MachineScheduler.cpp revision b754687fd7391213f455ffa52d1bcfbe11052bc0
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "llvm/CodeGen/LiveIntervalAnalysis.h"
18#include "llvm/CodeGen/MachineScheduler.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/RegisterClassInfo.h"
21#include "llvm/CodeGen/ScheduleDAGILP.h"
22#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/ADT/OwningPtr.h"
29#include "llvm/ADT/PriorityQueue.h"
30
31#include <queue>
32
33using namespace llvm;
34
35namespace llvm {
36cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
37                           cl::desc("Force top-down list scheduling"));
38cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
39                            cl::desc("Force bottom-up list scheduling"));
40}
41
42#ifndef NDEBUG
43static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
44  cl::desc("Pop up a window to show MISched dags after they are processed"));
45
46static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
47  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
48#else
49static bool ViewMISchedDAGs = false;
50#endif // NDEBUG
51
52// Threshold to very roughly model an out-of-order processor's instruction
53// buffers. If the actual value of this threshold matters much in practice, then
54// it can be specified by the machine model. For now, it's an experimental
55// tuning knob to determine when and if it matters.
56static cl::opt<unsigned> ILPWindow("ilp-window", cl::Hidden,
57  cl::desc("Allow expected latency to exceed the critical path by N cycles "
58           "before attempting to balance ILP"),
59  cl::init(10U));
60
61//===----------------------------------------------------------------------===//
62// Machine Instruction Scheduling Pass and Registry
63//===----------------------------------------------------------------------===//
64
65MachineSchedContext::MachineSchedContext():
66    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
67  RegClassInfo = new RegisterClassInfo();
68}
69
70MachineSchedContext::~MachineSchedContext() {
71  delete RegClassInfo;
72}
73
74namespace {
75/// MachineScheduler runs after coalescing and before register allocation.
76class MachineScheduler : public MachineSchedContext,
77                         public MachineFunctionPass {
78public:
79  MachineScheduler();
80
81  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
82
83  virtual void releaseMemory() {}
84
85  virtual bool runOnMachineFunction(MachineFunction&);
86
87  virtual void print(raw_ostream &O, const Module* = 0) const;
88
89  static char ID; // Class identification, replacement for typeinfo
90};
91} // namespace
92
93char MachineScheduler::ID = 0;
94
95char &llvm::MachineSchedulerID = MachineScheduler::ID;
96
97INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
98                      "Machine Instruction Scheduler", false, false)
99INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
100INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
101INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
102INITIALIZE_PASS_END(MachineScheduler, "misched",
103                    "Machine Instruction Scheduler", false, false)
104
105MachineScheduler::MachineScheduler()
106: MachineFunctionPass(ID) {
107  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
108}
109
110void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
111  AU.setPreservesCFG();
112  AU.addRequiredID(MachineDominatorsID);
113  AU.addRequired<MachineLoopInfo>();
114  AU.addRequired<AliasAnalysis>();
115  AU.addRequired<TargetPassConfig>();
116  AU.addRequired<SlotIndexes>();
117  AU.addPreserved<SlotIndexes>();
118  AU.addRequired<LiveIntervals>();
119  AU.addPreserved<LiveIntervals>();
120  MachineFunctionPass::getAnalysisUsage(AU);
121}
122
123MachinePassRegistry MachineSchedRegistry::Registry;
124
125/// A dummy default scheduler factory indicates whether the scheduler
126/// is overridden on the command line.
127static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
128  return 0;
129}
130
131/// MachineSchedOpt allows command line selection of the scheduler.
132static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
133               RegisterPassParser<MachineSchedRegistry> >
134MachineSchedOpt("misched",
135                cl::init(&useDefaultMachineSched), cl::Hidden,
136                cl::desc("Machine instruction scheduler to use"));
137
138static MachineSchedRegistry
139DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
140                     useDefaultMachineSched);
141
142/// Forward declare the standard machine scheduler. This will be used as the
143/// default scheduler if the target does not set a default.
144static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
145
146
147/// Decrement this iterator until reaching the top or a non-debug instr.
148static MachineBasicBlock::iterator
149priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
150  assert(I != Beg && "reached the top of the region, cannot decrement");
151  while (--I != Beg) {
152    if (!I->isDebugValue())
153      break;
154  }
155  return I;
156}
157
158/// If this iterator is a debug value, increment until reaching the End or a
159/// non-debug instruction.
160static MachineBasicBlock::iterator
161nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
162  for(; I != End; ++I) {
163    if (!I->isDebugValue())
164      break;
165  }
166  return I;
167}
168
169/// Top-level MachineScheduler pass driver.
170///
171/// Visit blocks in function order. Divide each block into scheduling regions
172/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
173/// consistent with the DAG builder, which traverses the interior of the
174/// scheduling regions bottom-up.
175///
176/// This design avoids exposing scheduling boundaries to the DAG builder,
177/// simplifying the DAG builder's support for "special" target instructions.
178/// At the same time the design allows target schedulers to operate across
179/// scheduling boundaries, for example to bundle the boudary instructions
180/// without reordering them. This creates complexity, because the target
181/// scheduler must update the RegionBegin and RegionEnd positions cached by
182/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
183/// design would be to split blocks at scheduling boundaries, but LLVM has a
184/// general bias against block splitting purely for implementation simplicity.
185bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
186  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
187
188  // Initialize the context of the pass.
189  MF = &mf;
190  MLI = &getAnalysis<MachineLoopInfo>();
191  MDT = &getAnalysis<MachineDominatorTree>();
192  PassConfig = &getAnalysis<TargetPassConfig>();
193  AA = &getAnalysis<AliasAnalysis>();
194
195  LIS = &getAnalysis<LiveIntervals>();
196  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
197
198  RegClassInfo->runOnMachineFunction(*MF);
199
200  // Select the scheduler, or set the default.
201  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
202  if (Ctor == useDefaultMachineSched) {
203    // Get the default scheduler set by the target.
204    Ctor = MachineSchedRegistry::getDefault();
205    if (!Ctor) {
206      Ctor = createConvergingSched;
207      MachineSchedRegistry::setDefault(Ctor);
208    }
209  }
210  // Instantiate the selected scheduler.
211  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
212
213  // Visit all machine basic blocks.
214  //
215  // TODO: Visit blocks in global postorder or postorder within the bottom-up
216  // loop tree. Then we can optionally compute global RegPressure.
217  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
218       MBB != MBBEnd; ++MBB) {
219
220    Scheduler->startBlock(MBB);
221
222    // Break the block into scheduling regions [I, RegionEnd), and schedule each
223    // region as soon as it is discovered. RegionEnd points the scheduling
224    // boundary at the bottom of the region. The DAG does not include RegionEnd,
225    // but the region does (i.e. the next RegionEnd is above the previous
226    // RegionBegin). If the current block has no terminator then RegionEnd ==
227    // MBB->end() for the bottom region.
228    //
229    // The Scheduler may insert instructions during either schedule() or
230    // exitRegion(), even for empty regions. So the local iterators 'I' and
231    // 'RegionEnd' are invalid across these calls.
232    unsigned RemainingInstrs = MBB->size();
233    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
234        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
235
236      // Avoid decrementing RegionEnd for blocks with no terminator.
237      if (RegionEnd != MBB->end()
238          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
239        --RegionEnd;
240        // Count the boundary instruction.
241        --RemainingInstrs;
242      }
243
244      // The next region starts above the previous region. Look backward in the
245      // instruction stream until we find the nearest boundary.
246      MachineBasicBlock::iterator I = RegionEnd;
247      for(;I != MBB->begin(); --I, --RemainingInstrs) {
248        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
249          break;
250      }
251      // Notify the scheduler of the region, even if we may skip scheduling
252      // it. Perhaps it still needs to be bundled.
253      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
254
255      // Skip empty scheduling regions (0 or 1 schedulable instructions).
256      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
257        // Close the current region. Bundle the terminator if needed.
258        // This invalidates 'RegionEnd' and 'I'.
259        Scheduler->exitRegion();
260        continue;
261      }
262      DEBUG(dbgs() << "********** MI Scheduling **********\n");
263      DEBUG(dbgs() << MF->getName()
264            << ":BB#" << MBB->getNumber() << "\n  From: " << *I << "    To: ";
265            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
266            else dbgs() << "End";
267            dbgs() << " Remaining: " << RemainingInstrs << "\n");
268
269      // Schedule a region: possibly reorder instructions.
270      // This invalidates 'RegionEnd' and 'I'.
271      Scheduler->schedule();
272
273      // Close the current region.
274      Scheduler->exitRegion();
275
276      // Scheduling has invalidated the current iterator 'I'. Ask the
277      // scheduler for the top of it's scheduled region.
278      RegionEnd = Scheduler->begin();
279    }
280    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
281    Scheduler->finishBlock();
282  }
283  Scheduler->finalizeSchedule();
284  DEBUG(LIS->print(dbgs()));
285  return true;
286}
287
288void MachineScheduler::print(raw_ostream &O, const Module* m) const {
289  // unimplemented
290}
291
292#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
293void ReadyQueue::dump() {
294  dbgs() << Name << ": ";
295  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
296    dbgs() << Queue[i]->NodeNum << " ";
297  dbgs() << "\n";
298}
299#endif
300
301//===----------------------------------------------------------------------===//
302// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
303// preservation.
304//===----------------------------------------------------------------------===//
305
306/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
307/// NumPredsLeft reaches zero, release the successor node.
308///
309/// FIXME: Adjust SuccSU height based on MinLatency.
310void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
311  SUnit *SuccSU = SuccEdge->getSUnit();
312
313#ifndef NDEBUG
314  if (SuccSU->NumPredsLeft == 0) {
315    dbgs() << "*** Scheduling failed! ***\n";
316    SuccSU->dump(this);
317    dbgs() << " has been released too many times!\n";
318    llvm_unreachable(0);
319  }
320#endif
321  --SuccSU->NumPredsLeft;
322  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
323    SchedImpl->releaseTopNode(SuccSU);
324}
325
326/// releaseSuccessors - Call releaseSucc on each of SU's successors.
327void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
328  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
329       I != E; ++I) {
330    releaseSucc(SU, &*I);
331  }
332}
333
334/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
335/// NumSuccsLeft reaches zero, release the predecessor node.
336///
337/// FIXME: Adjust PredSU height based on MinLatency.
338void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
339  SUnit *PredSU = PredEdge->getSUnit();
340
341#ifndef NDEBUG
342  if (PredSU->NumSuccsLeft == 0) {
343    dbgs() << "*** Scheduling failed! ***\n";
344    PredSU->dump(this);
345    dbgs() << " has been released too many times!\n";
346    llvm_unreachable(0);
347  }
348#endif
349  --PredSU->NumSuccsLeft;
350  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
351    SchedImpl->releaseBottomNode(PredSU);
352}
353
354/// releasePredecessors - Call releasePred on each of SU's predecessors.
355void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
356  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
357       I != E; ++I) {
358    releasePred(SU, &*I);
359  }
360}
361
362void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
363                                    MachineBasicBlock::iterator InsertPos) {
364  // Advance RegionBegin if the first instruction moves down.
365  if (&*RegionBegin == MI)
366    ++RegionBegin;
367
368  // Update the instruction stream.
369  BB->splice(InsertPos, BB, MI);
370
371  // Update LiveIntervals
372  LIS->handleMove(MI, /*UpdateFlags=*/true);
373
374  // Recede RegionBegin if an instruction moves above the first.
375  if (RegionBegin == InsertPos)
376    RegionBegin = MI;
377}
378
379bool ScheduleDAGMI::checkSchedLimit() {
380#ifndef NDEBUG
381  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
382    CurrentTop = CurrentBottom;
383    return false;
384  }
385  ++NumInstrsScheduled;
386#endif
387  return true;
388}
389
390/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
391/// crossing a scheduling boundary. [begin, end) includes all instructions in
392/// the region, including the boundary itself and single-instruction regions
393/// that don't get scheduled.
394void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
395                                MachineBasicBlock::iterator begin,
396                                MachineBasicBlock::iterator end,
397                                unsigned endcount)
398{
399  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
400
401  // For convenience remember the end of the liveness region.
402  LiveRegionEnd =
403    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
404}
405
406// Setup the register pressure trackers for the top scheduled top and bottom
407// scheduled regions.
408void ScheduleDAGMI::initRegPressure() {
409  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
410  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
411
412  // Close the RPTracker to finalize live ins.
413  RPTracker.closeRegion();
414
415  DEBUG(RPTracker.getPressure().dump(TRI));
416
417  // Initialize the live ins and live outs.
418  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
419  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
420
421  // Close one end of the tracker so we can call
422  // getMaxUpward/DownwardPressureDelta before advancing across any
423  // instructions. This converts currently live regs into live ins/outs.
424  TopRPTracker.closeTop();
425  BotRPTracker.closeBottom();
426
427  // Account for liveness generated by the region boundary.
428  if (LiveRegionEnd != RegionEnd)
429    BotRPTracker.recede();
430
431  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
432
433  // Cache the list of excess pressure sets in this region. This will also track
434  // the max pressure in the scheduled code for these sets.
435  RegionCriticalPSets.clear();
436  std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure;
437  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
438    unsigned Limit = TRI->getRegPressureSetLimit(i);
439    DEBUG(dbgs() << TRI->getRegPressureSetName(i)
440          << "Limit " << Limit
441          << " Actual " << RegionPressure[i] << "\n");
442    if (RegionPressure[i] > Limit)
443      RegionCriticalPSets.push_back(PressureElement(i, 0));
444  }
445  DEBUG(dbgs() << "Excess PSets: ";
446        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
447          dbgs() << TRI->getRegPressureSetName(
448            RegionCriticalPSets[i].PSetID) << " ";
449        dbgs() << "\n");
450}
451
452// FIXME: When the pressure tracker deals in pressure differences then we won't
453// iterate over all RegionCriticalPSets[i].
454void ScheduleDAGMI::
455updateScheduledPressure(std::vector<unsigned> NewMaxPressure) {
456  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
457    unsigned ID = RegionCriticalPSets[i].PSetID;
458    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
459    if ((int)NewMaxPressure[ID] > MaxUnits)
460      MaxUnits = NewMaxPressure[ID];
461  }
462}
463
464/// schedule - Called back from MachineScheduler::runOnMachineFunction
465/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
466/// only includes instructions that have DAG nodes, not scheduling boundaries.
467///
468/// This is a skeletal driver, with all the functionality pushed into helpers,
469/// so that it can be easilly extended by experimental schedulers. Generally,
470/// implementing MachineSchedStrategy should be sufficient to implement a new
471/// scheduling algorithm. However, if a scheduler further subclasses
472/// ScheduleDAGMI then it will want to override this virtual method in order to
473/// update any specialized state.
474void ScheduleDAGMI::schedule() {
475  buildDAGWithRegPressure();
476
477  postprocessDAG();
478
479  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
480          SUnits[su].dumpAll(this));
481
482  if (ViewMISchedDAGs) viewGraph();
483
484  initQueues();
485
486  bool IsTopNode = false;
487  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
488    assert(!SU->isScheduled && "Node already scheduled");
489    if (!checkSchedLimit())
490      break;
491
492    scheduleMI(SU, IsTopNode);
493
494    updateQueues(SU, IsTopNode);
495  }
496  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
497
498  placeDebugValues();
499
500  DEBUG({
501      unsigned BBNum = top()->getParent()->getNumber();
502      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
503      dumpSchedule();
504      dbgs() << '\n';
505    });
506}
507
508/// Build the DAG and setup three register pressure trackers.
509void ScheduleDAGMI::buildDAGWithRegPressure() {
510  // Initialize the register pressure tracker used by buildSchedGraph.
511  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
512
513  // Account for liveness generate by the region boundary.
514  if (LiveRegionEnd != RegionEnd)
515    RPTracker.recede();
516
517  // Build the DAG, and compute current register pressure.
518  buildSchedGraph(AA, &RPTracker);
519  if (ViewMISchedDAGs) viewGraph();
520
521  // Initialize top/bottom trackers after computing region pressure.
522  initRegPressure();
523}
524
525/// Apply each ScheduleDAGMutation step in order.
526void ScheduleDAGMI::postprocessDAG() {
527  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
528    Mutations[i]->apply(this);
529  }
530}
531
532// Release all DAG roots for scheduling.
533void ScheduleDAGMI::releaseRoots() {
534  SmallVector<SUnit*, 16> BotRoots;
535
536  for (std::vector<SUnit>::iterator
537         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
538    // A SUnit is ready to top schedule if it has no predecessors.
539    if (I->Preds.empty())
540      SchedImpl->releaseTopNode(&(*I));
541    // A SUnit is ready to bottom schedule if it has no successors.
542    if (I->Succs.empty())
543      BotRoots.push_back(&(*I));
544  }
545  // Release bottom roots in reverse order so the higher priority nodes appear
546  // first. This is more natural and slightly more efficient.
547  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
548         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I)
549    SchedImpl->releaseBottomNode(*I);
550}
551
552/// Identify DAG roots and setup scheduler queues.
553void ScheduleDAGMI::initQueues() {
554
555  // Initialize the strategy before modifying the DAG.
556  SchedImpl->initialize(this);
557
558  // Release edges from the special Entry node or to the special Exit node.
559  releaseSuccessors(&EntrySU);
560  releasePredecessors(&ExitSU);
561
562  // Release all DAG roots for scheduling.
563  releaseRoots();
564
565  SchedImpl->registerRoots();
566
567  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
568  CurrentBottom = RegionEnd;
569}
570
571/// Move an instruction and update register pressure.
572void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
573  // Move the instruction to its new location in the instruction stream.
574  MachineInstr *MI = SU->getInstr();
575
576  if (IsTopNode) {
577    assert(SU->isTopReady() && "node still has unscheduled dependencies");
578    if (&*CurrentTop == MI)
579      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
580    else {
581      moveInstruction(MI, CurrentTop);
582      TopRPTracker.setPos(MI);
583    }
584
585    // Update top scheduled pressure.
586    TopRPTracker.advance();
587    assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
588    updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
589  }
590  else {
591    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
592    MachineBasicBlock::iterator priorII =
593      priorNonDebug(CurrentBottom, CurrentTop);
594    if (&*priorII == MI)
595      CurrentBottom = priorII;
596    else {
597      if (&*CurrentTop == MI) {
598        CurrentTop = nextIfDebug(++CurrentTop, priorII);
599        TopRPTracker.setPos(CurrentTop);
600      }
601      moveInstruction(MI, CurrentBottom);
602      CurrentBottom = MI;
603    }
604    // Update bottom scheduled pressure.
605    BotRPTracker.recede();
606    assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
607    updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
608  }
609}
610
611/// Update scheduler queues after scheduling an instruction.
612void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
613  // Release dependent instructions for scheduling.
614  if (IsTopNode)
615    releaseSuccessors(SU);
616  else
617    releasePredecessors(SU);
618
619  SU->isScheduled = true;
620
621  // Notify the scheduling strategy after updating the DAG.
622  SchedImpl->schedNode(SU, IsTopNode);
623}
624
625/// Reinsert any remaining debug_values, just like the PostRA scheduler.
626void ScheduleDAGMI::placeDebugValues() {
627  // If first instruction was a DBG_VALUE then put it back.
628  if (FirstDbgValue) {
629    BB->splice(RegionBegin, BB, FirstDbgValue);
630    RegionBegin = FirstDbgValue;
631  }
632
633  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
634         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
635    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
636    MachineInstr *DbgValue = P.first;
637    MachineBasicBlock::iterator OrigPrevMI = P.second;
638    BB->splice(++OrigPrevMI, BB, DbgValue);
639    if (OrigPrevMI == llvm::prior(RegionEnd))
640      RegionEnd = DbgValue;
641  }
642  DbgValues.clear();
643  FirstDbgValue = NULL;
644}
645
646#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
647void ScheduleDAGMI::dumpSchedule() const {
648  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
649    if (SUnit *SU = getSUnit(&(*MI)))
650      SU->dump(this);
651    else
652      dbgs() << "Missing SUnit\n";
653  }
654}
655#endif
656
657//===----------------------------------------------------------------------===//
658// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
659//===----------------------------------------------------------------------===//
660
661namespace {
662/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
663/// the schedule.
664class ConvergingScheduler : public MachineSchedStrategy {
665public:
666  /// Represent the type of SchedCandidate found within a single queue.
667  /// pickNodeBidirectional depends on these listed by decreasing priority.
668  enum CandReason {
669    NoCand, SingleExcess, SingleCritical, ResourceReduce, ResourceDemand,
670    BotHeightReduce, BotPathReduce, TopDepthReduce, TopPathReduce,
671    SingleMax, MultiPressure, NextDefUse, NodeOrder};
672
673#ifndef NDEBUG
674  static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
675#endif
676
677  /// Policy for scheduling the next instruction in the candidate's zone.
678  struct CandPolicy {
679    bool ReduceLatency;
680    unsigned ReduceResIdx;
681    unsigned DemandResIdx;
682
683    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
684  };
685
686  /// Status of an instruction's critical resource consumption.
687  struct SchedResourceDelta {
688    // Count critical resources in the scheduled region required by SU.
689    unsigned CritResources;
690
691    // Count critical resources from another region consumed by SU.
692    unsigned DemandedResources;
693
694    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
695
696    bool operator==(const SchedResourceDelta &RHS) const {
697      return CritResources == RHS.CritResources
698        && DemandedResources == RHS.DemandedResources;
699    }
700    bool operator!=(const SchedResourceDelta &RHS) const {
701      return !operator==(RHS);
702    }
703  };
704
705  /// Store the state used by ConvergingScheduler heuristics, required for the
706  /// lifetime of one invocation of pickNode().
707  struct SchedCandidate {
708    CandPolicy Policy;
709
710    // The best SUnit candidate.
711    SUnit *SU;
712
713    // The reason for this candidate.
714    CandReason Reason;
715
716    // Register pressure values for the best candidate.
717    RegPressureDelta RPDelta;
718
719    // Critical resource consumption of the best candidate.
720    SchedResourceDelta ResDelta;
721
722    SchedCandidate(const CandPolicy &policy)
723    : Policy(policy), SU(NULL), Reason(NoCand) {}
724
725    bool isValid() const { return SU; }
726
727    // Copy the status of another candidate without changing policy.
728    void setBest(SchedCandidate &Best) {
729      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
730      SU = Best.SU;
731      Reason = Best.Reason;
732      RPDelta = Best.RPDelta;
733      ResDelta = Best.ResDelta;
734    }
735
736    void initResourceDelta(const ScheduleDAGMI *DAG,
737                           const TargetSchedModel *SchedModel);
738  };
739
740  /// Summarize the unscheduled region.
741  struct SchedRemainder {
742    // Critical path through the DAG in expected latency.
743    unsigned CriticalPath;
744
745    // Unscheduled resources
746    SmallVector<unsigned, 16> RemainingCounts;
747    // Critical resource for the unscheduled zone.
748    unsigned CritResIdx;
749    // Number of micro-ops left to schedule.
750    unsigned RemainingMicroOps;
751    // Is the unscheduled zone resource limited.
752    bool IsResourceLimited;
753
754    unsigned MaxRemainingCount;
755
756    void reset() {
757      CriticalPath = 0;
758      RemainingCounts.clear();
759      CritResIdx = 0;
760      RemainingMicroOps = 0;
761      IsResourceLimited = false;
762      MaxRemainingCount = 0;
763    }
764
765    SchedRemainder() { reset(); }
766
767    void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
768  };
769
770  /// Each Scheduling boundary is associated with ready queues. It tracks the
771  /// current cycle in the direction of movement, and maintains the state
772  /// of "hazards" and other interlocks at the current cycle.
773  struct SchedBoundary {
774    ScheduleDAGMI *DAG;
775    const TargetSchedModel *SchedModel;
776    SchedRemainder *Rem;
777
778    ReadyQueue Available;
779    ReadyQueue Pending;
780    bool CheckPending;
781
782    // For heuristics, keep a list of the nodes that immediately depend on the
783    // most recently scheduled node.
784    SmallPtrSet<const SUnit*, 8> NextSUs;
785
786    ScheduleHazardRecognizer *HazardRec;
787
788    unsigned CurrCycle;
789    unsigned IssueCount;
790
791    /// MinReadyCycle - Cycle of the soonest available instruction.
792    unsigned MinReadyCycle;
793
794    // The expected latency of the critical path in this scheduled zone.
795    unsigned ExpectedLatency;
796
797    // Resources used in the scheduled zone beyond this boundary.
798    SmallVector<unsigned, 16> ResourceCounts;
799
800    // Cache the critical resources ID in this scheduled zone.
801    unsigned CritResIdx;
802
803    // Is the scheduled region resource limited vs. latency limited.
804    bool IsResourceLimited;
805
806    unsigned ExpectedCount;
807
808    // Policy flag: attempt to find ILP until expected latency is covered.
809    bool ShouldIncreaseILP;
810
811#ifndef NDEBUG
812    // Remember the greatest min operand latency.
813    unsigned MaxMinLatency;
814#endif
815
816    void reset() {
817      Available.clear();
818      Pending.clear();
819      CheckPending = false;
820      NextSUs.clear();
821      HazardRec = 0;
822      CurrCycle = 0;
823      IssueCount = 0;
824      MinReadyCycle = UINT_MAX;
825      ExpectedLatency = 0;
826      ResourceCounts.resize(1);
827      assert(!ResourceCounts[0] && "nonzero count for bad resource");
828      CritResIdx = 0;
829      IsResourceLimited = false;
830      ExpectedCount = 0;
831      ShouldIncreaseILP = false;
832#ifndef NDEBUG
833      MaxMinLatency = 0;
834#endif
835      // Reserve a zero-count for invalid CritResIdx.
836      ResourceCounts.resize(1);
837    }
838
839    /// Pending queues extend the ready queues with the same ID and the
840    /// PendingFlag set.
841    SchedBoundary(unsigned ID, const Twine &Name):
842      DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
843      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P") {
844      reset();
845    }
846
847    ~SchedBoundary() { delete HazardRec; }
848
849    void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
850              SchedRemainder *rem);
851
852    bool isTop() const {
853      return Available.getID() == ConvergingScheduler::TopQID;
854    }
855
856    unsigned getUnscheduledLatency(SUnit *SU) const {
857      if (isTop())
858        return SU->getHeight();
859      return SU->getDepth();
860    }
861
862    unsigned getCriticalCount() const {
863      return ResourceCounts[CritResIdx];
864    }
865
866    bool checkHazard(SUnit *SU);
867
868    void checkILPPolicy();
869
870    void releaseNode(SUnit *SU, unsigned ReadyCycle);
871
872    void bumpCycle();
873
874    void countResource(unsigned PIdx, unsigned Cycles);
875
876    void bumpNode(SUnit *SU);
877
878    void releasePending();
879
880    void removeReady(SUnit *SU);
881
882    SUnit *pickOnlyChoice();
883  };
884
885private:
886  ScheduleDAGMI *DAG;
887  const TargetSchedModel *SchedModel;
888  const TargetRegisterInfo *TRI;
889
890  // State of the top and bottom scheduled instruction boundaries.
891  SchedRemainder Rem;
892  SchedBoundary Top;
893  SchedBoundary Bot;
894
895public:
896  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
897  enum {
898    TopQID = 1,
899    BotQID = 2,
900    LogMaxQID = 2
901  };
902
903  ConvergingScheduler():
904    DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
905
906  virtual void initialize(ScheduleDAGMI *dag);
907
908  virtual SUnit *pickNode(bool &IsTopNode);
909
910  virtual void schedNode(SUnit *SU, bool IsTopNode);
911
912  virtual void releaseTopNode(SUnit *SU);
913
914  virtual void releaseBottomNode(SUnit *SU);
915
916  virtual void registerRoots();
917
918protected:
919  void balanceZones(
920    ConvergingScheduler::SchedBoundary &CriticalZone,
921    ConvergingScheduler::SchedCandidate &CriticalCand,
922    ConvergingScheduler::SchedBoundary &OppositeZone,
923    ConvergingScheduler::SchedCandidate &OppositeCand);
924
925  void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
926                           ConvergingScheduler::SchedCandidate &BotCand);
927
928  void tryCandidate(SchedCandidate &Cand,
929                    SchedCandidate &TryCand,
930                    SchedBoundary &Zone,
931                    const RegPressureTracker &RPTracker,
932                    RegPressureTracker &TempTracker);
933
934  SUnit *pickNodeBidirectional(bool &IsTopNode);
935
936  void pickNodeFromQueue(SchedBoundary &Zone,
937                         const RegPressureTracker &RPTracker,
938                         SchedCandidate &Candidate);
939
940#ifndef NDEBUG
941  void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone);
942#endif
943};
944} // namespace
945
946void ConvergingScheduler::SchedRemainder::
947init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
948  reset();
949  if (!SchedModel->hasInstrSchedModel())
950    return;
951  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
952  for (std::vector<SUnit>::iterator
953         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
954    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
955    RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
956    for (TargetSchedModel::ProcResIter
957           PI = SchedModel->getWriteProcResBegin(SC),
958           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
959      unsigned PIdx = PI->ProcResourceIdx;
960      unsigned Factor = SchedModel->getResourceFactor(PIdx);
961      RemainingCounts[PIdx] += (Factor * PI->Cycles);
962    }
963  }
964}
965
966void ConvergingScheduler::SchedBoundary::
967init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
968  reset();
969  DAG = dag;
970  SchedModel = smodel;
971  Rem = rem;
972  if (SchedModel->hasInstrSchedModel())
973    ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
974}
975
976void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
977  DAG = dag;
978  SchedModel = DAG->getSchedModel();
979  TRI = DAG->TRI;
980  Rem.init(DAG, SchedModel);
981  Top.init(DAG, SchedModel, &Rem);
982  Bot.init(DAG, SchedModel, &Rem);
983
984  // Initialize resource counts.
985
986  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
987  // are disabled, then these HazardRecs will be disabled.
988  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
989  const TargetMachine &TM = DAG->MF.getTarget();
990  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
991  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
992
993  assert((!ForceTopDown || !ForceBottomUp) &&
994         "-misched-topdown incompatible with -misched-bottomup");
995}
996
997void ConvergingScheduler::releaseTopNode(SUnit *SU) {
998  if (SU->isScheduled)
999    return;
1000
1001  for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1002       I != E; ++I) {
1003    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1004    unsigned MinLatency = I->getMinLatency();
1005#ifndef NDEBUG
1006    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
1007#endif
1008    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
1009      SU->TopReadyCycle = PredReadyCycle + MinLatency;
1010  }
1011  Top.releaseNode(SU, SU->TopReadyCycle);
1012}
1013
1014void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
1015  if (SU->isScheduled)
1016    return;
1017
1018  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1019
1020  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1021       I != E; ++I) {
1022    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1023    unsigned MinLatency = I->getMinLatency();
1024#ifndef NDEBUG
1025    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
1026#endif
1027    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
1028      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
1029  }
1030  Bot.releaseNode(SU, SU->BotReadyCycle);
1031}
1032
1033void ConvergingScheduler::registerRoots() {
1034  Rem.CriticalPath = DAG->ExitSU.getDepth();
1035  // Some roots may not feed into ExitSU. Check all of them in case.
1036  for (std::vector<SUnit*>::const_iterator
1037         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1038    if ((*I)->getDepth() > Rem.CriticalPath)
1039      Rem.CriticalPath = (*I)->getDepth();
1040  }
1041  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1042}
1043
1044/// Does this SU have a hazard within the current instruction group.
1045///
1046/// The scheduler supports two modes of hazard recognition. The first is the
1047/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1048/// supports highly complicated in-order reservation tables
1049/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1050///
1051/// The second is a streamlined mechanism that checks for hazards based on
1052/// simple counters that the scheduler itself maintains. It explicitly checks
1053/// for instruction dispatch limitations, including the number of micro-ops that
1054/// can dispatch per cycle.
1055///
1056/// TODO: Also check whether the SU must start a new group.
1057bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1058  if (HazardRec->isEnabled())
1059    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1060
1061  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1062  if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
1063    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1064          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1065    return true;
1066  }
1067  return false;
1068}
1069
1070/// If expected latency is covered, disable ILP policy.
1071void ConvergingScheduler::SchedBoundary::checkILPPolicy() {
1072  if (ShouldIncreaseILP
1073      && (IsResourceLimited || ExpectedLatency <= CurrCycle)) {
1074    ShouldIncreaseILP = false;
1075    DEBUG(dbgs() << "Disable ILP: " << Available.getName() << '\n');
1076  }
1077}
1078
1079void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
1080                                                     unsigned ReadyCycle) {
1081
1082  if (ReadyCycle < MinReadyCycle)
1083    MinReadyCycle = ReadyCycle;
1084
1085  // Check for interlocks first. For the purpose of other heuristics, an
1086  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1087  if (ReadyCycle > CurrCycle || checkHazard(SU))
1088    Pending.push(SU);
1089  else
1090    Available.push(SU);
1091
1092  // Record this node as an immediate dependent of the scheduled node.
1093  NextSUs.insert(SU);
1094
1095  // If CriticalPath has been computed, then check if the unscheduled nodes
1096  // exceed the ILP window. Before registerRoots, CriticalPath==0.
1097  if (Rem->CriticalPath && (ExpectedLatency + getUnscheduledLatency(SU)
1098                            > Rem->CriticalPath + ILPWindow)) {
1099    ShouldIncreaseILP = true;
1100    DEBUG(dbgs() << "Increase ILP: " << Available.getName() << " "
1101          << ExpectedLatency << " + " << getUnscheduledLatency(SU) << '\n');
1102  }
1103}
1104
1105/// Move the boundary of scheduled code by one cycle.
1106void ConvergingScheduler::SchedBoundary::bumpCycle() {
1107  unsigned Width = SchedModel->getIssueWidth();
1108  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
1109
1110  unsigned NextCycle = CurrCycle + 1;
1111  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1112  if (MinReadyCycle > NextCycle) {
1113    IssueCount = 0;
1114    NextCycle = MinReadyCycle;
1115  }
1116
1117  if (!HazardRec->isEnabled()) {
1118    // Bypass HazardRec virtual calls.
1119    CurrCycle = NextCycle;
1120  }
1121  else {
1122    // Bypass getHazardType calls in case of long latency.
1123    for (; CurrCycle != NextCycle; ++CurrCycle) {
1124      if (isTop())
1125        HazardRec->AdvanceCycle();
1126      else
1127        HazardRec->RecedeCycle();
1128    }
1129  }
1130  CheckPending = true;
1131  IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
1132
1133  DEBUG(dbgs() << "  *** " << Available.getName() << " cycle "
1134        << CurrCycle << '\n');
1135}
1136
1137/// Add the given processor resource to this scheduled zone.
1138void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
1139                                                       unsigned Cycles) {
1140  unsigned Factor = SchedModel->getResourceFactor(PIdx);
1141  DEBUG(dbgs() << "  " << SchedModel->getProcResource(PIdx)->Name
1142        << " +(" << Cycles << "x" << Factor
1143        << ") / " << SchedModel->getLatencyFactor() << '\n');
1144
1145  unsigned Count = Factor * Cycles;
1146  ResourceCounts[PIdx] += Count;
1147  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1148  Rem->RemainingCounts[PIdx] -= Count;
1149
1150  // Reset MaxRemainingCount for sanity.
1151  Rem->MaxRemainingCount = 0;
1152
1153  // Check if this resource exceeds the current critical resource by a full
1154  // cycle. If so, it becomes the critical resource.
1155  if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
1156      >= (int)SchedModel->getLatencyFactor()) {
1157    CritResIdx = PIdx;
1158    DEBUG(dbgs() << "  *** Critical resource "
1159          << SchedModel->getProcResource(PIdx)->Name << " x"
1160          << ResourceCounts[PIdx] << '\n');
1161  }
1162}
1163
1164/// Move the boundary of scheduled code by one SUnit.
1165void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
1166  // Update the reservation table.
1167  if (HazardRec->isEnabled()) {
1168    if (!isTop() && SU->isCall) {
1169      // Calls are scheduled with their preceding instructions. For bottom-up
1170      // scheduling, clear the pipeline state before emitting.
1171      HazardRec->Reset();
1172    }
1173    HazardRec->EmitInstruction(SU);
1174  }
1175  // Update resource counts and critical resource.
1176  if (SchedModel->hasInstrSchedModel()) {
1177    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1178    Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
1179    for (TargetSchedModel::ProcResIter
1180           PI = SchedModel->getWriteProcResBegin(SC),
1181           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1182      countResource(PI->ProcResourceIdx, PI->Cycles);
1183    }
1184  }
1185  if (isTop()) {
1186    if (SU->getDepth() > ExpectedLatency)
1187      ExpectedLatency = SU->getDepth();
1188  }
1189  else {
1190    if (SU->getHeight() > ExpectedLatency)
1191      ExpectedLatency = SU->getHeight();
1192  }
1193
1194  IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
1195
1196  // Check the instruction group dispatch limit.
1197  // TODO: Check if this SU must end a dispatch group.
1198  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
1199
1200  // checkHazard prevents scheduling multiple instructions per cycle that exceed
1201  // issue width. However, we commonly reach the maximum. In this case
1202  // opportunistically bump the cycle to avoid uselessly checking everything in
1203  // the readyQ. Furthermore, a single instruction may produce more than one
1204  // cycle's worth of micro-ops.
1205  if (IssueCount >= SchedModel->getIssueWidth()) {
1206    DEBUG(dbgs() << "  *** Max instrs at cycle " << CurrCycle << '\n');
1207    bumpCycle();
1208  }
1209}
1210
1211/// Release pending ready nodes in to the available queue. This makes them
1212/// visible to heuristics.
1213void ConvergingScheduler::SchedBoundary::releasePending() {
1214  // If the available queue is empty, it is safe to reset MinReadyCycle.
1215  if (Available.empty())
1216    MinReadyCycle = UINT_MAX;
1217
1218  // Check to see if any of the pending instructions are ready to issue.  If
1219  // so, add them to the available queue.
1220  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
1221    SUnit *SU = *(Pending.begin()+i);
1222    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
1223
1224    if (ReadyCycle < MinReadyCycle)
1225      MinReadyCycle = ReadyCycle;
1226
1227    if (ReadyCycle > CurrCycle)
1228      continue;
1229
1230    if (checkHazard(SU))
1231      continue;
1232
1233    Available.push(SU);
1234    Pending.remove(Pending.begin()+i);
1235    --i; --e;
1236  }
1237  DEBUG(if (!Pending.empty()) Pending.dump());
1238  CheckPending = false;
1239}
1240
1241/// Remove SU from the ready set for this boundary.
1242void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
1243  if (Available.isInQueue(SU))
1244    Available.remove(Available.find(SU));
1245  else {
1246    assert(Pending.isInQueue(SU) && "bad ready count");
1247    Pending.remove(Pending.find(SU));
1248  }
1249}
1250
1251/// If this queue only has one ready candidate, return it. As a side effect,
1252/// defer any nodes that now hit a hazard, and advance the cycle until at least
1253/// one node is ready. If multiple instructions are ready, return NULL.
1254SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
1255  if (CheckPending)
1256    releasePending();
1257
1258  if (IssueCount > 0) {
1259    // Defer any ready instrs that now have a hazard.
1260    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
1261      if (checkHazard(*I)) {
1262        Pending.push(*I);
1263        I = Available.remove(I);
1264        continue;
1265      }
1266      ++I;
1267    }
1268  }
1269  for (unsigned i = 0; Available.empty(); ++i) {
1270    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
1271           "permanent hazard"); (void)i;
1272    bumpCycle();
1273    releasePending();
1274  }
1275  if (Available.size() == 1)
1276    return *Available.begin();
1277  return NULL;
1278}
1279
1280/// Record the candidate policy for opposite zones with different critical
1281/// resources.
1282///
1283/// If the CriticalZone is latency limited, don't force a policy for the
1284/// candidates here. Instead, When releasing each candidate, releaseNode
1285/// compares the region's critical path to the candidate's height or depth and
1286/// the scheduled zone's expected latency then sets ShouldIncreaseILP.
1287void ConvergingScheduler::balanceZones(
1288  ConvergingScheduler::SchedBoundary &CriticalZone,
1289  ConvergingScheduler::SchedCandidate &CriticalCand,
1290  ConvergingScheduler::SchedBoundary &OppositeZone,
1291  ConvergingScheduler::SchedCandidate &OppositeCand) {
1292
1293  if (!CriticalZone.IsResourceLimited)
1294    return;
1295
1296  SchedRemainder *Rem = CriticalZone.Rem;
1297
1298  // If the critical zone is overconsuming a resource relative to the
1299  // remainder, try to reduce it.
1300  unsigned RemainingCritCount =
1301    Rem->RemainingCounts[CriticalZone.CritResIdx];
1302  if ((int)(Rem->MaxRemainingCount - RemainingCritCount)
1303      > (int)SchedModel->getLatencyFactor()) {
1304    CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
1305    DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce "
1306          << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
1307          << '\n');
1308  }
1309  // If the other zone is underconsuming a resource relative to the full zone,
1310  // try to increase it.
1311  unsigned OppositeCount =
1312    OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
1313  if ((int)(OppositeZone.ExpectedCount - OppositeCount)
1314      > (int)SchedModel->getLatencyFactor()) {
1315    OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
1316    DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand "
1317          << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
1318          << '\n');
1319  }
1320}
1321
1322/// Determine if the scheduled zones exceed resource limits or critical path and
1323/// set each candidate's ReduceHeight policy accordingly.
1324void ConvergingScheduler::checkResourceLimits(
1325  ConvergingScheduler::SchedCandidate &TopCand,
1326  ConvergingScheduler::SchedCandidate &BotCand) {
1327
1328  Bot.checkILPPolicy();
1329  Top.checkILPPolicy();
1330  if (Bot.ShouldIncreaseILP)
1331    BotCand.Policy.ReduceLatency = true;
1332  if (Top.ShouldIncreaseILP)
1333    TopCand.Policy.ReduceLatency = true;
1334
1335  // Handle resource-limited regions.
1336  if (Top.IsResourceLimited && Bot.IsResourceLimited
1337      && Top.CritResIdx == Bot.CritResIdx) {
1338    // If the scheduled critical resource in both zones is no longer the
1339    // critical remaining resource, attempt to reduce resource height both ways.
1340    if (Top.CritResIdx != Rem.CritResIdx) {
1341      TopCand.Policy.ReduceResIdx = Top.CritResIdx;
1342      BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
1343      DEBUG(dbgs() << "Reduce scheduled "
1344            << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
1345    }
1346    return;
1347  }
1348  // Handle latency-limited regions.
1349  if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
1350    // If the total scheduled expected latency exceeds the region's critical
1351    // path then reduce latency both ways.
1352    //
1353    // Just because a zone is not resource limited does not mean it is latency
1354    // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
1355    // to exceed expected latency.
1356    if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
1357        && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
1358      TopCand.Policy.ReduceLatency = true;
1359      BotCand.Policy.ReduceLatency = true;
1360      DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency
1361            << " + " << Bot.ExpectedLatency << '\n');
1362    }
1363    return;
1364  }
1365  // The critical resource is different in each zone, so request balancing.
1366
1367  // Compute the cost of each zone.
1368  Rem.MaxRemainingCount = std::max(
1369    Rem.RemainingMicroOps * SchedModel->getMicroOpFactor(),
1370    Rem.RemainingCounts[Rem.CritResIdx]);
1371  Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
1372  Top.ExpectedCount = std::max(
1373    Top.getCriticalCount(),
1374    Top.ExpectedCount * SchedModel->getLatencyFactor());
1375  Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
1376  Bot.ExpectedCount = std::max(
1377    Bot.getCriticalCount(),
1378    Bot.ExpectedCount * SchedModel->getLatencyFactor());
1379
1380  balanceZones(Top, TopCand, Bot, BotCand);
1381  balanceZones(Bot, BotCand, Top, TopCand);
1382}
1383
1384void ConvergingScheduler::SchedCandidate::
1385initResourceDelta(const ScheduleDAGMI *DAG,
1386                  const TargetSchedModel *SchedModel) {
1387  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
1388    return;
1389
1390  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1391  for (TargetSchedModel::ProcResIter
1392         PI = SchedModel->getWriteProcResBegin(SC),
1393         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1394    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
1395      ResDelta.CritResources += PI->Cycles;
1396    if (PI->ProcResourceIdx == Policy.DemandResIdx)
1397      ResDelta.DemandedResources += PI->Cycles;
1398  }
1399}
1400
1401/// Return true if this heuristic determines order.
1402static bool tryLess(unsigned TryVal, unsigned CandVal,
1403                    ConvergingScheduler::SchedCandidate &TryCand,
1404                    ConvergingScheduler::SchedCandidate &Cand,
1405                    ConvergingScheduler::CandReason Reason) {
1406  if (TryVal < CandVal) {
1407    TryCand.Reason = Reason;
1408    return true;
1409  }
1410  if (TryVal > CandVal) {
1411    if (Cand.Reason > Reason)
1412      Cand.Reason = Reason;
1413    return true;
1414  }
1415  return false;
1416}
1417static bool tryGreater(unsigned TryVal, unsigned CandVal,
1418                       ConvergingScheduler::SchedCandidate &TryCand,
1419                       ConvergingScheduler::SchedCandidate &Cand,
1420                       ConvergingScheduler::CandReason Reason) {
1421  if (TryVal > CandVal) {
1422    TryCand.Reason = Reason;
1423    return true;
1424  }
1425  if (TryVal < CandVal) {
1426    if (Cand.Reason > Reason)
1427      Cand.Reason = Reason;
1428    return true;
1429  }
1430  return false;
1431}
1432
1433/// Apply a set of heursitics to a new candidate. Heuristics are currently
1434/// hierarchical. This may be more efficient than a graduated cost model because
1435/// we don't need to evaluate all aspects of the model for each node in the
1436/// queue. But it's really done to make the heuristics easier to debug and
1437/// statistically analyze.
1438///
1439/// \param Cand provides the policy and current best candidate.
1440/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
1441/// \param Zone describes the scheduled zone that we are extending.
1442/// \param RPTracker describes reg pressure within the scheduled zone.
1443/// \param TempTracker is a scratch pressure tracker to reuse in queries.
1444void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
1445                                       SchedCandidate &TryCand,
1446                                       SchedBoundary &Zone,
1447                                       const RegPressureTracker &RPTracker,
1448                                       RegPressureTracker &TempTracker) {
1449
1450  // Always initialize TryCand's RPDelta.
1451  TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
1452                                  DAG->getRegionCriticalPSets(),
1453                                  DAG->getRegPressure().MaxSetPressure);
1454
1455  // Initialize the candidate if needed.
1456  if (!Cand.isValid()) {
1457    TryCand.Reason = NodeOrder;
1458    return;
1459  }
1460  // Avoid exceeding the target's limit.
1461  if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
1462              Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
1463    return;
1464  if (Cand.Reason == SingleExcess)
1465    Cand.Reason = MultiPressure;
1466
1467  // Avoid increasing the max critical pressure in the scheduled region.
1468  if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
1469              Cand.RPDelta.CriticalMax.UnitIncrease,
1470              TryCand, Cand, SingleCritical))
1471    return;
1472  if (Cand.Reason == SingleCritical)
1473    Cand.Reason = MultiPressure;
1474
1475  // Avoid critical resource consumption and balance the schedule.
1476  TryCand.initResourceDelta(DAG, SchedModel);
1477  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
1478              TryCand, Cand, ResourceReduce))
1479    return;
1480  if (tryGreater(TryCand.ResDelta.DemandedResources,
1481                 Cand.ResDelta.DemandedResources,
1482                 TryCand, Cand, ResourceDemand))
1483    return;
1484
1485  // Avoid serializing long latency dependence chains.
1486  if (Cand.Policy.ReduceLatency) {
1487    if (Zone.isTop()) {
1488      if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
1489          > Zone.ExpectedCount) {
1490        if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
1491                    TryCand, Cand, TopDepthReduce))
1492          return;
1493      }
1494      if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
1495                     TryCand, Cand, TopPathReduce))
1496        return;
1497    }
1498    else {
1499      if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
1500          > Zone.ExpectedCount) {
1501        if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
1502                    TryCand, Cand, BotHeightReduce))
1503          return;
1504      }
1505      if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
1506                     TryCand, Cand, BotPathReduce))
1507        return;
1508    }
1509  }
1510
1511  // Avoid increasing the max pressure of the entire region.
1512  if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
1513              Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
1514    return;
1515  if (Cand.Reason == SingleMax)
1516    Cand.Reason = MultiPressure;
1517
1518  // Prefer immediate defs/users of the last scheduled instruction. This is a
1519  // nice pressure avoidance strategy that also conserves the processor's
1520  // register renaming resources and keeps the machine code readable.
1521  if (Zone.NextSUs.count(TryCand.SU) && !Zone.NextSUs.count(Cand.SU)) {
1522    TryCand.Reason = NextDefUse;
1523    return;
1524  }
1525  if (!Zone.NextSUs.count(TryCand.SU) && Zone.NextSUs.count(Cand.SU)) {
1526    if (Cand.Reason > NextDefUse)
1527      Cand.Reason = NextDefUse;
1528    return;
1529  }
1530  // Fall through to original instruction order.
1531  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
1532      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
1533    TryCand.Reason = NodeOrder;
1534  }
1535}
1536
1537/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
1538/// more desirable than RHS from scheduling standpoint.
1539static bool compareRPDelta(const RegPressureDelta &LHS,
1540                           const RegPressureDelta &RHS) {
1541  // Compare each component of pressure in decreasing order of importance
1542  // without checking if any are valid. Invalid PressureElements are assumed to
1543  // have UnitIncrease==0, so are neutral.
1544
1545  // Avoid increasing the max critical pressure in the scheduled region.
1546  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
1547    DEBUG(dbgs() << "RP excess top - bot: "
1548          << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
1549    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
1550  }
1551  // Avoid increasing the max critical pressure in the scheduled region.
1552  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
1553    DEBUG(dbgs() << "RP critical top - bot: "
1554          << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
1555          << '\n');
1556    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
1557  }
1558  // Avoid increasing the max pressure of the entire region.
1559  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
1560    DEBUG(dbgs() << "RP current top - bot: "
1561          << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
1562          << '\n');
1563    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
1564  }
1565  return false;
1566}
1567
1568#ifndef NDEBUG
1569const char *ConvergingScheduler::getReasonStr(
1570  ConvergingScheduler::CandReason Reason) {
1571  switch (Reason) {
1572  case NoCand:         return "NOCAND    ";
1573  case SingleExcess:   return "REG-EXCESS";
1574  case SingleCritical: return "REG-CRIT  ";
1575  case SingleMax:      return "REG-MAX   ";
1576  case MultiPressure:  return "REG-MULTI ";
1577  case ResourceReduce: return "RES-REDUCE";
1578  case ResourceDemand: return "RES-DEMAND";
1579  case TopDepthReduce: return "TOP-DEPTH ";
1580  case TopPathReduce:  return "TOP-PATH  ";
1581  case BotHeightReduce:return "BOT-HEIGHT";
1582  case BotPathReduce:  return "BOT-PATH  ";
1583  case NextDefUse:     return "DEF-USE   ";
1584  case NodeOrder:      return "ORDER     ";
1585  };
1586  llvm_unreachable("Unknown reason!");
1587}
1588
1589void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand,
1590                                         const SchedBoundary &Zone) {
1591  const char *Label = getReasonStr(Cand.Reason);
1592  PressureElement P;
1593  unsigned ResIdx = 0;
1594  unsigned Latency = 0;
1595  switch (Cand.Reason) {
1596  default:
1597    break;
1598  case SingleExcess:
1599    P = Cand.RPDelta.Excess;
1600    break;
1601  case SingleCritical:
1602    P = Cand.RPDelta.CriticalMax;
1603    break;
1604  case SingleMax:
1605    P = Cand.RPDelta.CurrentMax;
1606    break;
1607  case ResourceReduce:
1608    ResIdx = Cand.Policy.ReduceResIdx;
1609    break;
1610  case ResourceDemand:
1611    ResIdx = Cand.Policy.DemandResIdx;
1612    break;
1613  case TopDepthReduce:
1614    Latency = Cand.SU->getDepth();
1615    break;
1616  case TopPathReduce:
1617    Latency = Cand.SU->getHeight();
1618    break;
1619  case BotHeightReduce:
1620    Latency = Cand.SU->getHeight();
1621    break;
1622  case BotPathReduce:
1623    Latency = Cand.SU->getDepth();
1624    break;
1625  }
1626  dbgs() << Label << " " << Zone.Available.getName() << " ";
1627  if (P.isValid())
1628    dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
1629           << " ";
1630  else
1631    dbgs() << "     ";
1632  if (ResIdx)
1633    dbgs() << SchedModel->getProcResource(ResIdx)->Name << " ";
1634  else
1635    dbgs() << "        ";
1636  if (Latency)
1637    dbgs() << Latency << " cycles ";
1638  else
1639    dbgs() << "         ";
1640  Cand.SU->dump(DAG);
1641}
1642#endif
1643
1644/// Pick the best candidate from the top queue.
1645///
1646/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
1647/// DAG building. To adjust for the current scheduling location we need to
1648/// maintain the number of vreg uses remaining to be top-scheduled.
1649void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
1650                                            const RegPressureTracker &RPTracker,
1651                                            SchedCandidate &Cand) {
1652  ReadyQueue &Q = Zone.Available;
1653
1654  DEBUG(Q.dump());
1655
1656  // getMaxPressureDelta temporarily modifies the tracker.
1657  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
1658
1659  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
1660
1661    SchedCandidate TryCand(Cand.Policy);
1662    TryCand.SU = *I;
1663    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
1664    if (TryCand.Reason != NoCand) {
1665      // Initialize resource delta if needed in case future heuristics query it.
1666      if (TryCand.ResDelta == SchedResourceDelta())
1667        TryCand.initResourceDelta(DAG, SchedModel);
1668      Cand.setBest(TryCand);
1669      DEBUG(traceCandidate(Cand, Zone));
1670    }
1671    TryCand.SU = *I;
1672  }
1673}
1674
1675static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
1676                      bool IsTop) {
1677  DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot")
1678        << " SU(" << Cand.SU->NodeNum << ") "
1679        << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
1680}
1681
1682/// Pick the best candidate node from either the top or bottom queue.
1683SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
1684  // Schedule as far as possible in the direction of no choice. This is most
1685  // efficient, but also provides the best heuristics for CriticalPSets.
1686  if (SUnit *SU = Bot.pickOnlyChoice()) {
1687    IsTopNode = false;
1688    return SU;
1689  }
1690  if (SUnit *SU = Top.pickOnlyChoice()) {
1691    IsTopNode = true;
1692    return SU;
1693  }
1694  CandPolicy NoPolicy;
1695  SchedCandidate BotCand(NoPolicy);
1696  SchedCandidate TopCand(NoPolicy);
1697  checkResourceLimits(TopCand, BotCand);
1698
1699  // Prefer bottom scheduling when heuristics are silent.
1700  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
1701  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
1702
1703  // If either Q has a single candidate that provides the least increase in
1704  // Excess pressure, we can immediately schedule from that Q.
1705  //
1706  // RegionCriticalPSets summarizes the pressure within the scheduled region and
1707  // affects picking from either Q. If scheduling in one direction must
1708  // increase pressure for one of the excess PSets, then schedule in that
1709  // direction first to provide more freedom in the other direction.
1710  if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
1711    IsTopNode = false;
1712    tracePick(BotCand, IsTopNode);
1713    return BotCand.SU;
1714  }
1715  // Check if the top Q has a better candidate.
1716  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
1717  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
1718
1719  // If either Q has a single candidate that minimizes pressure above the
1720  // original region's pressure pick it.
1721  if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
1722    if (TopCand.Reason < BotCand.Reason) {
1723      IsTopNode = true;
1724      tracePick(TopCand, IsTopNode);
1725      return TopCand.SU;
1726    }
1727    IsTopNode = false;
1728    tracePick(BotCand, IsTopNode);
1729    return BotCand.SU;
1730  }
1731  // Check for a salient pressure difference and pick the best from either side.
1732  if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
1733    IsTopNode = true;
1734    tracePick(TopCand, IsTopNode);
1735    return TopCand.SU;
1736  }
1737  // Otherwise prefer the bottom candidate, in node order if all else failed.
1738  if (TopCand.Reason < BotCand.Reason) {
1739    IsTopNode = true;
1740    tracePick(TopCand, IsTopNode);
1741    return TopCand.SU;
1742  }
1743  IsTopNode = false;
1744  tracePick(BotCand, IsTopNode);
1745  return BotCand.SU;
1746}
1747
1748/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
1749SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
1750  if (DAG->top() == DAG->bottom()) {
1751    assert(Top.Available.empty() && Top.Pending.empty() &&
1752           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
1753    return NULL;
1754  }
1755  SUnit *SU;
1756  do {
1757    if (ForceTopDown) {
1758      SU = Top.pickOnlyChoice();
1759      if (!SU) {
1760        CandPolicy NoPolicy;
1761        SchedCandidate TopCand(NoPolicy);
1762        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
1763        assert(TopCand.Reason != NoCand && "failed to find the first candidate");
1764        SU = TopCand.SU;
1765      }
1766      IsTopNode = true;
1767    }
1768    else if (ForceBottomUp) {
1769      SU = Bot.pickOnlyChoice();
1770      if (!SU) {
1771        CandPolicy NoPolicy;
1772        SchedCandidate BotCand(NoPolicy);
1773        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
1774        assert(BotCand.Reason != NoCand && "failed to find the first candidate");
1775        SU = BotCand.SU;
1776      }
1777      IsTopNode = false;
1778    }
1779    else {
1780      SU = pickNodeBidirectional(IsTopNode);
1781    }
1782  } while (SU->isScheduled);
1783
1784  if (SU->isTopReady())
1785    Top.removeReady(SU);
1786  if (SU->isBottomReady())
1787    Bot.removeReady(SU);
1788
1789  DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
1790        << " Scheduling Instruction in cycle "
1791        << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
1792        SU->dump(DAG));
1793  return SU;
1794}
1795
1796/// Update the scheduler's state after scheduling a node. This is the same node
1797/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
1798/// it's state based on the current cycle before MachineSchedStrategy does.
1799void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
1800  if (IsTopNode) {
1801    SU->TopReadyCycle = Top.CurrCycle;
1802    Top.bumpNode(SU);
1803  }
1804  else {
1805    SU->BotReadyCycle = Bot.CurrCycle;
1806    Bot.bumpNode(SU);
1807  }
1808}
1809
1810/// Create the standard converging machine scheduler. This will be used as the
1811/// default scheduler if the target does not set a default.
1812static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
1813  assert((!ForceTopDown || !ForceBottomUp) &&
1814         "-misched-topdown incompatible with -misched-bottomup");
1815  return new ScheduleDAGMI(C, new ConvergingScheduler());
1816}
1817static MachineSchedRegistry
1818ConvergingSchedRegistry("converge", "Standard converging scheduler.",
1819                        createConvergingSched);
1820
1821//===----------------------------------------------------------------------===//
1822// ILP Scheduler. Currently for experimental analysis of heuristics.
1823//===----------------------------------------------------------------------===//
1824
1825namespace {
1826/// \brief Order nodes by the ILP metric.
1827struct ILPOrder {
1828  ScheduleDAGILP *ILP;
1829  bool MaximizeILP;
1830
1831  ILPOrder(ScheduleDAGILP *ilp, bool MaxILP): ILP(ilp), MaximizeILP(MaxILP) {}
1832
1833  /// \brief Apply a less-than relation on node priority.
1834  bool operator()(const SUnit *A, const SUnit *B) const {
1835    // Return true if A comes after B in the Q.
1836    if (MaximizeILP)
1837      return ILP->getILP(A) < ILP->getILP(B);
1838    else
1839      return ILP->getILP(A) > ILP->getILP(B);
1840  }
1841};
1842
1843/// \brief Schedule based on the ILP metric.
1844class ILPScheduler : public MachineSchedStrategy {
1845  ScheduleDAGILP ILP;
1846  ILPOrder Cmp;
1847
1848  std::vector<SUnit*> ReadyQ;
1849public:
1850  ILPScheduler(bool MaximizeILP)
1851  : ILP(/*BottomUp=*/true), Cmp(&ILP, MaximizeILP) {}
1852
1853  virtual void initialize(ScheduleDAGMI *DAG) {
1854    ReadyQ.clear();
1855    ILP.resize(DAG->SUnits.size());
1856  }
1857
1858  virtual void registerRoots() {
1859    for (std::vector<SUnit*>::const_iterator
1860           I = ReadyQ.begin(), E = ReadyQ.end(); I != E; ++I) {
1861      ILP.computeILP(*I);
1862    }
1863  }
1864
1865  /// Implement MachineSchedStrategy interface.
1866  /// -----------------------------------------
1867
1868  virtual SUnit *pickNode(bool &IsTopNode) {
1869    if (ReadyQ.empty()) return NULL;
1870    pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
1871    SUnit *SU = ReadyQ.back();
1872    ReadyQ.pop_back();
1873    IsTopNode = false;
1874    DEBUG(dbgs() << "*** Scheduling " << *SU->getInstr()
1875          << " ILP: " << ILP.getILP(SU) << '\n');
1876    return SU;
1877  }
1878
1879  virtual void schedNode(SUnit *, bool) {}
1880
1881  virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
1882
1883  virtual void releaseBottomNode(SUnit *SU) {
1884    ReadyQ.push_back(SU);
1885    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
1886  }
1887};
1888} // namespace
1889
1890static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
1891  return new ScheduleDAGMI(C, new ILPScheduler(true));
1892}
1893static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
1894  return new ScheduleDAGMI(C, new ILPScheduler(false));
1895}
1896static MachineSchedRegistry ILPMaxRegistry(
1897  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
1898static MachineSchedRegistry ILPMinRegistry(
1899  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
1900
1901//===----------------------------------------------------------------------===//
1902// Machine Instruction Shuffler for Correctness Testing
1903//===----------------------------------------------------------------------===//
1904
1905#ifndef NDEBUG
1906namespace {
1907/// Apply a less-than relation on the node order, which corresponds to the
1908/// instruction order prior to scheduling. IsReverse implements greater-than.
1909template<bool IsReverse>
1910struct SUnitOrder {
1911  bool operator()(SUnit *A, SUnit *B) const {
1912    if (IsReverse)
1913      return A->NodeNum > B->NodeNum;
1914    else
1915      return A->NodeNum < B->NodeNum;
1916  }
1917};
1918
1919/// Reorder instructions as much as possible.
1920class InstructionShuffler : public MachineSchedStrategy {
1921  bool IsAlternating;
1922  bool IsTopDown;
1923
1924  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
1925  // gives nodes with a higher number higher priority causing the latest
1926  // instructions to be scheduled first.
1927  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
1928    TopQ;
1929  // When scheduling bottom-up, use greater-than as the queue priority.
1930  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
1931    BottomQ;
1932public:
1933  InstructionShuffler(bool alternate, bool topdown)
1934    : IsAlternating(alternate), IsTopDown(topdown) {}
1935
1936  virtual void initialize(ScheduleDAGMI *) {
1937    TopQ.clear();
1938    BottomQ.clear();
1939  }
1940
1941  /// Implement MachineSchedStrategy interface.
1942  /// -----------------------------------------
1943
1944  virtual SUnit *pickNode(bool &IsTopNode) {
1945    SUnit *SU;
1946    if (IsTopDown) {
1947      do {
1948        if (TopQ.empty()) return NULL;
1949        SU = TopQ.top();
1950        TopQ.pop();
1951      } while (SU->isScheduled);
1952      IsTopNode = true;
1953    }
1954    else {
1955      do {
1956        if (BottomQ.empty()) return NULL;
1957        SU = BottomQ.top();
1958        BottomQ.pop();
1959      } while (SU->isScheduled);
1960      IsTopNode = false;
1961    }
1962    if (IsAlternating)
1963      IsTopDown = !IsTopDown;
1964    return SU;
1965  }
1966
1967  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
1968
1969  virtual void releaseTopNode(SUnit *SU) {
1970    TopQ.push(SU);
1971  }
1972  virtual void releaseBottomNode(SUnit *SU) {
1973    BottomQ.push(SU);
1974  }
1975};
1976} // namespace
1977
1978static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
1979  bool Alternate = !ForceTopDown && !ForceBottomUp;
1980  bool TopDown = !ForceBottomUp;
1981  assert((TopDown || !ForceTopDown) &&
1982         "-misched-topdown incompatible with -misched-bottomup");
1983  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
1984}
1985static MachineSchedRegistry ShufflerRegistry(
1986  "shuffle", "Shuffle machine instructions alternating directions",
1987  createInstructionShuffler);
1988#endif // !NDEBUG
1989