;
86}
87
88namespace {
89/// MachineScheduler runs after coalescing and before register allocation.
90class MachineScheduler : public MachineSchedContext,
91                         public MachineFunctionPass {
92public:
93  MachineScheduler();
94
95  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
96
97  virtual void releaseMemory() {}
98
99  virtual bool runOnMachineFunction(MachineFunction&);
100
101  virtual void print(raw_ostream &O, const Module* = 0) const;
102
103  static char ID; // Class identification, replacement for typeinfo
104};
105} // namespace
106
107char MachineScheduler::ID = 0;
108
109char &llvm::MachineSchedulerID = MachineScheduler::ID;
110
111INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
112                      "Machine Instruction Scheduler", false, false)
113INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
114INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
115INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
116INITIALIZE_PASS_END(MachineScheduler, "misched",
117                    "Machine Instruction Scheduler", false, false)
118
119MachineScheduler::MachineScheduler()
120: MachineFunctionPass(ID) {
121  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
122}
123
124void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
125  AU.setPreservesCFG();
126  AU.addRequiredID(MachineDominatorsID);
127  AU.addRequired<MachineLoopInfo>();
128  AU.addRequired<AliasAnalysis>();
129  AU.addRequired<TargetPassConfig>();
130  AU.addRequired<SlotIndexes>();
131  AU.addPreserved<SlotIndexes>();
132  AU.addRequired<LiveIntervals>();
133  AU.addPreserved<LiveIntervals>();
134  MachineFunctionPass::getAnalysisUsage(AU);
135}
136
137MachinePassRegistry MachineSchedRegistry::Registry;
138
139/// A dummy default scheduler factory indicates whether the scheduler
140/// is overridden on the command line.
141static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
142  return 0;
143}
144
145/// MachineSchedOpt allows command line selection of the scheduler.
146static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
147               RegisterPassParser<MachineSchedRegistry> >
148MachineSchedOpt("misched",
149                cl::init(&useDefaultMachineSched), cl::Hidden,
150                cl::desc("Machine instruction scheduler to use"));
151
152static MachineSchedRegistry
153DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
154                     useDefaultMachineSched);
155
156/// Forward declare the standard machine scheduler. This will be used as the
157/// default scheduler if the target does not set a default.
158static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
159
160
161/// Decrement this iterator until reaching the top or a non-debug instr.
162static MachineBasicBlock::const_iterator
163priorNonDebug(MachineBasicBlock::const_iterator I,
164              MachineBasicBlock::const_iterator Beg) {
165  assert(I != Beg && "reached the top of the region, cannot decrement");
166  while (--I != Beg) {
167    if (!I->isDebugValue())
168      break;
169  }
170  return I;
171}
172
173/// Non-const version.
174static MachineBasicBlock::iterator
175priorNonDebug(MachineBasicBlock::iterator I,
176              MachineBasicBlock::const_iterator Beg) {
177  return const_cast<MachineInstr*>(
178    &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
179}
180
181/// If this iterator is a debug value, increment until reaching the End or a
182/// non-debug instruction.
183static MachineBasicBlock::const_iterator
184nextIfDebug(MachineBasicBlock::const_iterator I,
185            MachineBasicBlock::const_iterator End) {
186  for(; I != End; ++I) {
187    if (!I->isDebugValue())
188      break;
189  }
190  return I;
191}
192
193/// Non-const version.
194static MachineBasicBlock::iterator
195nextIfDebug(MachineBasicBlock::iterator I,
196            MachineBasicBlock::const_iterator End) {
197  // Cast the return value to nonconst MachineInstr, then cast to an
198  // instr_iterator, which does not check for null, finally return a
199  // bundle_iterator.
200  return MachineBasicBlock::instr_iterator(
201    const_cast<MachineInstr*>(
202      &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
203}
204
205/// Top-level MachineScheduler pass driver.
206///
207/// Visit blocks in function order. Divide each block into scheduling regions
208/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
209/// consistent with the DAG builder, which traverses the interior of the
210/// scheduling regions bottom-up.
211///
212/// This design avoids exposing scheduling boundaries to the DAG builder,
213/// simplifying the DAG builder's support for "special" target instructions.
214/// At the same time the design allows target schedulers to operate across
215/// scheduling boundaries, for example to bundle the boudary instructions
216/// without reordering them. This creates complexity, because the target
217/// scheduler must update the RegionBegin and RegionEnd positions cached by
218/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
219/// design would be to split blocks at scheduling boundaries, but LLVM has a
220/// general bias against block splitting purely for implementation simplicity.
221bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
222  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
223
224  // Initialize the context of the pass.
225  MF = &mf;
226  MLI = &getAnalysis<MachineLoopInfo>();
227  MDT = &getAnalysis<MachineDominatorTree>();
228  PassConfig = &getAnalysis<TargetPassConfig>();
229  AA = &getAnalysis<AliasAnalysis>();
230
231  LIS = &getAnalysis<LiveIntervals>();
232  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
233
234  if (VerifyScheduling) {
235    DEBUG(LIS->dump());
236    MF->verify(this, "Before machine scheduling.");
237  }
238  RegClassInfo->runOnMachineFunction(*MF);
239
240  // Select the scheduler, or set the default.
241  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
242  if (Ctor == useDefaultMachineSched) {
243    // Get the default scheduler set by the target.
244    Ctor = MachineSchedRegistry::getDefault();
245    if (!Ctor) {
246      Ctor = createConvergingSched;
247      MachineSchedRegistry::setDefault(Ctor);
248    }
249  }
250  // Instantiate the selected scheduler.
251  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
252
253  // Visit all machine basic blocks.
254  //
255  // TODO: Visit blocks in global postorder or postorder within the bottom-up
256  // loop tree. Then we can optionally compute global RegPressure.
257  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
258       MBB != MBBEnd; ++MBB) {
259
260    Scheduler->startBlock(MBB);
261
262    // Break the block into scheduling regions [I, RegionEnd), and schedule each
263    // region as soon as it is discovered. RegionEnd points the scheduling
264    // boundary at the bottom of the region. The DAG does not include RegionEnd,
265    // but the region does (i.e. the next RegionEnd is above the previous
266    // RegionBegin). If the current block has no terminator then RegionEnd ==
267    // MBB->end() for the bottom region.
268    //
269    // The Scheduler may insert instructions during either schedule() or
270    // exitRegion(), even for empty regions. So the local iterators 'I' and
271    // 'RegionEnd' are invalid across these calls.
272    unsigned RemainingInstrs = MBB->size();
273    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
274        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
275
276      // Avoid decrementing RegionEnd for blocks with no terminator.
277      if (RegionEnd != MBB->end()
278          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
279        --RegionEnd;
280        // Count the boundary instruction.
281        --RemainingInstrs;
282      }
283
284      // The next region starts above the previous region. Look backward in the
285      // instruction stream until we find the nearest boundary.
286      unsigned NumRegionInstrs = 0;
287      MachineBasicBlock::iterator I = RegionEnd;
288      for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
289        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
290          break;
291      }
292      // Notify the scheduler of the region, even if we may skip scheduling
293      // it. Perhaps it still needs to be bundled.
294      Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
295
296      // Skip empty scheduling regions (0 or 1 schedulable instructions).
297      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
298        // Close the current region. Bundle the terminator if needed.
299        // This invalidates 'RegionEnd' and 'I'.
300        Scheduler->exitRegion();
301        continue;
302      }
303      DEBUG(dbgs() << "********** MI Scheduling **********\n");
304      DEBUG(dbgs() << MF->getName()
305            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
306            << "\n  From: " << *I << "    To: ";
307            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
308            else dbgs() << "End";
309            dbgs() << " RegionInstrs: " << NumRegionInstrs
310            << " Remaining: " << RemainingInstrs << "\n");
311
312      // Schedule a region: possibly reorder instructions.
313      // This invalidates 'RegionEnd' and 'I'.
314      Scheduler->schedule();
315
316      // Close the current region.
317      Scheduler->exitRegion();
318
319      // Scheduling has invalidated the current iterator 'I'. Ask the
320      // scheduler for the top of it's scheduled region.
321      RegionEnd = Scheduler->begin();
322    }
323    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
324    Scheduler->finishBlock();
325  }
326  Scheduler->finalizeSchedule();
327  DEBUG(LIS->dump());
328  if (VerifyScheduling)
329    MF->verify(this, "After machine scheduling.");
330  return true;
331}
332
333void MachineScheduler::print(raw_ostream &O, const Module* m) const {
334  // unimplemented
335}
336
337#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
338void ReadyQueue::dump() {
339  dbgs() << Name << ": ";
340  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
341    dbgs() << Queue[i]->NodeNum << " ";
342  dbgs() << "\n";
343}
344#endif
345
346//===----------------------------------------------------------------------===//
347// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
348// preservation.
349//===----------------------------------------------------------------------===//
350
351ScheduleDAGMI::~ScheduleDAGMI() {
352  delete DFSResult;
353  DeleteContainerPointers(Mutations);
354  delete SchedImpl;
355}
356
357bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
358  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
359}
360
361bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
362  if (SuccSU != &ExitSU) {
363    // Do not use WillCreateCycle, it assumes SD scheduling.
364    // If Pred is reachable from Succ, then the edge creates a cycle.
365    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
366      return false;
367    Topo.AddPred(SuccSU, PredDep.getSUnit());
368  }
369  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
370  // Return true regardless of whether a new edge needed to be inserted.
371  return true;
372}
373
374/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
375/// NumPredsLeft reaches zero, release the successor node.
376///
377/// FIXME: Adjust SuccSU height based on MinLatency.
378void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
379  SUnit *SuccSU = SuccEdge->getSUnit();
380
381  if (SuccEdge->isWeak()) {
382    --SuccSU->WeakPredsLeft;
383    if (SuccEdge->isCluster())
384      NextClusterSucc = SuccSU;
385    return;
386  }
387#ifndef NDEBUG
388  if (SuccSU->NumPredsLeft == 0) {
389    dbgs() << "*** Scheduling failed! ***\n";
390    SuccSU->dump(this);
391    dbgs() << " has been released too many times!\n";
392    llvm_unreachable(0);
393  }
394#endif
395  --SuccSU->NumPredsLeft;
396  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
397    SchedImpl->releaseTopNode(SuccSU);
398}
399
400/// releaseSuccessors - Call releaseSucc on each of SU's successors.
401void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
402  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
403       I != E; ++I) {
404    releaseSucc(SU, &*I);
405  }
406}
407
408/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
409/// NumSuccsLeft reaches zero, release the predecessor node.
410///
411/// FIXME: Adjust PredSU height based on MinLatency.
412void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
413  SUnit *PredSU = PredEdge->getSUnit();
414
415  if (PredEdge->isWeak()) {
416    --PredSU->WeakSuccsLeft;
417    if (PredEdge->isCluster())
418      NextClusterPred = PredSU;
419    return;
420  }
421#ifndef NDEBUG
422  if (PredSU->NumSuccsLeft == 0) {
423    dbgs() << "*** Scheduling failed! ***\n";
424    PredSU->dump(this);
425    dbgs() << " has been released too many times!\n";
426    llvm_unreachable(0);
427  }
428#endif
429  --PredSU->NumSuccsLeft;
430  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
431    SchedImpl->releaseBottomNode(PredSU);
432}
433
434/// releasePredecessors - Call releasePred on each of SU's predecessors.
435void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
436  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
437       I != E; ++I) {
438    releasePred(SU, &*I);
439  }
440}
441
442/// This is normally called from the main scheduler loop but may also be invoked
443/// by the scheduling strategy to perform additional code motion.
444void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
445                                    MachineBasicBlock::iterator InsertPos) {
446  // Advance RegionBegin if the first instruction moves down.
447  if (&*RegionBegin == MI)
448    ++RegionBegin;
449
450  // Update the instruction stream.
451  BB->splice(InsertPos, BB, MI);
452
453  // Update LiveIntervals
454  LIS->handleMove(MI, /*UpdateFlags=*/true);
455
456  // Recede RegionBegin if an instruction moves above the first.
457  if (RegionBegin == InsertPos)
458    RegionBegin = MI;
459}
460
461bool ScheduleDAGMI::checkSchedLimit() {
462#ifndef NDEBUG
463  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
464    CurrentTop = CurrentBottom;
465    return false;
466  }
467  ++NumInstrsScheduled;
468#endif
469  return true;
470}
471
472/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
473/// crossing a scheduling boundary. [begin, end) includes all instructions in
474/// the region, including the boundary itself and single-instruction regions
475/// that don't get scheduled.
476void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
477                                MachineBasicBlock::iterator begin,
478                                MachineBasicBlock::iterator end,
479                                unsigned regioninstrs)
480{
481  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
482
483  ShouldTrackPressure =
484    EnableRegPressure && SchedImpl->shouldTrackPressure(regioninstrs);
485
486  // For convenience remember the end of the liveness region.
487  LiveRegionEnd =
488    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
489}
490
491// Setup the register pressure trackers for the top scheduled top and bottom
492// scheduled regions.
493void ScheduleDAGMI::initRegPressure() {
494  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
495  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
496
497  // Close the RPTracker to finalize live ins.
498  RPTracker.closeRegion();
499
500  DEBUG(RPTracker.dump());
501
502  // Initialize the live ins and live outs.
503  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
504  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
505
506  // Close one end of the tracker so we can call
507  // getMaxUpward/DownwardPressureDelta before advancing across any
508  // instructions. This converts currently live regs into live ins/outs.
509  TopRPTracker.closeTop();
510  BotRPTracker.closeBottom();
511
512  BotRPTracker.initLiveThru(RPTracker);
513  if (!BotRPTracker.getLiveThru().empty()) {
514    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
515    DEBUG(dbgs() << "Live Thru: ";
516          dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
517  };
518
519  // For each live out vreg reduce the pressure change associated with other
520  // uses of the same vreg below the live-out reaching def.
521  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
522
523  // Account for liveness generated by the region boundary.
524  if (LiveRegionEnd != RegionEnd) {
525    SmallVector<unsigned, 8> LiveUses;
526    BotRPTracker.recede(&LiveUses);
527    updatePressureDiffs(LiveUses);
528  }
529
530  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
531
532  // Cache the list of excess pressure sets in this region. This will also track
533  // the max pressure in the scheduled code for these sets.
534  RegionCriticalPSets.clear();
535  const std::vector<unsigned> &RegionPressure =
536    RPTracker.getPressure().MaxSetPressure;
537  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
538    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
539    if (RegionPressure[i] > Limit) {
540      DEBUG(dbgs() << TRI->getRegPressureSetName(i)
541            << " Limit " << Limit
542            << " Actual " << RegionPressure[i] << "\n");
543      RegionCriticalPSets.push_back(PressureChange(i));
544    }
545  }
546  DEBUG(dbgs() << "Excess PSets: ";
547        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
548          dbgs() << TRI->getRegPressureSetName(
549            RegionCriticalPSets[i].getPSet()) << " ";
550        dbgs() << "\n");
551}
552
553// FIXME: When the pressure tracker deals in pressure differences then we won't
554// iterate over all RegionCriticalPSets[i].
555void ScheduleDAGMI::
556updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
557  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
558    unsigned ID = RegionCriticalPSets[i].getPSet();
559    if ((int)NewMaxPressure[ID] > RegionCriticalPSets[i].getUnitInc()
560        && NewMaxPressure[ID] <= INT16_MAX)
561      RegionCriticalPSets[i].setUnitInc(NewMaxPressure[ID]);
562  }
563  DEBUG(
564    for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
565      unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
566      if (NewMaxPressure[i] > Limit ) {
567        dbgs() << "  " << TRI->getRegPressureSetName(i) << ": "
568               << NewMaxPressure[i] << " > " << Limit << "\n";
569      }
570    });
571}
572
573/// Update the PressureDiff array for liveness after scheduling this
574/// instruction.
575void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
576  for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
577    /// FIXME: Currently assuming single-use physregs.
578    unsigned Reg = LiveUses[LUIdx];
579    if (!TRI->isVirtualRegister(Reg))
580      continue;
581    // This may be called before CurrentBottom has been initialized. However,
582    // BotRPTracker must have a valid position. We want the value live into the
583    // instruction or live out of the block, so ask for the previous
584    // instruction's live-out.
585    const LiveInterval &LI = LIS->getInterval(Reg);
586    VNInfo *VNI;
587    MachineBasicBlock::const_iterator I =
588      nextIfDebug(BotRPTracker.getPos(), BB->end());
589    if (I == BB->end())
590      VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
591    else {
592      LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(I));
593      VNI = LRQ.valueIn();
594    }
595    // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
596    assert(VNI && "No live value at use.");
597    for (VReg2UseMap::iterator
598           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
599      SUnit *SU = UI->SU;
600      // If this use comes before the reaching def, it cannot be a last use, so
601      // descrease its pressure change.
602      if (!SU->isScheduled && SU != &ExitSU) {
603        LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(SU->getInstr()));
604        if (LRQ.valueIn() == VNI)
605          getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
606      }
607    }
608  }
609}
610
611/// schedule - Called back from MachineScheduler::runOnMachineFunction
612/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
613/// only includes instructions that have DAG nodes, not scheduling boundaries.
614///
615/// This is a skeletal driver, with all the functionality pushed into helpers,
616/// so that it can be easilly extended by experimental schedulers. Generally,
617/// implementing MachineSchedStrategy should be sufficient to implement a new
618/// scheduling algorithm. However, if a scheduler further subclasses
619/// ScheduleDAGMI then it will want to override this virtual method in order to
620/// update any specialized state.
621void ScheduleDAGMI::schedule() {
622  buildDAGWithRegPressure();
623
624  Topo.InitDAGTopologicalSorting();
625
626  postprocessDAG();
627
628  SmallVector<SUnit*, 8> TopRoots, BotRoots;
629  findRootsAndBiasEdges(TopRoots, BotRoots);
630
631  // Initialize the strategy before modifying the DAG.
632  // This may initialize a DFSResult to be used for queue priority.
633  SchedImpl->initialize(this);
634
635  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
636          SUnits[su].dumpAll(this));
637  if (ViewMISchedDAGs) viewGraph();
638
639  // Initialize ready queues now that the DAG and priority data are finalized.
640  initQueues(TopRoots, BotRoots);
641
642  bool IsTopNode = false;
643  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
644    assert(!SU->isScheduled && "Node already scheduled");
645    if (!checkSchedLimit())
646      break;
647
648    scheduleMI(SU, IsTopNode);
649
650    updateQueues(SU, IsTopNode);
651  }
652  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
653
654  placeDebugValues();
655
656  DEBUG({
657      unsigned BBNum = begin()->getParent()->getNumber();
658      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
659      dumpSchedule();
660      dbgs() << '\n';
661    });
662}
663
664/// Build the DAG and setup three register pressure trackers.
665void ScheduleDAGMI::buildDAGWithRegPressure() {
666  if (!ShouldTrackPressure) {
667    RPTracker.reset();
668    RegionCriticalPSets.clear();
669    buildSchedGraph(AA);
670    return;
671  }
672
673  // Initialize the register pressure tracker used by buildSchedGraph.
674  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
675                 /*TrackUntiedDefs=*/true);
676
677  // Account for liveness generate by the region boundary.
678  if (LiveRegionEnd != RegionEnd)
679    RPTracker.recede();
680
681  // Build the DAG, and compute current register pressure.
682  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
683
684  // Initialize top/bottom trackers after computing region pressure.
685  initRegPressure();
686}
687
688/// Apply each ScheduleDAGMutation step in order.
689void ScheduleDAGMI::postprocessDAG() {
690  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
691    Mutations[i]->apply(this);
692  }
693}
694
695void ScheduleDAGMI::computeDFSResult() {
696  if (!DFSResult)
697    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
698  DFSResult->clear();
699  ScheduledTrees.clear();
700  DFSResult->resize(SUnits.size());
701  DFSResult->compute(SUnits);
702  ScheduledTrees.resize(DFSResult->getNumSubtrees());
703}
704
705void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
706                                          SmallVectorImpl<SUnit*> &BotRoots) {
707  for (std::vector<SUnit>::iterator
708         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
709    SUnit *SU = &(*I);
710    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
711
712    // Order predecessors so DFSResult follows the critical path.
713    SU->biasCriticalPath();
714
715    // A SUnit is ready to top schedule if it has no predecessors.
716    if (!I->NumPredsLeft)
717      TopRoots.push_back(SU);
718    // A SUnit is ready to bottom schedule if it has no successors.
719    if (!I->NumSuccsLeft)
720      BotRoots.push_back(SU);
721  }
722  ExitSU.biasCriticalPath();
723}
724
725/// Compute the max cyclic critical path through the DAG. The scheduling DAG
726/// only provides the critical path for single block loops. To handle loops that
727/// span blocks, we could use the vreg path latencies provided by
728/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
729/// available for use in the scheduler.
730///
731/// The cyclic path estimation identifies a def-use pair that crosses the back
732/// edge and considers the depth and height of the nodes. For example, consider
733/// the following instruction sequence where each instruction has unit latency
734/// and defines an epomymous virtual register:
735///
736/// a->b(a,c)->c(b)->d(c)->exit
737///
738/// The cyclic critical path is a two cycles: b->c->b
739/// The acyclic critical path is four cycles: a->b->c->d->exit
740/// LiveOutHeight = height(c) = len(c->d->exit) = 2
741/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
742/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
743/// LiveInDepth = depth(b) = len(a->b) = 1
744///
745/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
746/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
747/// CyclicCriticalPath = min(2, 2) = 2
748unsigned ScheduleDAGMI::computeCyclicCriticalPath() {
749  // This only applies to single block loop.
750  if (!BB->isSuccessor(BB))
751    return 0;
752
753  unsigned MaxCyclicLatency = 0;
754  // Visit each live out vreg def to find def/use pairs that cross iterations.
755  ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
756  for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
757       RI != RE; ++RI) {
758    unsigned Reg = *RI;
759    if (!TRI->isVirtualRegister(Reg))
760        continue;
761    const LiveInterval &LI = LIS->getInterval(Reg);
762    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
763    if (!DefVNI)
764      continue;
765
766    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
767    const SUnit *DefSU = getSUnit(DefMI);
768    if (!DefSU)
769      continue;
770
771    unsigned LiveOutHeight = DefSU->getHeight();
772    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
773    // Visit all local users of the vreg def.
774    for (VReg2UseMap::iterator
775           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
776      if (UI->SU == &ExitSU)
777        continue;
778
779      // Only consider uses of the phi.
780      LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(UI->SU->getInstr()));
781      if (!LRQ.valueIn()->isPHIDef())
782        continue;
783
784      // Assume that a path spanning two iterations is a cycle, which could
785      // overestimate in strange cases. This allows cyclic latency to be
786      // estimated as the minimum slack of the vreg's depth or height.
787      unsigned CyclicLatency = 0;
788      if (LiveOutDepth > UI->SU->getDepth())
789        CyclicLatency = LiveOutDepth - UI->SU->getDepth();
790
791      unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
792      if (LiveInHeight > LiveOutHeight) {
793        if (LiveInHeight - LiveOutHeight < CyclicLatency)
794          CyclicLatency = LiveInHeight - LiveOutHeight;
795      }
796      else
797        CyclicLatency = 0;
798
799      DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
800            << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
801      if (CyclicLatency > MaxCyclicLatency)
802        MaxCyclicLatency = CyclicLatency;
803    }
804  }
805  DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
806  return MaxCyclicLatency;
807}
808
809/// Identify DAG roots and setup scheduler queues.
810void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
811                               ArrayRef<SUnit*> BotRoots) {
812  NextClusterSucc = NULL;
813  NextClusterPred = NULL;
814
815  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
816  //
817  // Nodes with unreleased weak edges can still be roots.
818  // Release top roots in forward order.
819  for (SmallVectorImpl<SUnit*>::const_iterator
820         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
821    SchedImpl->releaseTopNode(*I);
822  }
823  // Release bottom roots in reverse order so the higher priority nodes appear
824  // first. This is more natural and slightly more efficient.
825  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
826         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
827    SchedImpl->releaseBottomNode(*I);
828  }
829
830  releaseSuccessors(&EntrySU);
831  releasePredecessors(&ExitSU);
832
833  SchedImpl->registerRoots();
834
835  // Advance past initial DebugValues.
836  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
837  CurrentBottom = RegionEnd;
838
839  if (ShouldTrackPressure) {
840    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
841    TopRPTracker.setPos(CurrentTop);
842  }
843}
844
845/// Move an instruction and update register pressure.
846void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
847  // Move the instruction to its new location in the instruction stream.
848  MachineInstr *MI = SU->getInstr();
849
850  if (IsTopNode) {
851    assert(SU->isTopReady() && "node still has unscheduled dependencies");
852    if (&*CurrentTop == MI)
853      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
854    else {
855      moveInstruction(MI, CurrentTop);
856      TopRPTracker.setPos(MI);
857    }
858
859    if (ShouldTrackPressure) {
860      // Update top scheduled pressure.
861      TopRPTracker.advance();
862      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
863      updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
864    }
865  }
866  else {
867    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
868    MachineBasicBlock::iterator priorII =
869      priorNonDebug(CurrentBottom, CurrentTop);
870    if (&*priorII == MI)
871      CurrentBottom = priorII;
872    else {
873      if (&*CurrentTop == MI) {
874        CurrentTop = nextIfDebug(++CurrentTop, priorII);
875        TopRPTracker.setPos(CurrentTop);
876      }
877      moveInstruction(MI, CurrentBottom);
878      CurrentBottom = MI;
879    }
880    if (ShouldTrackPressure) {
881      // Update bottom scheduled pressure.
882      SmallVector<unsigned, 8> LiveUses;
883      BotRPTracker.recede(&LiveUses);
884      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
885      updatePressureDiffs(LiveUses);
886      updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
887    }
888  }
889}
890
891/// Update scheduler queues after scheduling an instruction.
892void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
893  // Release dependent instructions for scheduling.
894  if (IsTopNode)
895    releaseSuccessors(SU);
896  else
897    releasePredecessors(SU);
898
899  SU->isScheduled = true;
900
901  if (DFSResult) {
902    unsigned SubtreeID = DFSResult->getSubtreeID(SU);
903    if (!ScheduledTrees.test(SubtreeID)) {
904      ScheduledTrees.set(SubtreeID);
905      DFSResult->scheduleTree(SubtreeID);
906      SchedImpl->scheduleTree(SubtreeID);
907    }
908  }
909
910  // Notify the scheduling strategy after updating the DAG.
911  SchedImpl->schedNode(SU, IsTopNode);
912}
913
914/// Reinsert any remaining debug_values, just like the PostRA scheduler.
915void ScheduleDAGMI::placeDebugValues() {
916  // If first instruction was a DBG_VALUE then put it back.
917  if (FirstDbgValue) {
918    BB->splice(RegionBegin, BB, FirstDbgValue);
919    RegionBegin = FirstDbgValue;
920  }
921
922  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
923         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
924    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
925    MachineInstr *DbgValue = P.first;
926    MachineBasicBlock::iterator OrigPrevMI = P.second;
927    if (&*RegionBegin == DbgValue)
928      ++RegionBegin;
929    BB->splice(++OrigPrevMI, BB, DbgValue);
930    if (OrigPrevMI == llvm::prior(RegionEnd))
931      RegionEnd = DbgValue;
932  }
933  DbgValues.clear();
934  FirstDbgValue = NULL;
935}
936
937#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
938void ScheduleDAGMI::dumpSchedule() const {
939  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
940    if (SUnit *SU = getSUnit(&(*MI)))
941      SU->dump(this);
942    else
943      dbgs() << "Missing SUnit\n";
944  }
945}
946#endif
947
948//===----------------------------------------------------------------------===//
949// LoadClusterMutation - DAG post-processing to cluster loads.
950//===----------------------------------------------------------------------===//
951
952namespace {
953/// \brief Post-process the DAG to create cluster edges between neighboring
954/// loads.
955class LoadClusterMutation : public ScheduleDAGMutation {
956  struct LoadInfo {
957    SUnit *SU;
958    unsigned BaseReg;
959    unsigned Offset;
960    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
961      : SU(su), BaseReg(reg), Offset(ofs) {}
962  };
963  static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
964                           const LoadClusterMutation::LoadInfo &RHS);
965
966  const TargetInstrInfo *TII;
967  const TargetRegisterInfo *TRI;
968public:
969  LoadClusterMutation(const TargetInstrInfo *tii,
970                      const TargetRegisterInfo *tri)
971    : TII(tii), TRI(tri) {}
972
973  virtual void apply(ScheduleDAGMI *DAG);
974protected:
975  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
976};
977} // anonymous
978
979bool LoadClusterMutation::LoadInfoLess(
980  const LoadClusterMutation::LoadInfo &LHS,
981  const LoadClusterMutation::LoadInfo &RHS) {
982  if (LHS.BaseReg != RHS.BaseReg)
983    return LHS.BaseReg < RHS.BaseReg;
984  return LHS.Offset < RHS.Offset;
985}
986
987void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
988                                                  ScheduleDAGMI *DAG) {
989  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
990  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
991    SUnit *SU = Loads[Idx];
992    unsigned BaseReg;
993    unsigned Offset;
994    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
995      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
996  }
997  if (LoadRecords.size() < 2)
998    return;
999  std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
1000  unsigned ClusterLength = 1;
1001  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1002    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1003      ClusterLength = 1;
1004      continue;
1005    }
1006
1007    SUnit *SUa = LoadRecords[Idx].SU;
1008    SUnit *SUb = LoadRecords[Idx+1].SU;
1009    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1010        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1011
1012      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1013            << SUb->NodeNum << ")\n");
1014      // Copy successor edges from SUa to SUb. Interleaving computation
1015      // dependent on SUa can prevent load combining due to register reuse.
1016      // Predecessor edges do not need to be copied from SUb to SUa since nearby
1017      // loads should have effectively the same inputs.
1018      for (SUnit::const_succ_iterator
1019             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1020        if (SI->getSUnit() == SUb)
1021          continue;
1022        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1023        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1024      }
1025      ++ClusterLength;
1026    }
1027    else
1028      ClusterLength = 1;
1029  }
1030}
1031
1032/// \brief Callback from DAG postProcessing to create cluster edges for loads.
1033void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1034  // Map DAG NodeNum to store chain ID.
1035  DenseMap<unsigned, unsigned> StoreChainIDs;
1036  // Map each store chain to a set of dependent loads.
1037  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1038  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1039    SUnit *SU = &DAG->SUnits[Idx];
1040    if (!SU->getInstr()->mayLoad())
1041      continue;
1042    unsigned ChainPredID = DAG->SUnits.size();
1043    for (SUnit::const_pred_iterator
1044           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1045      if (PI->isCtrl()) {
1046        ChainPredID = PI->getSUnit()->NodeNum;
1047        break;
1048      }
1049    }
1050    // Check if this chain-like pred has been seen
1051    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1052    unsigned NumChains = StoreChainDependents.size();
1053    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1054      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1055    if (Result.second)
1056      StoreChainDependents.resize(NumChains + 1);
1057    StoreChainDependents[Result.first->second].push_back(SU);
1058  }
1059  // Iterate over the store chains.
1060  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1061    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1062}
1063
1064//===----------------------------------------------------------------------===//
1065// MacroFusion - DAG post-processing to encourage fusion of macro ops.
1066//===----------------------------------------------------------------------===//
1067
1068namespace {
1069/// \brief Post-process the DAG to create cluster edges between instructions
1070/// that may be fused by the processor into a single operation.
1071class MacroFusion : public ScheduleDAGMutation {
1072  const TargetInstrInfo *TII;
1073public:
1074  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
1075
1076  virtual void apply(ScheduleDAGMI *DAG);
1077};
1078} // anonymous
1079
1080/// \brief Callback from DAG postProcessing to create cluster edges to encourage
1081/// fused operations.
1082void MacroFusion::apply(ScheduleDAGMI *DAG) {
1083  // For now, assume targets can only fuse with the branch.
1084  MachineInstr *Branch = DAG->ExitSU.getInstr();
1085  if (!Branch)
1086    return;
1087
1088  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
1089    SUnit *SU = &DAG->SUnits[--Idx];
1090    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
1091      continue;
1092
1093    // Create a single weak edge from SU to ExitSU. The only effect is to cause
1094    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1095    // need to copy predecessor edges from ExitSU to SU, since top-down
1096    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1097    // of SU, we could create an artificial edge from the deepest root, but it
1098    // hasn't been needed yet.
1099    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
1100    (void)Success;
1101    assert(Success && "No DAG nodes should be reachable from ExitSU");
1102
1103    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
1104    break;
1105  }
1106}
1107
1108//===----------------------------------------------------------------------===//
1109// CopyConstrain - DAG post-processing to encourage copy elimination.
1110//===----------------------------------------------------------------------===//
1111
1112namespace {
1113/// \brief Post-process the DAG to create weak edges from all uses of a copy to
1114/// the one use that defines the copy's source vreg, most likely an induction
1115/// variable increment.
1116class CopyConstrain : public ScheduleDAGMutation {
1117  // Transient state.
1118  SlotIndex RegionBeginIdx;
1119  // RegionEndIdx is the slot index of the last non-debug instruction in the
1120  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1121  SlotIndex RegionEndIdx;
1122public:
1123  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1124
1125  virtual void apply(ScheduleDAGMI *DAG);
1126
1127protected:
1128  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
1129};
1130} // anonymous
1131
1132/// constrainLocalCopy handles two possibilities:
1133/// 1) Local src:
1134/// I0:     = dst
1135/// I1: src = ...
1136/// I2:     = dst
1137/// I3: dst = src (copy)
1138/// (create pred->succ edges I0->I1, I2->I1)
1139///
1140/// 2) Local copy:
1141/// I0: dst = src (copy)
1142/// I1:     = dst
1143/// I2: src = ...
1144/// I3:     = dst
1145/// (create pred->succ edges I1->I2, I3->I2)
1146///
1147/// Although the MachineScheduler is currently constrained to single blocks,
1148/// this algorithm should handle extended blocks. An EBB is a set of
1149/// contiguously numbered blocks such that the previous block in the EBB is
1150/// always the single predecessor.
1151void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
1152  LiveIntervals *LIS = DAG->getLIS();
1153  MachineInstr *Copy = CopySU->getInstr();
1154
1155  // Check for pure vreg copies.
1156  unsigned SrcReg = Copy->getOperand(1).getReg();
1157  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1158    return;
1159
1160  unsigned DstReg = Copy->getOperand(0).getReg();
1161  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1162    return;
1163
1164  // Check if either the dest or source is local. If it's live across a back
1165  // edge, it's not local. Note that if both vregs are live across the back
1166  // edge, we cannot successfully contrain the copy without cyclic scheduling.
1167  unsigned LocalReg = DstReg;
1168  unsigned GlobalReg = SrcReg;
1169  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1170  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1171    LocalReg = SrcReg;
1172    GlobalReg = DstReg;
1173    LocalLI = &LIS->getInterval(LocalReg);
1174    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1175      return;
1176  }
1177  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1178
1179  // Find the global segment after the start of the local LI.
1180  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1181  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1182  // local live range. We could create edges from other global uses to the local
1183  // start, but the coalescer should have already eliminated these cases, so
1184  // don't bother dealing with it.
1185  if (GlobalSegment == GlobalLI->end())
1186    return;
1187
1188  // If GlobalSegment is killed at the LocalLI->start, the call to find()
1189  // returned the next global segment. But if GlobalSegment overlaps with
1190  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1191  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1192  if (GlobalSegment->contains(LocalLI->beginIndex()))
1193    ++GlobalSegment;
1194
1195  if (GlobalSegment == GlobalLI->end())
1196    return;
1197
1198  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1199  if (GlobalSegment != GlobalLI->begin()) {
1200    // Two address defs have no hole.
1201    if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
1202                               GlobalSegment->start)) {
1203      return;
1204    }
1205    // If the prior global segment may be defined by the same two-address
1206    // instruction that also defines LocalLI, then can't make a hole here.
1207    if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start,
1208                               LocalLI->beginIndex())) {
1209      return;
1210    }
1211    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1212    // it would be a disconnected component in the live range.
1213    assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
1214           "Disconnected LRG within the scheduling region.");
1215  }
1216  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1217  if (!GlobalDef)
1218    return;
1219
1220  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1221  if (!GlobalSU)
1222    return;
1223
1224  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1225  // constraining the uses of the last local def to precede GlobalDef.
1226  SmallVector<SUnit*,8> LocalUses;
1227  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1228  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1229  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1230  for (SUnit::const_succ_iterator
1231         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1232       I != E; ++I) {
1233    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1234      continue;
1235    if (I->getSUnit() == GlobalSU)
1236      continue;
1237    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1238      return;
1239    LocalUses.push_back(I->getSUnit());
1240  }
1241  // Open the top of the GlobalLI hole by constraining any earlier global uses
1242  // to precede the start of LocalLI.
1243  SmallVector<SUnit*,8> GlobalUses;
1244  MachineInstr *FirstLocalDef =
1245    LIS->getInstructionFromIndex(LocalLI->beginIndex());
1246  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1247  for (SUnit::const_pred_iterator
1248         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1249    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1250      continue;
1251    if (I->getSUnit() == FirstLocalSU)
1252      continue;
1253    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1254      return;
1255    GlobalUses.push_back(I->getSUnit());
1256  }
1257  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1258  // Add the weak edges.
1259  for (SmallVectorImpl<SUnit*>::const_iterator
1260         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1261    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1262          << GlobalSU->NodeNum << ")\n");
1263    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1264  }
1265  for (SmallVectorImpl<SUnit*>::const_iterator
1266         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1267    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1268          << FirstLocalSU->NodeNum << ")\n");
1269    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1270  }
1271}
1272
1273/// \brief Callback from DAG postProcessing to create weak edges to encourage
1274/// copy elimination.
1275void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1276  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1277  if (FirstPos == DAG->end())
1278    return;
1279  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1280  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1281    &*priorNonDebug(DAG->end(), DAG->begin()));
1282
1283  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1284    SUnit *SU = &DAG->SUnits[Idx];
1285    if (!SU->getInstr()->isCopy())
1286      continue;
1287
1288    constrainLocalCopy(SU, DAG);
1289  }
1290}
1291
1292//===----------------------------------------------------------------------===//
1293// ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
1294//===----------------------------------------------------------------------===//
1295
1296namespace {
1297/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
1298/// the schedule.
1299class ConvergingScheduler : public MachineSchedStrategy {
1300public:
1301  /// Represent the type of SchedCandidate found within a single queue.
1302  /// pickNodeBidirectional depends on these listed by decreasing priority.
1303  enum CandReason {
1304    NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax,
1305    ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
1306    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
1307
1308#ifndef NDEBUG
1309  static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
1310#endif
1311
1312  /// Policy for scheduling the next instruction in the candidate's zone.
1313  struct CandPolicy {
1314    bool ReduceLatency;
1315    unsigned ReduceResIdx;
1316    unsigned DemandResIdx;
1317
1318    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
1319  };
1320
1321  /// Status of an instruction's critical resource consumption.
1322  struct SchedResourceDelta {
1323    // Count critical resources in the scheduled region required by SU.
1324    unsigned CritResources;
1325
1326    // Count critical resources from another region consumed by SU.
1327    unsigned DemandedResources;
1328
1329    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
1330
1331    bool operator==(const SchedResourceDelta &RHS) const {
1332      return CritResources == RHS.CritResources
1333        && DemandedResources == RHS.DemandedResources;
1334    }
1335    bool operator!=(const SchedResourceDelta &RHS) const {
1336      return !operator==(RHS);
1337    }
1338  };
1339
1340  /// Store the state used by ConvergingScheduler heuristics, required for the
1341  /// lifetime of one invocation of pickNode().
1342  struct SchedCandidate {
1343    CandPolicy Policy;
1344
1345    // The best SUnit candidate.
1346    SUnit *SU;
1347
1348    // The reason for this candidate.
1349    CandReason Reason;
1350
1351    // Set of reasons that apply to multiple candidates.
1352    uint32_t RepeatReasonSet;
1353
1354    // Register pressure values for the best candidate.
1355    RegPressureDelta RPDelta;
1356
1357    // Critical resource consumption of the best candidate.
1358    SchedResourceDelta ResDelta;
1359
1360    SchedCandidate(const CandPolicy &policy)
1361      : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {}
1362
1363    bool isValid() const { return SU; }
1364
1365    // Copy the status of another candidate without changing policy.
1366    void setBest(SchedCandidate &Best) {
1367      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
1368      SU = Best.SU;
1369      Reason = Best.Reason;
1370      RPDelta = Best.RPDelta;
1371      ResDelta = Best.ResDelta;
1372    }
1373
1374    bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
1375    void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
1376
1377    void initResourceDelta(const ScheduleDAGMI *DAG,
1378                           const TargetSchedModel *SchedModel);
1379  };
1380
1381  /// Summarize the unscheduled region.
1382  struct SchedRemainder {
1383    // Critical path through the DAG in expected latency.
1384    unsigned CriticalPath;
1385    unsigned CyclicCritPath;
1386
1387    // Scaled count of micro-ops left to schedule.
1388    unsigned RemIssueCount;
1389
1390    bool IsAcyclicLatencyLimited;
1391
1392    // Unscheduled resources
1393    SmallVector<unsigned, 16> RemainingCounts;
1394
1395    void reset() {
1396      CriticalPath = 0;
1397      CyclicCritPath = 0;
1398      RemIssueCount = 0;
1399      IsAcyclicLatencyLimited = false;
1400      RemainingCounts.clear();
1401    }
1402
1403    SchedRemainder() { reset(); }
1404
1405    void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
1406  };
1407
1408  /// Each Scheduling boundary is associated with ready queues. It tracks the
1409  /// current cycle in the direction of movement, and maintains the state
1410  /// of "hazards" and other interlocks at the current cycle.
1411  struct SchedBoundary {
1412    ScheduleDAGMI *DAG;
1413    const TargetSchedModel *SchedModel;
1414    SchedRemainder *Rem;
1415
1416    ReadyQueue Available;
1417    ReadyQueue Pending;
1418    bool CheckPending;
1419
1420    // For heuristics, keep a list of the nodes that immediately depend on the
1421    // most recently scheduled node.
1422    SmallPtrSet<const SUnit*, 8> NextSUs;
1423
1424    ScheduleHazardRecognizer *HazardRec;
1425
1426    /// Number of cycles it takes to issue the instructions scheduled in this
1427    /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
1428    /// See getStalls().
1429    unsigned CurrCycle;
1430
1431    /// Micro-ops issued in the current cycle
1432    unsigned CurrMOps;
1433
1434    /// MinReadyCycle - Cycle of the soonest available instruction.
1435    unsigned MinReadyCycle;
1436
1437    // The expected latency of the critical path in this scheduled zone.
1438    unsigned ExpectedLatency;
1439
1440    // The latency of dependence chains leading into this zone.
1441    // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
1442    // For each cycle scheduled: DLat -= 1.
1443    unsigned DependentLatency;
1444
1445    /// Count the scheduled (issued) micro-ops that can be retired by
1446    /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
1447    unsigned RetiredMOps;
1448
1449    // Count scheduled resources that have been executed. Resources are
1450    // considered executed if they become ready in the time that it takes to
1451    // saturate any resource including the one in question. Counts are scaled
1452    // for direct comparison with other resources. Counts can be compared with
1453    // MOps * getMicroOpFactor and Latency * getLatencyFactor.
1454    SmallVector<unsigned, 16> ExecutedResCounts;
1455
1456    /// Cache the max count for a single resource.
1457    unsigned MaxExecutedResCount;
1458
1459    // Cache the critical resources ID in this scheduled zone.
1460    unsigned ZoneCritResIdx;
1461
1462    // Is the scheduled region resource limited vs. latency limited.
1463    bool IsResourceLimited;
1464
1465#ifndef NDEBUG
1466    // Remember the greatest operand latency as an upper bound on the number of
1467    // times we should retry the pending queue because of a hazard.
1468    unsigned MaxObservedLatency;
1469#endif
1470
1471    void reset() {
1472      // A new HazardRec is created for each DAG and owned by SchedBoundary.
1473      // Destroying and reconstructing it is very expensive though. So keep
1474      // invalid, placeholder HazardRecs.
1475      if (HazardRec && HazardRec->isEnabled()) {
1476        delete HazardRec;
1477        HazardRec = 0;
1478      }
1479      Available.clear();
1480      Pending.clear();
1481      CheckPending = false;
1482      NextSUs.clear();
1483      CurrCycle = 0;
1484      CurrMOps = 0;
1485      MinReadyCycle = UINT_MAX;
1486      ExpectedLatency = 0;
1487      DependentLatency = 0;
1488      RetiredMOps = 0;
1489      MaxExecutedResCount = 0;
1490      ZoneCritResIdx = 0;
1491      IsResourceLimited = false;
1492#ifndef NDEBUG
1493      MaxObservedLatency = 0;
1494#endif
1495      // Reserve a zero-count for invalid CritResIdx.
1496      ExecutedResCounts.resize(1);
1497      assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1498    }
1499
1500    /// Pending queues extend the ready queues with the same ID and the
1501    /// PendingFlag set.
1502    SchedBoundary(unsigned ID, const Twine &Name):
1503      DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
1504      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
1505      HazardRec(0) {
1506      reset();
1507    }
1508
1509    ~SchedBoundary() { delete HazardRec; }
1510
1511    void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
1512              SchedRemainder *rem);
1513
1514    bool isTop() const {
1515      return Available.getID() == ConvergingScheduler::TopQID;
1516    }
1517
1518#ifndef NDEBUG
1519    const char *getResourceName(unsigned PIdx) {
1520      if (!PIdx)
1521        return "MOps";
1522      return SchedModel->getProcResource(PIdx)->Name;
1523    }
1524#endif
1525
1526    /// Get the number of latency cycles "covered" by the scheduled
1527    /// instructions. This is the larger of the critical path within the zone
1528    /// and the number of cycles required to issue the instructions.
1529    unsigned getScheduledLatency() const {
1530      return std::max(ExpectedLatency, CurrCycle);
1531    }
1532
1533    unsigned getUnscheduledLatency(SUnit *SU) const {
1534      return isTop() ? SU->getHeight() : SU->getDepth();
1535    }
1536
1537    unsigned getResourceCount(unsigned ResIdx) const {
1538      return ExecutedResCounts[ResIdx];
1539    }
1540
1541    /// Get the scaled count of scheduled micro-ops and resources, including
1542    /// executed resources.
1543    unsigned getCriticalCount() const {
1544      if (!ZoneCritResIdx)
1545        return RetiredMOps * SchedModel->getMicroOpFactor();
1546      return getResourceCount(ZoneCritResIdx);
1547    }
1548
1549    /// Get a scaled count for the minimum execution time of the scheduled
1550    /// micro-ops that are ready to execute by getExecutedCount. Notice the
1551    /// feedback loop.
1552    unsigned getExecutedCount() const {
1553      return std::max(CurrCycle * SchedModel->getLatencyFactor(),
1554                      MaxExecutedResCount);
1555    }
1556
1557    bool checkHazard(SUnit *SU);
1558
1559    unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
1560
1561    unsigned getOtherResourceCount(unsigned &OtherCritIdx);
1562
1563    void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone);
1564
1565    void releaseNode(SUnit *SU, unsigned ReadyCycle);
1566
1567    void bumpCycle(unsigned NextCycle);
1568
1569    void incExecutedResources(unsigned PIdx, unsigned Count);
1570
1571    unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
1572
1573    void bumpNode(SUnit *SU);
1574
1575    void releasePending();
1576
1577    void removeReady(SUnit *SU);
1578
1579    SUnit *pickOnlyChoice();
1580
1581#ifndef NDEBUG
1582    void dumpScheduledState();
1583#endif
1584  };
1585
1586private:
1587  const MachineSchedContext *Context;
1588  ScheduleDAGMI *DAG;
1589  const TargetSchedModel *SchedModel;
1590  const TargetRegisterInfo *TRI;
1591
1592  // State of the top and bottom scheduled instruction boundaries.
1593  SchedRemainder Rem;
1594  SchedBoundary Top;
1595  SchedBoundary Bot;
1596
1597public:
1598  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
1599  enum {
1600    TopQID = 1,
1601    BotQID = 2,
1602    LogMaxQID = 2
1603  };
1604
1605  ConvergingScheduler(const MachineSchedContext *C):
1606    Context(C), DAG(0), SchedModel(0), TRI(0),
1607    Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
1608
1609  virtual bool shouldTrackPressure(unsigned NumRegionInstrs);
1610
1611  virtual void initialize(ScheduleDAGMI *dag);
1612
1613  virtual SUnit *pickNode(bool &IsTopNode);
1614
1615  virtual void schedNode(SUnit *SU, bool IsTopNode);
1616
1617  virtual void releaseTopNode(SUnit *SU);
1618
1619  virtual void releaseBottomNode(SUnit *SU);
1620
1621  virtual void registerRoots();
1622
1623protected:
1624  void checkAcyclicLatency();
1625
1626  void tryCandidate(SchedCandidate &Cand,
1627                    SchedCandidate &TryCand,
1628                    SchedBoundary &Zone,
1629                    const RegPressureTracker &RPTracker,
1630                    RegPressureTracker &TempTracker);
1631
1632  SUnit *pickNodeBidirectional(bool &IsTopNode);
1633
1634  void pickNodeFromQueue(SchedBoundary &Zone,
1635                         const RegPressureTracker &RPTracker,
1636                         SchedCandidate &Candidate);
1637
1638  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
1639
1640#ifndef NDEBUG
1641  void traceCandidate(const SchedCandidate &Cand);
1642#endif
1643};
1644} // namespace
1645
1646void ConvergingScheduler::SchedRemainder::
1647init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1648  reset();
1649  if (!SchedModel->hasInstrSchedModel())
1650    return;
1651  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1652  for (std::vector<SUnit>::iterator
1653         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1654    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1655    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1656      * SchedModel->getMicroOpFactor();
1657    for (TargetSchedModel::ProcResIter
1658           PI = SchedModel->getWriteProcResBegin(SC),
1659           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1660      unsigned PIdx = PI->ProcResourceIdx;
1661      unsigned Factor = SchedModel->getResourceFactor(PIdx);
1662      RemainingCounts[PIdx] += (Factor * PI->Cycles);
1663    }
1664  }
1665}
1666
1667void ConvergingScheduler::SchedBoundary::
1668init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1669  reset();
1670  DAG = dag;
1671  SchedModel = smodel;
1672  Rem = rem;
1673  if (SchedModel->hasInstrSchedModel())
1674    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1675}
1676
1677/// Avoid setting up the register pressure tracker for small regions to save
1678/// compile time. As a rough heuristic, only track pressure when the number
1679/// of schedulable instructions exceeds half the integer register file.
1680bool ConvergingScheduler::shouldTrackPressure(unsigned NumRegionInstrs) {
1681  unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
1682    Context->MF->getTarget().getTargetLowering()->getRegClassFor(MVT::i32));
1683
1684  return NumRegionInstrs > (NIntRegs / 2);
1685}
1686
1687void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
1688  DAG = dag;
1689  SchedModel = DAG->getSchedModel();
1690  TRI = DAG->TRI;
1691
1692  Rem.init(DAG, SchedModel);
1693  Top.init(DAG, SchedModel, &Rem);
1694  Bot.init(DAG, SchedModel, &Rem);
1695
1696  // Initialize resource counts.
1697
1698  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
1699  // are disabled, then these HazardRecs will be disabled.
1700  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
1701  const TargetMachine &TM = DAG->MF.getTarget();
1702  if (!Top.HazardRec) {
1703    Top.HazardRec =
1704      TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1705  }
1706  if (!Bot.HazardRec) {
1707    Bot.HazardRec =
1708      TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1709  }
1710  assert((!ForceTopDown || !ForceBottomUp) &&
1711         "-misched-topdown incompatible with -misched-bottomup");
1712}
1713
1714void ConvergingScheduler::releaseTopNode(SUnit *SU) {
1715  if (SU->isScheduled)
1716    return;
1717
1718  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1719       I != E; ++I) {
1720    if (I->isWeak())
1721      continue;
1722    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1723    unsigned Latency = I->getLatency();
1724#ifndef NDEBUG
1725    Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency);
1726#endif
1727    if (SU->TopReadyCycle < PredReadyCycle + Latency)
1728      SU->TopReadyCycle = PredReadyCycle + Latency;
1729  }
1730  Top.releaseNode(SU, SU->TopReadyCycle);
1731}
1732
1733void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
1734  if (SU->isScheduled)
1735    return;
1736
1737  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1738
1739  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1740       I != E; ++I) {
1741    if (I->isWeak())
1742      continue;
1743    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1744    unsigned Latency = I->getLatency();
1745#ifndef NDEBUG
1746    Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency);
1747#endif
1748    if (SU->BotReadyCycle < SuccReadyCycle + Latency)
1749      SU->BotReadyCycle = SuccReadyCycle + Latency;
1750  }
1751  Bot.releaseNode(SU, SU->BotReadyCycle);
1752}
1753
1754/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
1755/// critical path by more cycles than it takes to drain the instruction buffer.
1756/// We estimate an upper bounds on in-flight instructions as:
1757///
1758/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
1759/// InFlightIterations = AcyclicPath / CyclesPerIteration
1760/// InFlightResources = InFlightIterations * LoopResources
1761///
1762/// TODO: Check execution resources in addition to IssueCount.
1763void ConvergingScheduler::checkAcyclicLatency() {
1764  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
1765    return;
1766
1767  // Scaled number of cycles per loop iteration.
1768  unsigned IterCount =
1769    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
1770             Rem.RemIssueCount);
1771  // Scaled acyclic critical path.
1772  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
1773  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
1774  unsigned InFlightCount =
1775    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
1776  unsigned BufferLimit =
1777    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
1778
1779  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
1780
1781  DEBUG(dbgs() << "IssueCycles="
1782        << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
1783        << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
1784        << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
1785        << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
1786        << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
1787        if (Rem.IsAcyclicLatencyLimited)
1788          dbgs() << "  ACYCLIC LATENCY LIMIT\n");
1789}
1790
1791void ConvergingScheduler::registerRoots() {
1792  Rem.CriticalPath = DAG->ExitSU.getDepth();
1793
1794  // Some roots may not feed into ExitSU. Check all of them in case.
1795  for (std::vector<SUnit*>::const_iterator
1796         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1797    if ((*I)->getDepth() > Rem.CriticalPath)
1798      Rem.CriticalPath = (*I)->getDepth();
1799  }
1800  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1801
1802  if (EnableCyclicPath) {
1803    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
1804    checkAcyclicLatency();
1805  }
1806}
1807
1808/// Does this SU have a hazard within the current instruction group.
1809///
1810/// The scheduler supports two modes of hazard recognition. The first is the
1811/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1812/// supports highly complicated in-order reservation tables
1813/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1814///
1815/// The second is a streamlined mechanism that checks for hazards based on
1816/// simple counters that the scheduler itself maintains. It explicitly checks
1817/// for instruction dispatch limitations, including the number of micro-ops that
1818/// can dispatch per cycle.
1819///
1820/// TODO: Also check whether the SU must start a new group.
1821bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1822  if (HazardRec->isEnabled())
1823    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1824
1825  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1826  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1827    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1828          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1829    return true;
1830  }
1831  return false;
1832}
1833
1834// Find the unscheduled node in ReadySUs with the highest latency.
1835unsigned ConvergingScheduler::SchedBoundary::
1836findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1837  SUnit *LateSU = 0;
1838  unsigned RemLatency = 0;
1839  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1840       I != E; ++I) {
1841    unsigned L = getUnscheduledLatency(*I);
1842    if (L > RemLatency) {
1843      RemLatency = L;
1844      LateSU = *I;
1845    }
1846  }
1847  if (LateSU) {
1848    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1849          << LateSU->NodeNum << ") " << RemLatency << "c\n");
1850  }
1851  return RemLatency;
1852}
1853
1854// Count resources in this zone and the remaining unscheduled
1855// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1856// resource index, or zero if the zone is issue limited.
1857unsigned ConvergingScheduler::SchedBoundary::
1858getOtherResourceCount(unsigned &OtherCritIdx) {
1859  OtherCritIdx = 0;
1860  if (!SchedModel->hasInstrSchedModel())
1861    return 0;
1862
1863  unsigned OtherCritCount = Rem->RemIssueCount
1864    + (RetiredMOps * SchedModel->getMicroOpFactor());
1865  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1866        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1867  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1868       PIdx != PEnd; ++PIdx) {
1869    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1870    if (OtherCount > OtherCritCount) {
1871      OtherCritCount = OtherCount;
1872      OtherCritIdx = PIdx;
1873    }
1874  }
1875  if (OtherCritIdx) {
1876    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1877          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1878          << " " << getResourceName(OtherCritIdx) << "\n");
1879  }
1880  return OtherCritCount;
1881}
1882
1883/// Set the CandPolicy for this zone given the current resources and latencies
1884/// inside and outside the zone.
1885void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
1886                                                   SchedBoundary &OtherZone) {
1887  // Now that potential stalls have been considered, apply preemptive heuristics
1888  // based on the the total latency and resources inside and outside this
1889  // zone.
1890
1891  // Compute remaining latency. We need this both to determine whether the
1892  // overall schedule has become latency-limited and whether the instructions
1893  // outside this zone are resource or latency limited.
1894  //
1895  // The "dependent" latency is updated incrementally during scheduling as the
1896  // max height/depth of scheduled nodes minus the cycles since it was
1897  // scheduled:
1898  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
1899  //
1900  // The "independent" latency is the max ready queue depth:
1901  //   ILat = max N.depth for N in Available|Pending
1902  //
1903  // RemainingLatency is the greater of independent and dependent latency.
1904  unsigned RemLatency = DependentLatency;
1905  RemLatency = std::max(RemLatency, findMaxLatency(Available.elements()));
1906  RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements()));
1907
1908  // Compute the critical resource outside the zone.
1909  unsigned OtherCritIdx;
1910  unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx);
1911
1912  bool OtherResLimited = false;
1913  if (SchedModel->hasInstrSchedModel()) {
1914    unsigned LFactor = SchedModel->getLatencyFactor();
1915    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
1916  }
1917  if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) {
1918    Policy.ReduceLatency |= true;
1919    DEBUG(dbgs() << "  " << Available.getName() << " RemainingLatency "
1920          << RemLatency << " + " << CurrCycle << "c > CritPath "
1921          << Rem->CriticalPath << "\n");
1922  }
1923  // If the same resource is limiting inside and outside the zone, do nothing.
1924  if (ZoneCritResIdx == OtherCritIdx)
1925    return;
1926
1927  DEBUG(
1928    if (IsResourceLimited) {
1929      dbgs() << "  " << Available.getName() << " ResourceLimited: "
1930             << getResourceName(ZoneCritResIdx) << "\n";
1931    }
1932    if (OtherResLimited)
1933      dbgs() << "  RemainingLimit: " << getResourceName(OtherCritIdx) << "\n";
1934    if (!IsResourceLimited && !OtherResLimited)
1935      dbgs() << "  Latency limited both directions.\n");
1936
1937  if (IsResourceLimited && !Policy.ReduceResIdx)
1938    Policy.ReduceResIdx = ZoneCritResIdx;
1939
1940  if (OtherResLimited)
1941    Policy.DemandResIdx = OtherCritIdx;
1942}
1943
1944void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
1945                                                     unsigned ReadyCycle) {
1946  if (ReadyCycle < MinReadyCycle)
1947    MinReadyCycle = ReadyCycle;
1948
1949  // Check for interlocks first. For the purpose of other heuristics, an
1950  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1951  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1952  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1953    Pending.push(SU);
1954  else
1955    Available.push(SU);
1956
1957  // Record this node as an immediate dependent of the scheduled node.
1958  NextSUs.insert(SU);
1959}
1960
1961/// Move the boundary of scheduled code by one cycle.
1962void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
1963  if (SchedModel->getMicroOpBufferSize() == 0) {
1964    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1965    if (MinReadyCycle > NextCycle)
1966      NextCycle = MinReadyCycle;
1967  }
1968  // Update the current micro-ops, which will issue in the next cycle.
1969  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1970  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1971
1972  // Decrement DependentLatency based on the next cycle.
1973  if ((NextCycle - CurrCycle) > DependentLatency)
1974    DependentLatency = 0;
1975  else
1976    DependentLatency -= (NextCycle - CurrCycle);
1977
1978  if (!HazardRec->isEnabled()) {
1979    // Bypass HazardRec virtual calls.
1980    CurrCycle = NextCycle;
1981  }
1982  else {
1983    // Bypass getHazardType calls in case of long latency.
1984    for (; CurrCycle != NextCycle; ++CurrCycle) {
1985      if (isTop())
1986        HazardRec->AdvanceCycle();
1987      else
1988        HazardRec->RecedeCycle();
1989    }
1990  }
1991  CheckPending = true;
1992  unsigned LFactor = SchedModel->getLatencyFactor();
1993  IsResourceLimited =
1994    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1995    > (int)LFactor;
1996
1997  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1998}
1999
2000void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
2001                                                              unsigned Count) {
2002  ExecutedResCounts[PIdx] += Count;
2003  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2004    MaxExecutedResCount = ExecutedResCounts[PIdx];
2005}
2006
2007/// Add the given processor resource to this scheduled zone.
2008///
2009/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2010/// during which this resource is consumed.
2011///
2012/// \return the next cycle at which the instruction may execute without
2013/// oversubscribing resources.
2014unsigned ConvergingScheduler::SchedBoundary::
2015countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
2016  unsigned Factor = SchedModel->getResourceFactor(PIdx);
2017  unsigned Count = Factor * Cycles;
2018  DEBUG(dbgs() << "  " << getResourceName(PIdx)
2019        << " +" << Cycles << "x" << Factor << "u\n");
2020
2021  // Update Executed resources counts.
2022  incExecutedResources(PIdx, Count);
2023  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2024  Rem->RemainingCounts[PIdx] -= Count;
2025
2026  // Check if this resource exceeds the current critical resource. If so, it
2027  // becomes the critical resource.
2028  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2029    ZoneCritResIdx = PIdx;
2030    DEBUG(dbgs() << "  *** Critical resource "
2031          << getResourceName(PIdx) << ": "
2032          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2033  }
2034  // TODO: We don't yet model reserved resources. It's not hard though.
2035  return CurrCycle;
2036}
2037
2038/// Move the boundary of scheduled code by one SUnit.
2039void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
2040  // Update the reservation table.
2041  if (HazardRec->isEnabled()) {
2042    if (!isTop() && SU->isCall) {
2043      // Calls are scheduled with their preceding instructions. For bottom-up
2044      // scheduling, clear the pipeline state before emitting.
2045      HazardRec->Reset();
2046    }
2047    HazardRec->EmitInstruction(SU);
2048  }
2049  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2050  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2051  CurrMOps += IncMOps;
2052  // checkHazard prevents scheduling multiple instructions per cycle that exceed
2053  // issue width. However, we commonly reach the maximum. In this case
2054  // opportunistically bump the cycle to avoid uselessly checking everything in
2055  // the readyQ. Furthermore, a single instruction may produce more than one
2056  // cycle's worth of micro-ops.
2057  //
2058  // TODO: Also check if this SU must end a dispatch group.
2059  unsigned NextCycle = CurrCycle;
2060  if (CurrMOps >= SchedModel->getIssueWidth()) {
2061    ++NextCycle;
2062    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2063          << " at cycle " << CurrCycle << '\n');
2064  }
2065  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2066  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2067
2068  switch (SchedModel->getMicroOpBufferSize()) {
2069  case 0:
2070    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2071    break;
2072  case 1:
2073    if (ReadyCycle > NextCycle) {
2074      NextCycle = ReadyCycle;
2075      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2076    }
2077    break;
2078  default:
2079    // We don't currently model the OOO reorder buffer, so consider all
2080    // scheduled MOps to be "retired".
2081    break;
2082  }
2083  RetiredMOps += IncMOps;
2084
2085  // Update resource counts and critical resource.
2086  if (SchedModel->hasInstrSchedModel()) {
2087    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2088    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2089    Rem->RemIssueCount -= DecRemIssue;
2090    if (ZoneCritResIdx) {
2091      // Scale scheduled micro-ops for comparing with the critical resource.
2092      unsigned ScaledMOps =
2093        RetiredMOps * SchedModel->getMicroOpFactor();
2094
2095      // If scaled micro-ops are now more than the previous critical resource by
2096      // a full cycle, then micro-ops issue becomes critical.
2097      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2098          >= (int)SchedModel->getLatencyFactor()) {
2099        ZoneCritResIdx = 0;
2100        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2101              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2102      }
2103    }
2104    for (TargetSchedModel::ProcResIter
2105           PI = SchedModel->getWriteProcResBegin(SC),
2106           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2107      unsigned RCycle =
2108        countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle);
2109      if (RCycle > NextCycle)
2110        NextCycle = RCycle;
2111    }
2112  }
2113  // Update ExpectedLatency and DependentLatency.
2114  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2115  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2116  if (SU->getDepth() > TopLatency) {
2117    TopLatency = SU->getDepth();
2118    DEBUG(dbgs() << "  " << Available.getName()
2119          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2120  }
2121  if (SU->getHeight() > BotLatency) {
2122    BotLatency = SU->getHeight();
2123    DEBUG(dbgs() << "  " << Available.getName()
2124          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2125  }
2126  // If we stall for any reason, bump the cycle.
2127  if (NextCycle > CurrCycle) {
2128    bumpCycle(NextCycle);
2129  }
2130  else {
2131    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2132    // resource limited. If a stall occured, bumpCycle does this.
2133    unsigned LFactor = SchedModel->getLatencyFactor();
2134    IsResourceLimited =
2135      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2136      > (int)LFactor;
2137  }
2138  DEBUG(dumpScheduledState());
2139}
2140
2141/// Release pending ready nodes in to the available queue. This makes them
2142/// visible to heuristics.
2143void ConvergingScheduler::SchedBoundary::releasePending() {
2144  // If the available queue is empty, it is safe to reset MinReadyCycle.
2145  if (Available.empty())
2146    MinReadyCycle = UINT_MAX;
2147
2148  // Check to see if any of the pending instructions are ready to issue.  If
2149  // so, add them to the available queue.
2150  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2151  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2152    SUnit *SU = *(Pending.begin()+i);
2153    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2154
2155    if (ReadyCycle < MinReadyCycle)
2156      MinReadyCycle = ReadyCycle;
2157
2158    if (!IsBuffered && ReadyCycle > CurrCycle)
2159      continue;
2160
2161    if (checkHazard(SU))
2162      continue;
2163
2164    Available.push(SU);
2165    Pending.remove(Pending.begin()+i);
2166    --i; --e;
2167  }
2168  DEBUG(if (!Pending.empty()) Pending.dump());
2169  CheckPending = false;
2170}
2171
2172/// Remove SU from the ready set for this boundary.
2173void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
2174  if (Available.isInQueue(SU))
2175    Available.remove(Available.find(SU));
2176  else {
2177    assert(Pending.isInQueue(SU) && "bad ready count");
2178    Pending.remove(Pending.find(SU));
2179  }
2180}
2181
2182/// If this queue only has one ready candidate, return it. As a side effect,
2183/// defer any nodes that now hit a hazard, and advance the cycle until at least
2184/// one node is ready. If multiple instructions are ready, return NULL.
2185SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
2186  if (CheckPending)
2187    releasePending();
2188
2189  if (CurrMOps > 0) {
2190    // Defer any ready instrs that now have a hazard.
2191    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2192      if (checkHazard(*I)) {
2193        Pending.push(*I);
2194        I = Available.remove(I);
2195        continue;
2196      }
2197      ++I;
2198    }
2199  }
2200  for (unsigned i = 0; Available.empty(); ++i) {
2201    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
2202           "permanent hazard"); (void)i;
2203    bumpCycle(CurrCycle + 1);
2204    releasePending();
2205  }
2206  if (Available.size() == 1)
2207    return *Available.begin();
2208  return NULL;
2209}
2210
2211#ifndef NDEBUG
2212// This is useful information to dump after bumpNode.
2213// Note that the Queue contents are more useful before pickNodeFromQueue.
2214void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
2215  unsigned ResFactor;
2216  unsigned ResCount;
2217  if (ZoneCritResIdx) {
2218    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2219    ResCount = getResourceCount(ZoneCritResIdx);
2220  }
2221  else {
2222    ResFactor = SchedModel->getMicroOpFactor();
2223    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2224  }
2225  unsigned LFactor = SchedModel->getLatencyFactor();
2226  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2227         << "  Retired: " << RetiredMOps;
2228  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2229  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2230         << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx)
2231         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2232         << (IsResourceLimited ? "  - Resource" : "  - Latency")
2233         << " limited.\n";
2234}
2235#endif
2236
2237void ConvergingScheduler::SchedCandidate::
2238initResourceDelta(const ScheduleDAGMI *DAG,
2239                  const TargetSchedModel *SchedModel) {
2240  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2241    return;
2242
2243  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2244  for (TargetSchedModel::ProcResIter
2245         PI = SchedModel->getWriteProcResBegin(SC),
2246         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2247    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2248      ResDelta.CritResources += PI->Cycles;
2249    if (PI->ProcResourceIdx == Policy.DemandResIdx)
2250      ResDelta.DemandedResources += PI->Cycles;
2251  }
2252}
2253
2254
2255/// Return true if this heuristic determines order.
2256static bool tryLess(int TryVal, int CandVal,
2257                    ConvergingScheduler::SchedCandidate &TryCand,
2258                    ConvergingScheduler::SchedCandidate &Cand,
2259                    ConvergingScheduler::CandReason Reason) {
2260  if (TryVal < CandVal) {
2261    TryCand.Reason = Reason;
2262    return true;
2263  }
2264  if (TryVal > CandVal) {
2265    if (Cand.Reason > Reason)
2266      Cand.Reason = Reason;
2267    return true;
2268  }
2269  Cand.setRepeat(Reason);
2270  return false;
2271}
2272
2273static bool tryGreater(int TryVal, int CandVal,
2274                       ConvergingScheduler::SchedCandidate &TryCand,
2275                       ConvergingScheduler::SchedCandidate &Cand,
2276                       ConvergingScheduler::CandReason Reason) {
2277  if (TryVal > CandVal) {
2278    TryCand.Reason = Reason;
2279    return true;
2280  }
2281  if (TryVal < CandVal) {
2282    if (Cand.Reason > Reason)
2283      Cand.Reason = Reason;
2284    return true;
2285  }
2286  Cand.setRepeat(Reason);
2287  return false;
2288}
2289
2290static bool tryPressure(const PressureChange &TryP,
2291                        const PressureChange &CandP,
2292                        ConvergingScheduler::SchedCandidate &TryCand,
2293                        ConvergingScheduler::SchedCandidate &Cand,
2294                        ConvergingScheduler::CandReason Reason) {
2295  int TryRank = TryP.getPSetOrMax();
2296  int CandRank = CandP.getPSetOrMax();
2297  // If both candidates affect the same set, go with the smallest increase.
2298  if (TryRank == CandRank) {
2299    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2300                   Reason);
2301  }
2302  // If one candidate decreases and the other increases, go with it.
2303  // Invalid candidates have UnitInc==0.
2304  if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2305              Reason)) {
2306    return true;
2307  }
2308  // If the candidates are decreasing pressure, reverse priority.
2309  if (TryP.getUnitInc() < 0)
2310    std::swap(TryRank, CandRank);
2311  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2312}
2313
2314static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2315  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2316}
2317
2318/// Minimize physical register live ranges. Regalloc wants them adjacent to
2319/// their physreg def/use.
2320///
2321/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2322/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2323/// with the operation that produces or consumes the physreg. We'll do this when
2324/// regalloc has support for parallel copies.
2325static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2326  const MachineInstr *MI = SU->getInstr();
2327  if (!MI->isCopy())
2328    return 0;
2329
2330  unsigned ScheduledOper = isTop ? 1 : 0;
2331  unsigned UnscheduledOper = isTop ? 0 : 1;
2332  // If we have already scheduled the physreg produce/consumer, immediately
2333  // schedule the copy.
2334  if (TargetRegisterInfo::isPhysicalRegister(
2335        MI->getOperand(ScheduledOper).getReg()))
2336    return 1;
2337  // If the physreg is at the boundary, defer it. Otherwise schedule it
2338  // immediately to free the dependent. We can hoist the copy later.
2339  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2340  if (TargetRegisterInfo::isPhysicalRegister(
2341        MI->getOperand(UnscheduledOper).getReg()))
2342    return AtBoundary ? -1 : 1;
2343  return 0;
2344}
2345
2346static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand,
2347                       ConvergingScheduler::SchedCandidate &Cand,
2348                       ConvergingScheduler::SchedBoundary &Zone) {
2349  if (Zone.isTop()) {
2350    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2351      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2352                  TryCand, Cand, ConvergingScheduler::TopDepthReduce))
2353        return true;
2354    }
2355    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2356                   TryCand, Cand, ConvergingScheduler::TopPathReduce))
2357      return true;
2358  }
2359  else {
2360    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2361      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2362                  TryCand, Cand, ConvergingScheduler::BotHeightReduce))
2363        return true;
2364    }
2365    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2366                   TryCand, Cand, ConvergingScheduler::BotPathReduce))
2367      return true;
2368  }
2369  return false;
2370}
2371
2372/// Apply a set of heursitics to a new candidate. Heuristics are currently
2373/// hierarchical. This may be more efficient than a graduated cost model because
2374/// we don't need to evaluate all aspects of the model for each node in the
2375/// queue. But it's really done to make the heuristics easier to debug and
2376/// statistically analyze.
2377///
2378/// \param Cand provides the policy and current best candidate.
2379/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2380/// \param Zone describes the scheduled zone that we are extending.
2381/// \param RPTracker describes reg pressure within the scheduled zone.
2382/// \param TempTracker is a scratch pressure tracker to reuse in queries.
2383void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
2384                                       SchedCandidate &TryCand,
2385                                       SchedBoundary &Zone,
2386                                       const RegPressureTracker &RPTracker,
2387                                       RegPressureTracker &TempTracker) {
2388
2389  if (DAG->isTrackingPressure()) {
2390    // Always initialize TryCand's RPDelta.
2391    if (Zone.isTop()) {
2392      TempTracker.getMaxDownwardPressureDelta(
2393        TryCand.SU->getInstr(),
2394        TryCand.RPDelta,
2395        DAG->getRegionCriticalPSets(),
2396        DAG->getRegPressure().MaxSetPressure);
2397    }
2398    else {
2399      if (VerifyScheduling) {
2400        TempTracker.getMaxUpwardPressureDelta(
2401          TryCand.SU->getInstr(),
2402          &DAG->getPressureDiff(TryCand.SU),
2403          TryCand.RPDelta,
2404          DAG->getRegionCriticalPSets(),
2405          DAG->getRegPressure().MaxSetPressure);
2406      }
2407      else {
2408        RPTracker.getUpwardPressureDelta(
2409          TryCand.SU->getInstr(),
2410          DAG->getPressureDiff(TryCand.SU),
2411          TryCand.RPDelta,
2412          DAG->getRegionCriticalPSets(),
2413          DAG->getRegPressure().MaxSetPressure);
2414      }
2415    }
2416  }
2417
2418  // Initialize the candidate if needed.
2419  if (!Cand.isValid()) {
2420    TryCand.Reason = NodeOrder;
2421    return;
2422  }
2423
2424  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2425                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2426                 TryCand, Cand, PhysRegCopy))
2427    return;
2428
2429  // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2430  // invalid; convert it to INT_MAX to give it lowest priority.
2431  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2432                                               Cand.RPDelta.Excess,
2433                                               TryCand, Cand, RegExcess))
2434    return;
2435
2436  // For loops that are acyclic path limited, aggressively schedule for latency.
2437  if (Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone))
2438    return;
2439
2440  // Avoid increasing the max critical pressure in the scheduled region.
2441  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2442                                               Cand.RPDelta.CriticalMax,
2443                                               TryCand, Cand, RegCritical))
2444    return;
2445
2446  // Keep clustered nodes together to encourage downstream peephole
2447  // optimizations which may reduce resource requirements.
2448  //
2449  // This is a best effort to set things up for a post-RA pass. Optimizations
2450  // like generating loads of multiple registers should ideally be done within
2451  // the scheduler pass by combining the loads during DAG postprocessing.
2452  const SUnit *NextClusterSU =
2453    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2454  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2455                 TryCand, Cand, Cluster))
2456    return;
2457
2458  // Weak edges are for clustering and other constraints.
2459  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2460              getWeakLeft(Cand.SU, Zone.isTop()),
2461              TryCand, Cand, Weak)) {
2462    return;
2463  }
2464  // Avoid increasing the max pressure of the entire region.
2465  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2466                                               Cand.RPDelta.CurrentMax,
2467                                               TryCand, Cand, RegMax))
2468    return;
2469
2470  // Avoid critical resource consumption and balance the schedule.
2471  TryCand.initResourceDelta(DAG, SchedModel);
2472  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2473              TryCand, Cand, ResourceReduce))
2474    return;
2475  if (tryGreater(TryCand.ResDelta.DemandedResources,
2476                 Cand.ResDelta.DemandedResources,
2477                 TryCand, Cand, ResourceDemand))
2478    return;
2479
2480  // Avoid serializing long latency dependence chains.
2481  // For acyclic path limited loops, latency was already checked above.
2482  if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2483      && tryLatency(TryCand, Cand, Zone)) {
2484    return;
2485  }
2486
2487  // Prefer immediate defs/users of the last scheduled instruction. This is a
2488  // local pressure avoidance strategy that also makes the machine code
2489  // readable.
2490  if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
2491                 TryCand, Cand, NextDefUse))
2492    return;
2493
2494  // Fall through to original instruction order.
2495  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2496      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2497    TryCand.Reason = NodeOrder;
2498  }
2499}
2500
2501#ifndef NDEBUG
2502const char *ConvergingScheduler::getReasonStr(
2503  ConvergingScheduler::CandReason Reason) {
2504  switch (Reason) {
2505  case NoCand:         return "NOCAND    ";
2506  case PhysRegCopy:    return "PREG-COPY";
2507  case RegExcess:      return "REG-EXCESS";
2508  case RegCritical:    return "REG-CRIT  ";
2509  case Cluster:        return "CLUSTER   ";
2510  case Weak:           return "WEAK      ";
2511  case RegMax:         return "REG-MAX   ";
2512  case ResourceReduce: return "RES-REDUCE";
2513  case ResourceDemand: return "RES-DEMAND";
2514  case TopDepthReduce: return "TOP-DEPTH ";
2515  case TopPathReduce:  return "TOP-PATH  ";
2516  case BotHeightReduce:return "BOT-HEIGHT";
2517  case BotPathReduce:  return "BOT-PATH  ";
2518  case NextDefUse:     return "DEF-USE   ";
2519  case NodeOrder:      return "ORDER     ";
2520  };
2521  llvm_unreachable("Unknown reason!");
2522}
2523
2524void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
2525  PressureChange P;
2526  unsigned ResIdx = 0;
2527  unsigned Latency = 0;
2528  switch (Cand.Reason) {
2529  default:
2530    break;
2531  case RegExcess:
2532    P = Cand.RPDelta.Excess;
2533    break;
2534  case RegCritical:
2535    P = Cand.RPDelta.CriticalMax;
2536    break;
2537  case RegMax:
2538    P = Cand.RPDelta.CurrentMax;
2539    break;
2540  case ResourceReduce:
2541    ResIdx = Cand.Policy.ReduceResIdx;
2542    break;
2543  case ResourceDemand:
2544    ResIdx = Cand.Policy.DemandResIdx;
2545    break;
2546  case TopDepthReduce:
2547    Latency = Cand.SU->getDepth();
2548    break;
2549  case TopPathReduce:
2550    Latency = Cand.SU->getHeight();
2551    break;
2552  case BotHeightReduce:
2553    Latency = Cand.SU->getHeight();
2554    break;
2555  case BotPathReduce:
2556    Latency = Cand.SU->getDepth();
2557    break;
2558  }
2559  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2560  if (P.isValid())
2561    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2562           << ":" << P.getUnitInc() << " ";
2563  else
2564    dbgs() << "      ";
2565  if (ResIdx)
2566    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2567  else
2568    dbgs() << "         ";
2569  if (Latency)
2570    dbgs() << " " << Latency << " cycles ";
2571  else
2572    dbgs() << "          ";
2573  dbgs() << '\n';
2574}
2575#endif
2576
2577/// Pick the best candidate from the top queue.
2578///
2579/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2580/// DAG building. To adjust for the current scheduling location we need to
2581/// maintain the number of vreg uses remaining to be top-scheduled.
2582void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2583                                            const RegPressureTracker &RPTracker,
2584                                            SchedCandidate &Cand) {
2585  ReadyQueue &Q = Zone.Available;
2586
2587  DEBUG(Q.dump());
2588
2589  // getMaxPressureDelta temporarily modifies the tracker.
2590  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2591
2592  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2593
2594    SchedCandidate TryCand(Cand.Policy);
2595    TryCand.SU = *I;
2596    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2597    if (TryCand.Reason != NoCand) {
2598      // Initialize resource delta if needed in case future heuristics query it.
2599      if (TryCand.ResDelta == SchedResourceDelta())
2600        TryCand.initResourceDelta(DAG, SchedModel);
2601      Cand.setBest(TryCand);
2602      DEBUG(traceCandidate(Cand));
2603    }
2604  }
2605}
2606
2607static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
2608                      bool IsTop) {
2609  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2610        << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
2611}
2612
2613/// Pick the best candidate node from either the top or bottom queue.
2614SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
2615  // Schedule as far as possible in the direction of no choice. This is most
2616  // efficient, but also provides the best heuristics for CriticalPSets.
2617  if (SUnit *SU = Bot.pickOnlyChoice()) {
2618    IsTopNode = false;
2619    DEBUG(dbgs() << "Pick Bot NOCAND\n");
2620    return SU;
2621  }
2622  if (SUnit *SU = Top.pickOnlyChoice()) {
2623    IsTopNode = true;
2624    DEBUG(dbgs() << "Pick Top NOCAND\n");
2625    return SU;
2626  }
2627  CandPolicy NoPolicy;
2628  SchedCandidate BotCand(NoPolicy);
2629  SchedCandidate TopCand(NoPolicy);
2630  Bot.setPolicy(BotCand.Policy, Top);
2631  Top.setPolicy(TopCand.Policy, Bot);
2632
2633  // Prefer bottom scheduling when heuristics are silent.
2634  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2635  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2636
2637  // If either Q has a single candidate that provides the least increase in
2638  // Excess pressure, we can immediately schedule from that Q.
2639  //
2640  // RegionCriticalPSets summarizes the pressure within the scheduled region and
2641  // affects picking from either Q. If scheduling in one direction must
2642  // increase pressure for one of the excess PSets, then schedule in that
2643  // direction first to provide more freedom in the other direction.
2644  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2645      || (BotCand.Reason == RegCritical
2646          && !BotCand.isRepeat(RegCritical)))
2647  {
2648    IsTopNode = false;
2649    tracePick(BotCand, IsTopNode);
2650    return BotCand.SU;
2651  }
2652  // Check if the top Q has a better candidate.
2653  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2654  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2655
2656  // Choose the queue with the most important (lowest enum) reason.
2657  if (TopCand.Reason < BotCand.Reason) {
2658    IsTopNode = true;
2659    tracePick(TopCand, IsTopNode);
2660    return TopCand.SU;
2661  }
2662  // Otherwise prefer the bottom candidate, in node order if all else failed.
2663  IsTopNode = false;
2664  tracePick(BotCand, IsTopNode);
2665  return BotCand.SU;
2666}
2667
2668/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2669SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
2670  if (DAG->top() == DAG->bottom()) {
2671    assert(Top.Available.empty() && Top.Pending.empty() &&
2672           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2673    return NULL;
2674  }
2675  SUnit *SU;
2676  do {
2677    if (ForceTopDown) {
2678      SU = Top.pickOnlyChoice();
2679      if (!SU) {
2680        CandPolicy NoPolicy;
2681        SchedCandidate TopCand(NoPolicy);
2682        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2683        assert(TopCand.Reason != NoCand && "failed to find a candidate");
2684        tracePick(TopCand, true);
2685        SU = TopCand.SU;
2686      }
2687      IsTopNode = true;
2688    }
2689    else if (ForceBottomUp) {
2690      SU = Bot.pickOnlyChoice();
2691      if (!SU) {
2692        CandPolicy NoPolicy;
2693        SchedCandidate BotCand(NoPolicy);
2694        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2695        assert(BotCand.Reason != NoCand && "failed to find a candidate");
2696        tracePick(BotCand, false);
2697        SU = BotCand.SU;
2698      }
2699      IsTopNode = false;
2700    }
2701    else {
2702      SU = pickNodeBidirectional(IsTopNode);
2703    }
2704  } while (SU->isScheduled);
2705
2706  if (SU->isTopReady())
2707    Top.removeReady(SU);
2708  if (SU->isBottomReady())
2709    Bot.removeReady(SU);
2710
2711  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2712  return SU;
2713}
2714
2715void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2716
2717  MachineBasicBlock::iterator InsertPos = SU->getInstr();
2718  if (!isTop)
2719    ++InsertPos;
2720  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2721
2722  // Find already scheduled copies with a single physreg dependence and move
2723  // them just above the scheduled instruction.
2724  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2725       I != E; ++I) {
2726    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2727      continue;
2728    SUnit *DepSU = I->getSUnit();
2729    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2730      continue;
2731    MachineInstr *Copy = DepSU->getInstr();
2732    if (!Copy->isCopy())
2733      continue;
2734    DEBUG(dbgs() << "  Rescheduling physreg copy ";
2735          I->getSUnit()->dump(DAG));
2736    DAG->moveInstruction(Copy, InsertPos);
2737  }
2738}
2739
2740/// Update the scheduler's state after scheduling a node. This is the same node
2741/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
2742/// it's state based on the current cycle before MachineSchedStrategy does.
2743///
2744/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2745/// them here. See comments in biasPhysRegCopy.
2746void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2747  if (IsTopNode) {
2748    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
2749    Top.bumpNode(SU);
2750    if (SU->hasPhysRegUses)
2751      reschedulePhysRegCopies(SU, true);
2752  }
2753  else {
2754    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle);
2755    Bot.bumpNode(SU);
2756    if (SU->hasPhysRegDefs)
2757      reschedulePhysRegCopies(SU, false);
2758  }
2759}
2760
2761/// Create the standard converging machine scheduler. This will be used as the
2762/// default scheduler if the target does not set a default.
2763static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
2764  ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler(C));
2765  // Register DAG post-processors.
2766  //
2767  // FIXME: extend the mutation API to allow earlier mutations to instantiate
2768  // data and pass it to later mutations. Have a single mutation that gathers
2769  // the interesting nodes in one pass.
2770  DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
2771  if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2772    DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
2773  if (EnableMacroFusion)
2774    DAG->addMutation(new MacroFusion(DAG->TII));
2775  return DAG;
2776}
2777static MachineSchedRegistry
2778ConvergingSchedRegistry("converge", "Standard converging scheduler.",
2779                        createConvergingSched);
2780
2781//===----------------------------------------------------------------------===//
2782// ILP Scheduler. Currently for experimental analysis of heuristics.
2783//===----------------------------------------------------------------------===//
2784
2785namespace {
2786/// \brief Order nodes by the ILP metric.
2787struct ILPOrder {
2788  const SchedDFSResult *DFSResult;
2789  const BitVector *ScheduledTrees;
2790  bool MaximizeILP;
2791
2792  ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
2793
2794  /// \brief Apply a less-than relation on node priority.
2795  ///
2796  /// (Return true if A comes after B in the Q.)
2797  bool operator()(const SUnit *A, const SUnit *B) const {
2798    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
2799    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
2800    if (SchedTreeA != SchedTreeB) {
2801      // Unscheduled trees have lower priority.
2802      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
2803        return ScheduledTrees->test(SchedTreeB);
2804
2805      // Trees with shallower connections have have lower priority.
2806      if (DFSResult->getSubtreeLevel(SchedTreeA)
2807          != DFSResult->getSubtreeLevel(SchedTreeB)) {
2808        return DFSResult->getSubtreeLevel(SchedTreeA)
2809          < DFSResult->getSubtreeLevel(SchedTreeB);
2810      }
2811    }
2812    if (MaximizeILP)
2813      return DFSResult->getILP(A) < DFSResult->getILP(B);
2814    else
2815      return DFSResult->getILP(A) > DFSResult->getILP(B);
2816  }
2817};
2818
2819/// \brief Schedule based on the ILP metric.
2820class ILPScheduler : public MachineSchedStrategy {
2821  ScheduleDAGMI *DAG;
2822  ILPOrder Cmp;
2823
2824  std::vector<SUnit*> ReadyQ;
2825public:
2826  ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
2827
2828  virtual void initialize(ScheduleDAGMI *dag) {
2829    DAG = dag;
2830    DAG->computeDFSResult();
2831    Cmp.DFSResult = DAG->getDFSResult();
2832    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
2833    ReadyQ.clear();
2834  }
2835
2836  virtual void registerRoots() {
2837    // Restore the heap in ReadyQ with the updated DFS results.
2838    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2839  }
2840
2841  /// Implement MachineSchedStrategy interface.
2842  /// -----------------------------------------
2843
2844  /// Callback to select the highest priority node from the ready Q.
2845  virtual SUnit *pickNode(bool &IsTopNode) {
2846    if (ReadyQ.empty()) return NULL;
2847    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2848    SUnit *SU = ReadyQ.back();
2849    ReadyQ.pop_back();
2850    IsTopNode = false;
2851    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
2852          << " ILP: " << DAG->getDFSResult()->getILP(SU)
2853          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
2854          << DAG->getDFSResult()->getSubtreeLevel(
2855            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
2856          << "Scheduling " << *SU->getInstr());
2857    return SU;
2858  }
2859
2860  /// \brief Scheduler callback to notify that a new subtree is scheduled.
2861  virtual void scheduleTree(unsigned SubtreeID) {
2862    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2863  }
2864
2865  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
2866  /// DFSResults, and resort the priority Q.
2867  virtual void schedNode(SUnit *SU, bool IsTopNode) {
2868    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
2869  }
2870
2871  virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
2872
2873  virtual void releaseBottomNode(SUnit *SU) {
2874    ReadyQ.push_back(SU);
2875    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2876  }
2877};
2878} // namespace
2879
2880static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
2881  return new ScheduleDAGMI(C, new ILPScheduler(true));
2882}
2883static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
2884  return new ScheduleDAGMI(C, new ILPScheduler(false));
2885}
2886static MachineSchedRegistry ILPMaxRegistry(
2887  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
2888static MachineSchedRegistry ILPMinRegistry(
2889  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
2890
2891//===----------------------------------------------------------------------===//
2892// Machine Instruction Shuffler for Correctness Testing
2893//===----------------------------------------------------------------------===//
2894
2895#ifndef NDEBUG
2896namespace {
2897/// Apply a less-than relation on the node order, which corresponds to the
2898/// instruction order prior to scheduling. IsReverse implements greater-than.
2899template<bool IsReverse>
2900struct SUnitOrder {
2901  bool operator()(SUnit *A, SUnit *B) const {
2902    if (IsReverse)
2903      return A->NodeNum > B->NodeNum;
2904    else
2905      return A->NodeNum < B->NodeNum;
2906  }
2907};
2908
2909/// Reorder instructions as much as possible.
2910class InstructionShuffler : public MachineSchedStrategy {
2911  bool IsAlternating;
2912  bool IsTopDown;
2913
2914  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
2915  // gives nodes with a higher number higher priority causing the latest
2916  // instructions to be scheduled first.
2917  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
2918    TopQ;
2919  // When scheduling bottom-up, use greater-than as the queue priority.
2920  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
2921    BottomQ;
2922public:
2923  InstructionShuffler(bool alternate, bool topdown)
2924    : IsAlternating(alternate), IsTopDown(topdown) {}
2925
2926  virtual void initialize(ScheduleDAGMI *) {
2927    TopQ.clear();
2928    BottomQ.clear();
2929  }
2930
2931  /// Implement MachineSchedStrategy interface.
2932  /// -----------------------------------------
2933
2934  virtual SUnit *pickNode(bool &IsTopNode) {
2935    SUnit *SU;
2936    if (IsTopDown) {
2937      do {
2938        if (TopQ.empty()) return NULL;
2939        SU = TopQ.top();
2940        TopQ.pop();
2941      } while (SU->isScheduled);
2942      IsTopNode = true;
2943    }
2944    else {
2945      do {
2946        if (BottomQ.empty()) return NULL;
2947        SU = BottomQ.top();
2948        BottomQ.pop();
2949      } while (SU->isScheduled);
2950      IsTopNode = false;
2951    }
2952    if (IsAlternating)
2953      IsTopDown = !IsTopDown;
2954    return SU;
2955  }
2956
2957  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
2958
2959  virtual void releaseTopNode(SUnit *SU) {
2960    TopQ.push(SU);
2961  }
2962  virtual void releaseBottomNode(SUnit *SU) {
2963    BottomQ.push(SU);
2964  }
2965};
2966} // namespace
2967
2968static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
2969  bool Alternate = !ForceTopDown && !ForceBottomUp;
2970  bool TopDown = !ForceBottomUp;
2971  assert((TopDown || !ForceTopDown) &&
2972         "-misched-topdown incompatible with -misched-bottomup");
2973  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
2974}
2975static MachineSchedRegistry ShufflerRegistry(
2976  "shuffle", "Shuffle machine instructions alternating directions",
2977  createInstructionShuffler);
2978#endif // !NDEBUG
2979
2980//===----------------------------------------------------------------------===//
2981// GraphWriter support for ScheduleDAGMI.
2982//===----------------------------------------------------------------------===//
2983
2984#ifndef NDEBUG
2985namespace llvm {
2986
2987template<> struct GraphTraits<
2988  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
2989
2990template<>
2991struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
2992
2993  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2994
2995  static std::string getGraphName(const ScheduleDAG *G) {
2996    return G->MF.getName();
2997  }
2998
2999  static bool renderGraphFromBottomUp() {
3000    return true;
3001  }
3002
3003  static bool isNodeHidden(const SUnit *Node) {
3004    return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
3005  }
3006
3007  static bool hasNodeAddressLabel(const SUnit *Node,
3008                                  const ScheduleDAG *Graph) {
3009    return false;
3010  }
3011
3012  /// If you want to override the dot attributes printed for a particular
3013  /// edge, override this method.
3014  static std::string getEdgeAttributes(const SUnit *Node,
3015                                       SUnitIterator EI,
3016                                       const ScheduleDAG *Graph) {
3017    if (EI.isArtificialDep())
3018      return "color=cyan,style=dashed";
3019    if (EI.isCtrlDep())
3020      return "color=blue,style=dashed";
3021    return "";
3022  }
3023
3024  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3025    std::string Str;
3026    raw_string_ostream SS(Str);
3027    SS << "SU(" << SU->NodeNum << ')';
3028    return SS.str();
3029  }
3030  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3031    return G->getGraphNodeLabel(SU);
3032  }
3033
3034  static std::string getNodeAttributes(const SUnit *N,
3035                                       const ScheduleDAG *Graph) {
3036    std::string Str("shape=Mrecord");
3037    const SchedDFSResult *DFS =
3038      static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
3039    if (DFS) {
3040      Str += ",style=filled,fillcolor=\"#";
3041      Str += DOT::getColorString(DFS->getSubtreeID(N));
3042      Str += '"';
3043    }
3044    return Str;
3045  }
3046};
3047} // namespace llvm
3048#endif // NDEBUG
3049
3050/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3051/// rendered using 'dot'.
3052///
3053void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3054#ifndef NDEBUG
3055  ViewGraph(this, Name, false, Title);
3056#else
3057  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3058         << "systems with Graphviz or gv!\n";
3059#endif  // NDEBUG
3060}
3061
3062/// Out-of-line implementation with no arguments is handy for gdb.
3063void ScheduleDAGMI::viewGraph() {
3064  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3065}
3066