MachineScheduler.cpp revision cb058d51db44d47b57fc4705fea00209174d6577
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "llvm/CodeGen/LiveIntervalAnalysis.h"
18#include "llvm/CodeGen/MachineScheduler.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/ScheduleDAGInstrs.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/ADT/OwningPtr.h"
28
29#include <queue>
30
31using namespace llvm;
32
33#ifndef NDEBUG
34static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
35  cl::desc("Pop up a window to show MISched dags after they are processed"));
36#else
37static bool ViewMISchedDAGs = false;
38#endif // NDEBUG
39
40//===----------------------------------------------------------------------===//
41// Machine Instruction Scheduling Pass and Registry
42//===----------------------------------------------------------------------===//
43
44namespace {
45/// MachineScheduler runs after coalescing and before register allocation.
46class MachineScheduler : public MachineSchedContext,
47                         public MachineFunctionPass {
48public:
49  MachineScheduler();
50
51  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
52
53  virtual void releaseMemory() {}
54
55  virtual bool runOnMachineFunction(MachineFunction&);
56
57  virtual void print(raw_ostream &O, const Module* = 0) const;
58
59  static char ID; // Class identification, replacement for typeinfo
60};
61} // namespace
62
63char MachineScheduler::ID = 0;
64
65char &llvm::MachineSchedulerID = MachineScheduler::ID;
66
67INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
68                      "Machine Instruction Scheduler", false, false)
69INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
70INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
71INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
72INITIALIZE_PASS_END(MachineScheduler, "misched",
73                    "Machine Instruction Scheduler", false, false)
74
75MachineScheduler::MachineScheduler()
76: MachineFunctionPass(ID) {
77  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
78}
79
80void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
81  AU.setPreservesCFG();
82  AU.addRequiredID(MachineDominatorsID);
83  AU.addRequired<MachineLoopInfo>();
84  AU.addRequired<AliasAnalysis>();
85  AU.addRequired<TargetPassConfig>();
86  AU.addRequired<SlotIndexes>();
87  AU.addPreserved<SlotIndexes>();
88  AU.addRequired<LiveIntervals>();
89  AU.addPreserved<LiveIntervals>();
90  MachineFunctionPass::getAnalysisUsage(AU);
91}
92
93MachinePassRegistry MachineSchedRegistry::Registry;
94
95/// A dummy default scheduler factory indicates whether the scheduler
96/// is overridden on the command line.
97static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
98  return 0;
99}
100
101/// MachineSchedOpt allows command line selection of the scheduler.
102static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
103               RegisterPassParser<MachineSchedRegistry> >
104MachineSchedOpt("misched",
105                cl::init(&useDefaultMachineSched), cl::Hidden,
106                cl::desc("Machine instruction scheduler to use"));
107
108static MachineSchedRegistry
109SchedDefaultRegistry("default", "Use the target's default scheduler choice.",
110                     useDefaultMachineSched);
111
112/// Forward declare the common machine scheduler. This will be used as the
113/// default scheduler if the target does not set a default.
114static ScheduleDAGInstrs *createCommonMachineSched(MachineSchedContext *C);
115
116/// Top-level MachineScheduler pass driver.
117///
118/// Visit blocks in function order. Divide each block into scheduling regions
119/// and visit them bottom-up. This is consistent with the DAG builder, which
120/// traverses scheduling regions bottom-up, but not essential.
121///
122/// This design avoids exposing scheduling boundaries to the DAG builder,
123/// simplifying the DAG builder's support for "special" target instructions,
124/// while at the same time allowing target schedulers to operate across
125/// scheduling boundaries, for example to bundle the boudary instructions
126/// without reordering them. This creates complexity, because the target
127/// scheduler must update the RegionBegin and RegionEnd positions cached by
128/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
129/// design would be to split blocks at scheduling boundaries, but LLVM has a
130/// general bias against block splitting purely for implementation simplicity.
131bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
132  // Initialize the context of the pass.
133  MF = &mf;
134  MLI = &getAnalysis<MachineLoopInfo>();
135  MDT = &getAnalysis<MachineDominatorTree>();
136  PassConfig = &getAnalysis<TargetPassConfig>();
137  AA = &getAnalysis<AliasAnalysis>();
138
139  LIS = &getAnalysis<LiveIntervals>();
140  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
141
142  // Select the scheduler, or set the default.
143  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
144  if (Ctor == useDefaultMachineSched) {
145    // Get the default scheduler set by the target.
146    Ctor = MachineSchedRegistry::getDefault();
147    if (!Ctor) {
148      Ctor = createCommonMachineSched;
149      MachineSchedRegistry::setDefault(Ctor);
150    }
151  }
152  // Instantiate the selected scheduler.
153  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
154
155  // Visit all machine basic blocks.
156  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
157       MBB != MBBEnd; ++MBB) {
158
159    Scheduler->startBlock(MBB);
160
161    // Break the block into scheduling regions [I, RegionEnd), and schedule each
162    // region as soon as it is discovered. RegionEnd points the the scheduling
163    // boundary at the bottom of the region. The DAG does not include RegionEnd,
164    // but the region does (i.e. the next RegionEnd is above the previous
165    // RegionBegin). If the current block has no terminator then RegionEnd ==
166    // MBB->end() for the bottom region.
167    //
168    // The Scheduler may insert instructions during either schedule() or
169    // exitRegion(), even for empty regions. So the local iterators 'I' and
170    // 'RegionEnd' are invalid across these calls.
171    unsigned RemainingCount = MBB->size();
172    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
173        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
174      // Avoid decrementing RegionEnd for blocks with no terminator.
175      if (RegionEnd != MBB->end()
176          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
177        --RegionEnd;
178        // Count the boundary instruction.
179        --RemainingCount;
180      }
181
182      // The next region starts above the previous region. Look backward in the
183      // instruction stream until we find the nearest boundary.
184      MachineBasicBlock::iterator I = RegionEnd;
185      for(;I != MBB->begin(); --I, --RemainingCount) {
186        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
187          break;
188      }
189      // Notify the scheduler of the region, even if we may skip scheduling
190      // it. Perhaps it still needs to be bundled.
191      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount);
192
193      // Skip empty scheduling regions (0 or 1 schedulable instructions).
194      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
195        // Close the current region. Bundle the terminator if needed.
196        // This invalidates 'RegionEnd' and 'I'.
197        Scheduler->exitRegion();
198        continue;
199      }
200      DEBUG(dbgs() << "MachineScheduling " << MF->getFunction()->getName()
201            << ":BB#" << MBB->getNumber() << "\n  From: " << *I << "    To: ";
202            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
203            else dbgs() << "End";
204            dbgs() << " Remaining: " << RemainingCount << "\n");
205
206      // Schedule a region: possibly reorder instructions.
207      // This invalidates 'RegionEnd' and 'I'.
208      Scheduler->schedule();
209
210      // Close the current region.
211      Scheduler->exitRegion();
212
213      // Scheduling has invalidated the current iterator 'I'. Ask the
214      // scheduler for the top of it's scheduled region.
215      RegionEnd = Scheduler->begin();
216    }
217    assert(RemainingCount == 0 && "Instruction count mismatch!");
218    Scheduler->finishBlock();
219  }
220  return true;
221}
222
223void MachineScheduler::print(raw_ostream &O, const Module* m) const {
224  // unimplemented
225}
226
227//===----------------------------------------------------------------------===//
228// ScheduleTopeDownLive - Base class for basic top-down scheduling with
229// LiveIntervals preservation.
230// ===----------------------------------------------------------------------===//
231
232namespace {
233/// ScheduleTopDownLive is an implementation of ScheduleDAGInstrs that schedules
234/// machine instructions while updating LiveIntervals.
235class ScheduleTopDownLive : public ScheduleDAGInstrs {
236  AliasAnalysis *AA;
237public:
238  ScheduleTopDownLive(MachineSchedContext *C):
239    ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS),
240    AA(C->AA) {}
241
242  /// ScheduleDAGInstrs interface.
243  void schedule();
244
245  /// Interface implemented by the selected top-down liveinterval scheduler.
246  ///
247  /// Pick the next node to schedule, or return NULL.
248  virtual SUnit *pickNode() = 0;
249
250  /// When all preceeding dependencies have been resolved, free this node for
251  /// scheduling.
252  virtual void releaseNode(SUnit *SU) = 0;
253
254protected:
255  void releaseSucc(SUnit *SU, SDep *SuccEdge);
256  void releaseSuccessors(SUnit *SU);
257};
258} // namespace
259
260/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
261/// NumPredsLeft reaches zero, release the successor node.
262void ScheduleTopDownLive::releaseSucc(SUnit *SU, SDep *SuccEdge) {
263  SUnit *SuccSU = SuccEdge->getSUnit();
264
265#ifndef NDEBUG
266  if (SuccSU->NumPredsLeft == 0) {
267    dbgs() << "*** Scheduling failed! ***\n";
268    SuccSU->dump(this);
269    dbgs() << " has been released too many times!\n";
270    llvm_unreachable(0);
271  }
272#endif
273  --SuccSU->NumPredsLeft;
274  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
275    releaseNode(SuccSU);
276}
277
278/// releaseSuccessors - Call releaseSucc on each of SU's successors.
279void ScheduleTopDownLive::releaseSuccessors(SUnit *SU) {
280  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
281       I != E; ++I) {
282    releaseSucc(SU, &*I);
283  }
284}
285
286/// schedule - This is called back from ScheduleDAGInstrs::Run() when it's
287/// time to do some work.
288void ScheduleTopDownLive::schedule() {
289  buildSchedGraph(AA);
290
291  DEBUG(dbgs() << "********** MI Scheduling **********\n");
292  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
293          SUnits[su].dumpAll(this));
294
295  if (ViewMISchedDAGs) viewGraph();
296
297  // Release any successors of the special Entry node. It is currently unused,
298  // but we keep up appearances.
299  releaseSuccessors(&EntrySU);
300
301  // Release all DAG roots for scheduling.
302  for (std::vector<SUnit>::iterator I = SUnits.begin(), E = SUnits.end();
303       I != E; ++I) {
304    // A SUnit is ready to schedule if it has no predecessors.
305    if (I->Preds.empty())
306      releaseNode(&(*I));
307  }
308
309  MachineBasicBlock::iterator InsertPos = RegionBegin;
310  while (SUnit *SU = pickNode()) {
311    DEBUG(dbgs() << "*** Scheduling Instruction:\n"; SU->dump(this));
312
313    // Move the instruction to its new location in the instruction stream.
314    MachineInstr *MI = SU->getInstr();
315    if (&*InsertPos == MI)
316      ++InsertPos;
317    else {
318      BB->splice(InsertPos, BB, MI);
319      LIS->handleMove(MI);
320      if (RegionBegin == InsertPos)
321        RegionBegin = MI;
322    }
323
324    // Release dependent instructions for scheduling.
325    releaseSuccessors(SU);
326  }
327}
328
329//===----------------------------------------------------------------------===//
330// Placeholder for the default machine instruction scheduler.
331//===----------------------------------------------------------------------===//
332
333namespace {
334class CommonMachineScheduler : public ScheduleDAGInstrs {
335  AliasAnalysis *AA;
336public:
337  CommonMachineScheduler(MachineSchedContext *C):
338    ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS),
339    AA(C->AA) {}
340
341  /// schedule - This is called back from ScheduleDAGInstrs::Run() when it's
342  /// time to do some work.
343  void schedule();
344};
345} // namespace
346
347/// The common machine scheduler will be used as the default scheduler if the
348/// target does not set a default.
349static ScheduleDAGInstrs *createCommonMachineSched(MachineSchedContext *C) {
350  return new CommonMachineScheduler(C);
351}
352static MachineSchedRegistry
353SchedCommonRegistry("common", "Use the target's default scheduler choice.",
354                     createCommonMachineSched);
355
356/// Schedule - This is called back from ScheduleDAGInstrs::Run() when it's
357/// time to do some work.
358void CommonMachineScheduler::schedule() {
359  buildSchedGraph(AA);
360
361  DEBUG(dbgs() << "********** MI Scheduling **********\n");
362  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
363          SUnits[su].dumpAll(this));
364
365  // TODO: Put interesting things here.
366  //
367  // When this is fully implemented, it will become a subclass of
368  // ScheduleTopDownLive. So this driver will disappear.
369}
370
371//===----------------------------------------------------------------------===//
372// Machine Instruction Shuffler for Correctness Testing
373//===----------------------------------------------------------------------===//
374
375#ifndef NDEBUG
376namespace {
377// Nodes with a higher number have higher priority. This way we attempt to
378// schedule the latest instructions earliest.
379//
380// TODO: Relies on the property of the BuildSchedGraph that results in SUnits
381// being ordered in sequence top-down.
382struct ShuffleSUnitOrder {
383  bool operator()(SUnit *A, SUnit *B) const {
384    return A->NodeNum < B->NodeNum;
385  }
386};
387
388/// Reorder instructions as much as possible.
389class InstructionShuffler : public ScheduleTopDownLive {
390  std::priority_queue<SUnit*, std::vector<SUnit*>, ShuffleSUnitOrder> Queue;
391public:
392  InstructionShuffler(MachineSchedContext *C):
393    ScheduleTopDownLive(C) {}
394
395  /// ScheduleTopDownLive Interface
396
397  virtual SUnit *pickNode() {
398    if (Queue.empty()) return NULL;
399    SUnit *SU = Queue.top();
400    Queue.pop();
401    return SU;
402  }
403
404  virtual void releaseNode(SUnit *SU) {
405    Queue.push(SU);
406  }
407};
408} // namespace
409
410static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
411  return new InstructionShuffler(C);
412}
413static MachineSchedRegistry ShufflerRegistry("shuffle",
414                                             "Shuffle machine instructions",
415                                             createInstructionShuffler);
416#endif // !NDEBUG
417