MachineScheduler.cpp revision 81f1be3b5a920f75970bd3d3cdc65ada980bbfc1
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//excess
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "RegisterClassInfo.h"
18#include "RegisterPressure.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineScheduler.h"
21#include "llvm/CodeGen/Passes.h"
22#include "llvm/CodeGen/ScheduleDAGInstrs.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/OwningPtr.h"
30#include "llvm/ADT/PriorityQueue.h"
31
32#include <queue>
33
34using namespace llvm;
35
36static cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
37                                  cl::desc("Force top-down list scheduling"));
38static cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
39                                  cl::desc("Force bottom-up list scheduling"));
40
41#ifndef NDEBUG
42static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
43  cl::desc("Pop up a window to show MISched dags after they are processed"));
44
45static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
46  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
47#else
48static bool ViewMISchedDAGs = false;
49#endif // NDEBUG
50
51//===----------------------------------------------------------------------===//
52// Machine Instruction Scheduling Pass and Registry
53//===----------------------------------------------------------------------===//
54
55MachineSchedContext::MachineSchedContext():
56    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
57  RegClassInfo = new RegisterClassInfo();
58}
59
60MachineSchedContext::~MachineSchedContext() {
61  delete RegClassInfo;
62}
63
64namespace {
65/// MachineScheduler runs after coalescing and before register allocation.
66class MachineScheduler : public MachineSchedContext,
67                         public MachineFunctionPass {
68public:
69  MachineScheduler();
70
71  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
72
73  virtual void releaseMemory() {}
74
75  virtual bool runOnMachineFunction(MachineFunction&);
76
77  virtual void print(raw_ostream &O, const Module* = 0) const;
78
79  static char ID; // Class identification, replacement for typeinfo
80};
81} // namespace
82
83char MachineScheduler::ID = 0;
84
85char &llvm::MachineSchedulerID = MachineScheduler::ID;
86
87INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
88                      "Machine Instruction Scheduler", false, false)
89INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
90INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
91INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
92INITIALIZE_PASS_END(MachineScheduler, "misched",
93                    "Machine Instruction Scheduler", false, false)
94
95MachineScheduler::MachineScheduler()
96: MachineFunctionPass(ID) {
97  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
98}
99
100void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
101  AU.setPreservesCFG();
102  AU.addRequiredID(MachineDominatorsID);
103  AU.addRequired<MachineLoopInfo>();
104  AU.addRequired<AliasAnalysis>();
105  AU.addRequired<TargetPassConfig>();
106  AU.addRequired<SlotIndexes>();
107  AU.addPreserved<SlotIndexes>();
108  AU.addRequired<LiveIntervals>();
109  AU.addPreserved<LiveIntervals>();
110  MachineFunctionPass::getAnalysisUsage(AU);
111}
112
113MachinePassRegistry MachineSchedRegistry::Registry;
114
115/// A dummy default scheduler factory indicates whether the scheduler
116/// is overridden on the command line.
117static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
118  return 0;
119}
120
121/// MachineSchedOpt allows command line selection of the scheduler.
122static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
123               RegisterPassParser<MachineSchedRegistry> >
124MachineSchedOpt("misched",
125                cl::init(&useDefaultMachineSched), cl::Hidden,
126                cl::desc("Machine instruction scheduler to use"));
127
128static MachineSchedRegistry
129DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
130                     useDefaultMachineSched);
131
132/// Forward declare the standard machine scheduler. This will be used as the
133/// default scheduler if the target does not set a default.
134static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
135
136
137/// Decrement this iterator until reaching the top or a non-debug instr.
138static MachineBasicBlock::iterator
139priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
140  assert(I != Beg && "reached the top of the region, cannot decrement");
141  while (--I != Beg) {
142    if (!I->isDebugValue())
143      break;
144  }
145  return I;
146}
147
148/// If this iterator is a debug value, increment until reaching the End or a
149/// non-debug instruction.
150static MachineBasicBlock::iterator
151nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
152  for(; I != End; ++I) {
153    if (!I->isDebugValue())
154      break;
155  }
156  return I;
157}
158
159/// Top-level MachineScheduler pass driver.
160///
161/// Visit blocks in function order. Divide each block into scheduling regions
162/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
163/// consistent with the DAG builder, which traverses the interior of the
164/// scheduling regions bottom-up.
165///
166/// This design avoids exposing scheduling boundaries to the DAG builder,
167/// simplifying the DAG builder's support for "special" target instructions.
168/// At the same time the design allows target schedulers to operate across
169/// scheduling boundaries, for example to bundle the boudary instructions
170/// without reordering them. This creates complexity, because the target
171/// scheduler must update the RegionBegin and RegionEnd positions cached by
172/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
173/// design would be to split blocks at scheduling boundaries, but LLVM has a
174/// general bias against block splitting purely for implementation simplicity.
175bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
176  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
177
178  // Initialize the context of the pass.
179  MF = &mf;
180  MLI = &getAnalysis<MachineLoopInfo>();
181  MDT = &getAnalysis<MachineDominatorTree>();
182  PassConfig = &getAnalysis<TargetPassConfig>();
183  AA = &getAnalysis<AliasAnalysis>();
184
185  LIS = &getAnalysis<LiveIntervals>();
186  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
187
188  RegClassInfo->runOnMachineFunction(*MF);
189
190  // Select the scheduler, or set the default.
191  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
192  if (Ctor == useDefaultMachineSched) {
193    // Get the default scheduler set by the target.
194    Ctor = MachineSchedRegistry::getDefault();
195    if (!Ctor) {
196      Ctor = createConvergingSched;
197      MachineSchedRegistry::setDefault(Ctor);
198    }
199  }
200  // Instantiate the selected scheduler.
201  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
202
203  // Visit all machine basic blocks.
204  //
205  // TODO: Visit blocks in global postorder or postorder within the bottom-up
206  // loop tree. Then we can optionally compute global RegPressure.
207  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
208       MBB != MBBEnd; ++MBB) {
209
210    Scheduler->startBlock(MBB);
211
212    // Break the block into scheduling regions [I, RegionEnd), and schedule each
213    // region as soon as it is discovered. RegionEnd points the the scheduling
214    // boundary at the bottom of the region. The DAG does not include RegionEnd,
215    // but the region does (i.e. the next RegionEnd is above the previous
216    // RegionBegin). If the current block has no terminator then RegionEnd ==
217    // MBB->end() for the bottom region.
218    //
219    // The Scheduler may insert instructions during either schedule() or
220    // exitRegion(), even for empty regions. So the local iterators 'I' and
221    // 'RegionEnd' are invalid across these calls.
222    unsigned RemainingCount = MBB->size();
223    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
224        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
225
226      // Avoid decrementing RegionEnd for blocks with no terminator.
227      if (RegionEnd != MBB->end()
228          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
229        --RegionEnd;
230        // Count the boundary instruction.
231        --RemainingCount;
232      }
233
234      // The next region starts above the previous region. Look backward in the
235      // instruction stream until we find the nearest boundary.
236      MachineBasicBlock::iterator I = RegionEnd;
237      for(;I != MBB->begin(); --I, --RemainingCount) {
238        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
239          break;
240      }
241      // Notify the scheduler of the region, even if we may skip scheduling
242      // it. Perhaps it still needs to be bundled.
243      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount);
244
245      // Skip empty scheduling regions (0 or 1 schedulable instructions).
246      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
247        // Close the current region. Bundle the terminator if needed.
248        // This invalidates 'RegionEnd' and 'I'.
249        Scheduler->exitRegion();
250        continue;
251      }
252      DEBUG(dbgs() << "MachineScheduling " << MF->getFunction()->getName()
253            << ":BB#" << MBB->getNumber() << "\n  From: " << *I << "    To: ";
254            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
255            else dbgs() << "End";
256            dbgs() << " Remaining: " << RemainingCount << "\n");
257
258      // Schedule a region: possibly reorder instructions.
259      // This invalidates 'RegionEnd' and 'I'.
260      Scheduler->schedule();
261
262      // Close the current region.
263      Scheduler->exitRegion();
264
265      // Scheduling has invalidated the current iterator 'I'. Ask the
266      // scheduler for the top of it's scheduled region.
267      RegionEnd = Scheduler->begin();
268    }
269    assert(RemainingCount == 0 && "Instruction count mismatch!");
270    Scheduler->finishBlock();
271  }
272  Scheduler->finalizeSchedule();
273  DEBUG(LIS->print(dbgs()));
274  return true;
275}
276
277void MachineScheduler::print(raw_ostream &O, const Module* m) const {
278  // unimplemented
279}
280
281//===----------------------------------------------------------------------===//
282// MachineSchedStrategy - Interface to a machine scheduling algorithm.
283//===----------------------------------------------------------------------===//
284
285namespace {
286class ScheduleDAGMI;
287
288/// MachineSchedStrategy - Interface used by ScheduleDAGMI to drive the selected
289/// scheduling algorithm.
290///
291/// If this works well and targets wish to reuse ScheduleDAGMI, we may expose it
292/// in ScheduleDAGInstrs.h
293class MachineSchedStrategy {
294public:
295  virtual ~MachineSchedStrategy() {}
296
297  /// Initialize the strategy after building the DAG for a new region.
298  virtual void initialize(ScheduleDAGMI *DAG) = 0;
299
300  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
301  /// schedule the node at the top of the unscheduled region. Otherwise it will
302  /// be scheduled at the bottom.
303  virtual SUnit *pickNode(bool &IsTopNode) = 0;
304
305  /// When all predecessor dependencies have been resolved, free this node for
306  /// top-down scheduling.
307  virtual void releaseTopNode(SUnit *SU) = 0;
308  /// When all successor dependencies have been resolved, free this node for
309  /// bottom-up scheduling.
310  virtual void releaseBottomNode(SUnit *SU) = 0;
311};
312} // namespace
313
314//===----------------------------------------------------------------------===//
315// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
316// preservation.
317//===----------------------------------------------------------------------===//
318
319namespace {
320/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that schedules
321/// machine instructions while updating LiveIntervals.
322class ScheduleDAGMI : public ScheduleDAGInstrs {
323  AliasAnalysis *AA;
324  RegisterClassInfo *RegClassInfo;
325  MachineSchedStrategy *SchedImpl;
326
327  MachineBasicBlock::iterator LiveRegionEnd;
328
329  /// Register pressure in this region computed by buildSchedGraph.
330  IntervalPressure RegPressure;
331  RegPressureTracker RPTracker;
332
333  /// List of pressure sets that exceed the target's pressure limit before
334  /// scheduling, listed in increasing set ID order. Each pressure set is paired
335  /// with its max pressure in the currently scheduled regions.
336  std::vector<PressureElement> RegionCriticalPSets;
337
338  /// The top of the unscheduled zone.
339  MachineBasicBlock::iterator CurrentTop;
340  IntervalPressure TopPressure;
341  RegPressureTracker TopRPTracker;
342
343  /// The bottom of the unscheduled zone.
344  MachineBasicBlock::iterator CurrentBottom;
345  IntervalPressure BotPressure;
346  RegPressureTracker BotRPTracker;
347
348  /// The number of instructions scheduled so far. Used to cut off the
349  /// scheduler at the point determined by misched-cutoff.
350  unsigned NumInstrsScheduled;
351public:
352  ScheduleDAGMI(MachineSchedContext *C, MachineSchedStrategy *S):
353    ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS),
354    AA(C->AA), RegClassInfo(C->RegClassInfo), SchedImpl(S),
355    RPTracker(RegPressure), CurrentTop(), TopRPTracker(TopPressure),
356    CurrentBottom(), BotRPTracker(BotPressure), NumInstrsScheduled(0) {}
357
358  ~ScheduleDAGMI() {
359    delete SchedImpl;
360  }
361
362  MachineBasicBlock::iterator top() const { return CurrentTop; }
363  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
364
365  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
366  /// region. This covers all instructions in a block, while schedule() may only
367  /// cover a subset.
368  void enterRegion(MachineBasicBlock *bb,
369                   MachineBasicBlock::iterator begin,
370                   MachineBasicBlock::iterator end,
371                   unsigned endcount);
372
373  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
374  /// reorderable instructions.
375  void schedule();
376
377  /// Get current register pressure for the top scheduled instructions.
378  const IntervalPressure &getTopPressure() const { return TopPressure; }
379  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
380
381  /// Get current register pressure for the bottom scheduled instructions.
382  const IntervalPressure &getBotPressure() const { return BotPressure; }
383  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
384
385  /// Get register pressure for the entire scheduling region before scheduling.
386  const IntervalPressure &getRegPressure() const { return RegPressure; }
387
388  const std::vector<PressureElement> &getRegionCriticalPSets() const {
389    return RegionCriticalPSets;
390  }
391
392protected:
393  void initRegPressure();
394  void updateScheduledPressure(std::vector<unsigned> NewMaxPressure);
395
396  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
397  bool checkSchedLimit();
398
399  void releaseSucc(SUnit *SU, SDep *SuccEdge);
400  void releaseSuccessors(SUnit *SU);
401  void releasePred(SUnit *SU, SDep *PredEdge);
402  void releasePredecessors(SUnit *SU);
403
404  void placeDebugValues();
405};
406} // namespace
407
408/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
409/// NumPredsLeft reaches zero, release the successor node.
410void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
411  SUnit *SuccSU = SuccEdge->getSUnit();
412
413#ifndef NDEBUG
414  if (SuccSU->NumPredsLeft == 0) {
415    dbgs() << "*** Scheduling failed! ***\n";
416    SuccSU->dump(this);
417    dbgs() << " has been released too many times!\n";
418    llvm_unreachable(0);
419  }
420#endif
421  --SuccSU->NumPredsLeft;
422  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
423    SchedImpl->releaseTopNode(SuccSU);
424}
425
426/// releaseSuccessors - Call releaseSucc on each of SU's successors.
427void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
428  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
429       I != E; ++I) {
430    releaseSucc(SU, &*I);
431  }
432}
433
434/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
435/// NumSuccsLeft reaches zero, release the predecessor node.
436void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
437  SUnit *PredSU = PredEdge->getSUnit();
438
439#ifndef NDEBUG
440  if (PredSU->NumSuccsLeft == 0) {
441    dbgs() << "*** Scheduling failed! ***\n";
442    PredSU->dump(this);
443    dbgs() << " has been released too many times!\n";
444    llvm_unreachable(0);
445  }
446#endif
447  --PredSU->NumSuccsLeft;
448  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
449    SchedImpl->releaseBottomNode(PredSU);
450}
451
452/// releasePredecessors - Call releasePred on each of SU's predecessors.
453void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
454  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
455       I != E; ++I) {
456    releasePred(SU, &*I);
457  }
458}
459
460void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
461                                    MachineBasicBlock::iterator InsertPos) {
462  // Advance RegionBegin if the first instruction moves down.
463  if (&*RegionBegin == MI)
464    ++RegionBegin;
465
466  // Update the instruction stream.
467  BB->splice(InsertPos, BB, MI);
468
469  // Update LiveIntervals
470  LIS->handleMove(MI);
471
472  // Recede RegionBegin if an instruction moves above the first.
473  if (RegionBegin == InsertPos)
474    RegionBegin = MI;
475}
476
477bool ScheduleDAGMI::checkSchedLimit() {
478#ifndef NDEBUG
479  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
480    CurrentTop = CurrentBottom;
481    return false;
482  }
483  ++NumInstrsScheduled;
484#endif
485  return true;
486}
487
488/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
489/// crossing a scheduling boundary. [begin, end) includes all instructions in
490/// the region, including the boundary itself and single-instruction regions
491/// that don't get scheduled.
492void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
493                                MachineBasicBlock::iterator begin,
494                                MachineBasicBlock::iterator end,
495                                unsigned endcount)
496{
497  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
498
499  // For convenience remember the end of the liveness region.
500  LiveRegionEnd =
501    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
502}
503
504// Setup the register pressure trackers for the top scheduled top and bottom
505// scheduled regions.
506void ScheduleDAGMI::initRegPressure() {
507  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
508  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
509
510  // Close the RPTracker to finalize live ins.
511  RPTracker.closeRegion();
512
513  // Initialize the live ins and live outs.
514  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
515  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
516
517  // Close one end of the tracker so we can call
518  // getMaxUpward/DownwardPressureDelta before advancing across any
519  // instructions. This converts currently live regs into live ins/outs.
520  TopRPTracker.closeTop();
521  BotRPTracker.closeBottom();
522
523  // Account for liveness generated by the region boundary.
524  if (LiveRegionEnd != RegionEnd)
525    BotRPTracker.recede();
526
527  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
528
529  // Cache the list of excess pressure sets in this region. This will also track
530  // the max pressure in the scheduled code for these sets.
531  RegionCriticalPSets.clear();
532  std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure;
533  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
534    unsigned Limit = TRI->getRegPressureSetLimit(i);
535    if (RegionPressure[i] > Limit)
536      RegionCriticalPSets.push_back(PressureElement(i, 0));
537  }
538  DEBUG(dbgs() << "Excess PSets: ";
539        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
540          dbgs() << TRI->getRegPressureSetName(
541            RegionCriticalPSets[i].PSetID) << " ";
542        dbgs() << "\n");
543}
544
545// FIXME: When the pressure tracker deals in pressure differences then we won't
546// iterate over all RegionCriticalPSets[i].
547void ScheduleDAGMI::
548updateScheduledPressure(std::vector<unsigned> NewMaxPressure) {
549  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
550    unsigned ID = RegionCriticalPSets[i].PSetID;
551    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
552    if ((int)NewMaxPressure[ID] > MaxUnits)
553      MaxUnits = NewMaxPressure[ID];
554  }
555}
556
557/// schedule - Called back from MachineScheduler::runOnMachineFunction
558/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
559/// only includes instructions that have DAG nodes, not scheduling boundaries.
560void ScheduleDAGMI::schedule() {
561  // Initialize the register pressure tracker used by buildSchedGraph.
562  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
563
564  // Account for liveness generate by the region boundary.
565  if (LiveRegionEnd != RegionEnd)
566    RPTracker.recede();
567
568  // Build the DAG, and compute current register pressure.
569  buildSchedGraph(AA, &RPTracker);
570
571  // Initialize top/bottom trackers after computing region pressure.
572  initRegPressure();
573
574  DEBUG(dbgs() << "********** MI Scheduling **********\n");
575  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
576          SUnits[su].dumpAll(this));
577
578  if (ViewMISchedDAGs) viewGraph();
579
580  SchedImpl->initialize(this);
581
582  // Release edges from the special Entry node or to the special Exit node.
583  releaseSuccessors(&EntrySU);
584  releasePredecessors(&ExitSU);
585
586  // Release all DAG roots for scheduling.
587  for (std::vector<SUnit>::iterator I = SUnits.begin(), E = SUnits.end();
588       I != E; ++I) {
589    // A SUnit is ready to top schedule if it has no predecessors.
590    if (I->Preds.empty())
591      SchedImpl->releaseTopNode(&(*I));
592    // A SUnit is ready to bottom schedule if it has no successors.
593    if (I->Succs.empty())
594      SchedImpl->releaseBottomNode(&(*I));
595  }
596
597  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
598  CurrentBottom = RegionEnd;
599  bool IsTopNode = false;
600  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
601    DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
602          << " Scheduling Instruction:\n"; SU->dump(this));
603    if (!checkSchedLimit())
604      break;
605
606    // Move the instruction to its new location in the instruction stream.
607    MachineInstr *MI = SU->getInstr();
608
609    if (IsTopNode) {
610      assert(SU->isTopReady() && "node still has unscheduled dependencies");
611      if (&*CurrentTop == MI)
612        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
613      else {
614        moveInstruction(MI, CurrentTop);
615        TopRPTracker.setPos(MI);
616      }
617
618      // Update top scheduled pressure.
619      TopRPTracker.advance();
620      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
621      updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
622
623      // Release dependent instructions for scheduling.
624      releaseSuccessors(SU);
625    }
626    else {
627      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
628      MachineBasicBlock::iterator priorII =
629        priorNonDebug(CurrentBottom, CurrentTop);
630      if (&*priorII == MI)
631        CurrentBottom = priorII;
632      else {
633        if (&*CurrentTop == MI) {
634          CurrentTop = nextIfDebug(++CurrentTop, priorII);
635          TopRPTracker.setPos(CurrentTop);
636        }
637        moveInstruction(MI, CurrentBottom);
638        CurrentBottom = MI;
639      }
640      // Update bottom scheduled pressure.
641      BotRPTracker.recede();
642      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
643      updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
644
645      // Release dependent instructions for scheduling.
646      releasePredecessors(SU);
647    }
648    SU->isScheduled = true;
649  }
650  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
651
652  placeDebugValues();
653}
654
655/// Reinsert any remaining debug_values, just like the PostRA scheduler.
656void ScheduleDAGMI::placeDebugValues() {
657  // If first instruction was a DBG_VALUE then put it back.
658  if (FirstDbgValue) {
659    BB->splice(RegionBegin, BB, FirstDbgValue);
660    RegionBegin = FirstDbgValue;
661  }
662
663  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
664         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
665    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
666    MachineInstr *DbgValue = P.first;
667    MachineBasicBlock::iterator OrigPrevMI = P.second;
668    BB->splice(++OrigPrevMI, BB, DbgValue);
669    if (OrigPrevMI == llvm::prior(RegionEnd))
670      RegionEnd = DbgValue;
671  }
672  DbgValues.clear();
673  FirstDbgValue = NULL;
674}
675
676//===----------------------------------------------------------------------===//
677// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
678//===----------------------------------------------------------------------===//
679
680namespace {
681/// Wrapper around a vector of SUnits with some basic convenience methods.
682struct ReadyQ {
683  typedef std::vector<SUnit*>::iterator iterator;
684
685  unsigned ID;
686  std::vector<SUnit*> Queue;
687
688  ReadyQ(unsigned id): ID(id) {}
689
690  bool isInQueue(SUnit *SU) const {
691    return SU->NodeQueueId & ID;
692  }
693
694  bool empty() const { return Queue.empty(); }
695
696  unsigned size() const { return Queue.size(); }
697
698  iterator begin() { return Queue.begin(); }
699
700  iterator end() { return Queue.end(); }
701
702  iterator find(SUnit *SU) {
703    return std::find(Queue.begin(), Queue.end(), SU);
704  }
705
706  void push(SUnit *SU) {
707    Queue.push_back(SU);
708    SU->NodeQueueId |= ID;
709  }
710
711  void remove(iterator I) {
712    (*I)->NodeQueueId &= ~ID;
713    *I = Queue.back();
714    Queue.pop_back();
715  }
716
717  void dump(const char* Name) {
718    dbgs() << Name << ": ";
719    for (unsigned i = 0, e = Queue.size(); i < e; ++i)
720      dbgs() << Queue[i]->NodeNum << " ";
721    dbgs() << "\n";
722  }
723};
724
725/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
726/// the schedule.
727class ConvergingScheduler : public MachineSchedStrategy {
728
729  /// Store the state used by ConvergingScheduler heuristics, required for the
730  /// lifetime of one invocation of pickNode().
731  struct SchedCandidate {
732    // The best SUnit candidate.
733    SUnit *SU;
734
735    // Register pressure values for the best candidate.
736    RegPressureDelta RPDelta;
737
738    SchedCandidate(): SU(NULL) {}
739  };
740  /// Represent the type of SchedCandidate found within a single queue.
741  enum CandResult {
742    NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure };
743
744  ScheduleDAGMI *DAG;
745  const TargetRegisterInfo *TRI;
746
747  ReadyQ TopQueue;
748  ReadyQ BotQueue;
749
750public:
751  /// SUnit::NodeQueueId = 0 (none), = 1 (top), = 2 (bottom), = 3 (both)
752  enum {
753    TopQID = 1,
754    BotQID = 2
755  };
756
757  ConvergingScheduler(): DAG(0), TRI(0), TopQueue(TopQID), BotQueue(BotQID) {}
758
759  static const char *getQName(unsigned ID) {
760    switch(ID) {
761    default: return "NoQ";
762    case TopQID: return "TopQ";
763    case BotQID: return "BotQ";
764    };
765  }
766
767  virtual void initialize(ScheduleDAGMI *dag) {
768    DAG = dag;
769    TRI = DAG->TRI;
770
771    assert((!ForceTopDown || !ForceBottomUp) &&
772           "-misched-topdown incompatible with -misched-bottomup");
773  }
774
775  virtual SUnit *pickNode(bool &IsTopNode);
776
777  virtual void releaseTopNode(SUnit *SU) {
778    if (!SU->isScheduled)
779      TopQueue.push(SU);
780  }
781  virtual void releaseBottomNode(SUnit *SU) {
782    if (!SU->isScheduled)
783      BotQueue.push(SU);
784  }
785protected:
786  SUnit *pickNodeBidrectional(bool &IsTopNode);
787
788  CandResult pickNodeFromQueue(ReadyQ &Q, const RegPressureTracker &RPTracker,
789                               SchedCandidate &Candidate);
790#ifndef NDEBUG
791  void traceCandidate(const char *Label, unsigned QID, SUnit *SU,
792                      PressureElement P = PressureElement());
793#endif
794};
795} // namespace
796
797#ifndef NDEBUG
798void ConvergingScheduler::
799traceCandidate(const char *Label, unsigned QID, SUnit *SU,
800               PressureElement P) {
801  dbgs() << Label << getQName(QID) << " ";
802  if (P.isValid())
803    dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
804           << " ";
805  else
806    dbgs() << "     ";
807  SU->dump(DAG);
808}
809#endif
810
811/// Return true if the LHS reg pressure effect is better than RHS.
812static bool compareRPDelta(const RegPressureDelta &LHS,
813                           const RegPressureDelta &RHS) {
814  // Compare each component of pressure in decreasing order of importance
815  // without checking if any are valid. Invalid PressureElements are assumed to
816  // have UnitIncrease==0, so are neutral.
817  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease)
818    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
819
820  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease)
821    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
822
823  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease)
824    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
825
826  return false;
827}
828
829
830/// Pick the best candidate from the top queue.
831///
832/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
833/// DAG building. To adjust for the current scheduling location we need to
834/// maintain the number of vreg uses remaining to be top-scheduled.
835ConvergingScheduler::CandResult ConvergingScheduler::
836pickNodeFromQueue(ReadyQ &Q, const RegPressureTracker &RPTracker,
837                  SchedCandidate &Candidate) {
838  DEBUG(Q.dump(getQName(Q.ID)));
839
840  // getMaxPressureDelta temporarily modifies the tracker.
841  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
842
843  // BestSU remains NULL if no top candidates beat the best existing candidate.
844  CandResult FoundCandidate = NoCand;
845  for (ReadyQ::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
846
847    RegPressureDelta RPDelta;
848    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
849                                    DAG->getRegionCriticalPSets(),
850                                    DAG->getRegPressure().MaxSetPressure);
851
852    // Initialize the candidate if needed.
853    if (!Candidate.SU) {
854      Candidate.SU = *I;
855      Candidate.RPDelta = RPDelta;
856      FoundCandidate = NodeOrder;
857      continue;
858    }
859    // Avoid exceeding the target's limit.
860    if (RPDelta.Excess.UnitIncrease < Candidate.RPDelta.Excess.UnitIncrease) {
861      DEBUG(traceCandidate("ECAND", Q.ID, *I, RPDelta.Excess));
862      Candidate.SU = *I;
863      Candidate.RPDelta = RPDelta;
864      FoundCandidate = SingleExcess;
865      continue;
866    }
867    if (RPDelta.Excess.UnitIncrease > Candidate.RPDelta.Excess.UnitIncrease)
868      continue;
869    if (FoundCandidate == SingleExcess)
870      FoundCandidate = MultiPressure;
871
872    // Avoid increasing the max critical pressure in the scheduled region.
873    if (RPDelta.CriticalMax.UnitIncrease
874        < Candidate.RPDelta.CriticalMax.UnitIncrease) {
875      DEBUG(traceCandidate("PCAND", Q.ID, *I, RPDelta.CriticalMax));
876      Candidate.SU = *I;
877      Candidate.RPDelta = RPDelta;
878      FoundCandidate = SingleCritical;
879      continue;
880    }
881    if (RPDelta.CriticalMax.UnitIncrease
882        > Candidate.RPDelta.CriticalMax.UnitIncrease)
883      continue;
884    if (FoundCandidate == SingleCritical)
885      FoundCandidate = MultiPressure;
886
887    // Avoid increasing the max pressure of the entire region.
888    if (RPDelta.CurrentMax.UnitIncrease
889        < Candidate.RPDelta.CurrentMax.UnitIncrease) {
890      DEBUG(traceCandidate("MCAND", Q.ID, *I, RPDelta.CurrentMax));
891      Candidate.SU = *I;
892      Candidate.RPDelta = RPDelta;
893      FoundCandidate = SingleMax;
894      continue;
895    }
896    if (RPDelta.CurrentMax.UnitIncrease
897        > Candidate.RPDelta.CurrentMax.UnitIncrease)
898      continue;
899    if (FoundCandidate == SingleMax)
900      FoundCandidate = MultiPressure;
901
902    // Fall through to original instruction order.
903    // Only consider node order if Candidate was chosen from this Q.
904    if (FoundCandidate == NoCand)
905      continue;
906
907    if ((Q.ID == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
908        || (Q.ID == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
909      DEBUG(traceCandidate("NCAND", Q.ID, *I));
910      Candidate.SU = *I;
911      Candidate.RPDelta = RPDelta;
912      FoundCandidate = NodeOrder;
913    }
914  }
915  return FoundCandidate;
916}
917
918/// Pick the best candidate node from either the top or bottom queue.
919SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) {
920  // Schedule as far as possible in the direction of no choice. This is most
921  // efficient, but also provides the best heuristics for CriticalPSets.
922  if (BotQueue.size() == 1) {
923    IsTopNode = false;
924    return *BotQueue.begin();
925  }
926  if (TopQueue.size() == 1) {
927    IsTopNode = true;
928    return *TopQueue.begin();
929  }
930  SchedCandidate BotCandidate;
931  // Prefer bottom scheduling when heuristics are silent.
932  CandResult BotResult =
933    pickNodeFromQueue(BotQueue, DAG->getBotRPTracker(), BotCandidate);
934  assert(BotResult != NoCand && "failed to find the first candidate");
935
936  // If either Q has a single candidate that provides the least increase in
937  // Excess pressure, we can immediately schedule from that Q.
938  //
939  // RegionCriticalPSets summarizes the pressure within the scheduled region and
940  // affects picking from either Q. If scheduling in one direction must
941  // increase pressure for one of the excess PSets, then schedule in that
942  // direction first to provide more freedom in the other direction.
943  if (BotResult == SingleExcess || BotResult == SingleCritical) {
944    IsTopNode = false;
945    return BotCandidate.SU;
946  }
947  // Check if the top Q has a better candidate.
948  SchedCandidate TopCandidate;
949  CandResult TopResult =
950    pickNodeFromQueue(TopQueue, DAG->getTopRPTracker(), TopCandidate);
951  assert(TopResult != NoCand && "failed to find the first candidate");
952
953  if (TopResult == SingleExcess || TopResult == SingleCritical) {
954    IsTopNode = true;
955    return TopCandidate.SU;
956  }
957  // If either Q has a single candidate that minimizes pressure above the
958  // original region's pressure pick it.
959  if (BotResult == SingleMax) {
960    IsTopNode = false;
961    return BotCandidate.SU;
962  }
963  if (TopResult == SingleMax) {
964    IsTopNode = true;
965    return TopCandidate.SU;
966  }
967  // Check for a salient pressure difference and pick the best from either side.
968  if (compareRPDelta(TopCandidate.RPDelta, BotCandidate.RPDelta)) {
969    IsTopNode = true;
970    return TopCandidate.SU;
971  }
972  // Otherwise prefer the bottom candidate in node order.
973  IsTopNode = false;
974  return BotCandidate.SU;
975}
976
977/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
978SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
979  if (DAG->top() == DAG->bottom()) {
980    assert(TopQueue.empty() && BotQueue.empty() && "ReadyQ garbage");
981    return NULL;
982  }
983  SUnit *SU;
984  if (ForceTopDown) {
985    SU = DAG->getSUnit(DAG->top());
986    IsTopNode = true;
987  }
988  else if (ForceBottomUp) {
989    SU = DAG->getSUnit(priorNonDebug(DAG->bottom(), DAG->top()));
990    IsTopNode = false;
991  }
992  else {
993    SU = pickNodeBidrectional(IsTopNode);
994  }
995  if (SU->isTopReady()) {
996    assert(!TopQueue.empty() && "bad ready count");
997    TopQueue.remove(TopQueue.find(SU));
998  }
999  if (SU->isBottomReady()) {
1000    assert(!BotQueue.empty() && "bad ready count");
1001    BotQueue.remove(BotQueue.find(SU));
1002  }
1003  return SU;
1004}
1005
1006/// Create the standard converging machine scheduler. This will be used as the
1007/// default scheduler if the target does not set a default.
1008static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
1009  assert((!ForceTopDown || !ForceBottomUp) &&
1010         "-misched-topdown incompatible with -misched-bottomup");
1011  return new ScheduleDAGMI(C, new ConvergingScheduler());
1012}
1013static MachineSchedRegistry
1014ConvergingSchedRegistry("converge", "Standard converging scheduler.",
1015                        createConvergingSched);
1016
1017//===----------------------------------------------------------------------===//
1018// Machine Instruction Shuffler for Correctness Testing
1019//===----------------------------------------------------------------------===//
1020
1021#ifndef NDEBUG
1022namespace {
1023/// Apply a less-than relation on the node order, which corresponds to the
1024/// instruction order prior to scheduling. IsReverse implements greater-than.
1025template<bool IsReverse>
1026struct SUnitOrder {
1027  bool operator()(SUnit *A, SUnit *B) const {
1028    if (IsReverse)
1029      return A->NodeNum > B->NodeNum;
1030    else
1031      return A->NodeNum < B->NodeNum;
1032  }
1033};
1034
1035/// Reorder instructions as much as possible.
1036class InstructionShuffler : public MachineSchedStrategy {
1037  bool IsAlternating;
1038  bool IsTopDown;
1039
1040  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
1041  // gives nodes with a higher number higher priority causing the latest
1042  // instructions to be scheduled first.
1043  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
1044    TopQ;
1045  // When scheduling bottom-up, use greater-than as the queue priority.
1046  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
1047    BottomQ;
1048public:
1049  InstructionShuffler(bool alternate, bool topdown)
1050    : IsAlternating(alternate), IsTopDown(topdown) {}
1051
1052  virtual void initialize(ScheduleDAGMI *) {
1053    TopQ.clear();
1054    BottomQ.clear();
1055  }
1056
1057  /// Implement MachineSchedStrategy interface.
1058  /// -----------------------------------------
1059
1060  virtual SUnit *pickNode(bool &IsTopNode) {
1061    SUnit *SU;
1062    if (IsTopDown) {
1063      do {
1064        if (TopQ.empty()) return NULL;
1065        SU = TopQ.top();
1066        TopQ.pop();
1067      } while (SU->isScheduled);
1068      IsTopNode = true;
1069    }
1070    else {
1071      do {
1072        if (BottomQ.empty()) return NULL;
1073        SU = BottomQ.top();
1074        BottomQ.pop();
1075      } while (SU->isScheduled);
1076      IsTopNode = false;
1077    }
1078    if (IsAlternating)
1079      IsTopDown = !IsTopDown;
1080    return SU;
1081  }
1082
1083  virtual void releaseTopNode(SUnit *SU) {
1084    TopQ.push(SU);
1085  }
1086  virtual void releaseBottomNode(SUnit *SU) {
1087    BottomQ.push(SU);
1088  }
1089};
1090} // namespace
1091
1092static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
1093  bool Alternate = !ForceTopDown && !ForceBottomUp;
1094  bool TopDown = !ForceBottomUp;
1095  assert((TopDown || !ForceTopDown) &&
1096         "-misched-topdown incompatible with -misched-bottomup");
1097  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
1098}
1099static MachineSchedRegistry ShufflerRegistry(
1100  "shuffle", "Shuffle machine instructions alternating directions",
1101  createInstructionShuffler);
1102#endif // !NDEBUG
1103