MachineScheduler.cpp revision fa989e7d432d170b3f92cbd87e2610b03babaea7
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "llvm/CodeGen/MachineScheduler.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/PriorityQueue.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/RegisterClassInfo.h"
26#include "llvm/CodeGen/ScheduleDFS.h"
27#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GraphWriter.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include <queue>
35
36using namespace llvm;
37
38namespace llvm {
39cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                           cl::desc("Force top-down list scheduling"));
41cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                            cl::desc("Force bottom-up list scheduling"));
43}
44
45#ifndef NDEBUG
46static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
47  cl::desc("Pop up a window to show MISched dags after they are processed"));
48
49static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
50  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
51#else
52static bool ViewMISchedDAGs = false;
53#endif // NDEBUG
54
55static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
56  cl::desc("Enable load clustering."), cl::init(true));
57
58// Experimental heuristics
59static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
60  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
61
62static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
63  cl::desc("Verify machine instrs before and after machine scheduling"));
64
65// DAG subtrees must have at least this many nodes.
66static const unsigned MinSubtreeSize = 8;
67
68//===----------------------------------------------------------------------===//
69// Machine Instruction Scheduling Pass and Registry
70//===----------------------------------------------------------------------===//
71
72MachineSchedContext::MachineSchedContext():
73    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
74  RegClassInfo = new RegisterClassInfo();
75}
76
77MachineSchedContext::~MachineSchedContext() {
78  delete RegClassInfo;
79}
80
81namespace {
82/// MachineScheduler runs after coalescing and before register allocation.
83class MachineScheduler : public MachineSchedContext,
84                         public MachineFunctionPass {
85public:
86  MachineScheduler();
87
88  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
89
90  virtual void releaseMemory() {}
91
92  virtual bool runOnMachineFunction(MachineFunction&);
93
94  virtual void print(raw_ostream &O, const Module* = 0) const;
95
96  static char ID; // Class identification, replacement for typeinfo
97};
98} // namespace
99
100char MachineScheduler::ID = 0;
101
102char &llvm::MachineSchedulerID = MachineScheduler::ID;
103
104INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
105                      "Machine Instruction Scheduler", false, false)
106INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
107INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
108INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
109INITIALIZE_PASS_END(MachineScheduler, "misched",
110                    "Machine Instruction Scheduler", false, false)
111
112MachineScheduler::MachineScheduler()
113: MachineFunctionPass(ID) {
114  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
115}
116
117void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.setPreservesCFG();
119  AU.addRequiredID(MachineDominatorsID);
120  AU.addRequired<MachineLoopInfo>();
121  AU.addRequired<AliasAnalysis>();
122  AU.addRequired<TargetPassConfig>();
123  AU.addRequired<SlotIndexes>();
124  AU.addPreserved<SlotIndexes>();
125  AU.addRequired<LiveIntervals>();
126  AU.addPreserved<LiveIntervals>();
127  MachineFunctionPass::getAnalysisUsage(AU);
128}
129
130MachinePassRegistry MachineSchedRegistry::Registry;
131
132/// A dummy default scheduler factory indicates whether the scheduler
133/// is overridden on the command line.
134static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
135  return 0;
136}
137
138/// MachineSchedOpt allows command line selection of the scheduler.
139static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
140               RegisterPassParser<MachineSchedRegistry> >
141MachineSchedOpt("misched",
142                cl::init(&useDefaultMachineSched), cl::Hidden,
143                cl::desc("Machine instruction scheduler to use"));
144
145static MachineSchedRegistry
146DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
147                     useDefaultMachineSched);
148
149/// Forward declare the standard machine scheduler. This will be used as the
150/// default scheduler if the target does not set a default.
151static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
152
153
154/// Decrement this iterator until reaching the top or a non-debug instr.
155static MachineBasicBlock::iterator
156priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
157  assert(I != Beg && "reached the top of the region, cannot decrement");
158  while (--I != Beg) {
159    if (!I->isDebugValue())
160      break;
161  }
162  return I;
163}
164
165/// If this iterator is a debug value, increment until reaching the End or a
166/// non-debug instruction.
167static MachineBasicBlock::iterator
168nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
169  for(; I != End; ++I) {
170    if (!I->isDebugValue())
171      break;
172  }
173  return I;
174}
175
176/// Top-level MachineScheduler pass driver.
177///
178/// Visit blocks in function order. Divide each block into scheduling regions
179/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
180/// consistent with the DAG builder, which traverses the interior of the
181/// scheduling regions bottom-up.
182///
183/// This design avoids exposing scheduling boundaries to the DAG builder,
184/// simplifying the DAG builder's support for "special" target instructions.
185/// At the same time the design allows target schedulers to operate across
186/// scheduling boundaries, for example to bundle the boudary instructions
187/// without reordering them. This creates complexity, because the target
188/// scheduler must update the RegionBegin and RegionEnd positions cached by
189/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
190/// design would be to split blocks at scheduling boundaries, but LLVM has a
191/// general bias against block splitting purely for implementation simplicity.
192bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
193  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
194
195  // Initialize the context of the pass.
196  MF = &mf;
197  MLI = &getAnalysis<MachineLoopInfo>();
198  MDT = &getAnalysis<MachineDominatorTree>();
199  PassConfig = &getAnalysis<TargetPassConfig>();
200  AA = &getAnalysis<AliasAnalysis>();
201
202  LIS = &getAnalysis<LiveIntervals>();
203  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
204
205  if (VerifyScheduling) {
206    DEBUG(LIS->print(dbgs()));
207    MF->verify(this, "Before machine scheduling.");
208  }
209  RegClassInfo->runOnMachineFunction(*MF);
210
211  // Select the scheduler, or set the default.
212  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
213  if (Ctor == useDefaultMachineSched) {
214    // Get the default scheduler set by the target.
215    Ctor = MachineSchedRegistry::getDefault();
216    if (!Ctor) {
217      Ctor = createConvergingSched;
218      MachineSchedRegistry::setDefault(Ctor);
219    }
220  }
221  // Instantiate the selected scheduler.
222  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
223
224  // Visit all machine basic blocks.
225  //
226  // TODO: Visit blocks in global postorder or postorder within the bottom-up
227  // loop tree. Then we can optionally compute global RegPressure.
228  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
229       MBB != MBBEnd; ++MBB) {
230
231    Scheduler->startBlock(MBB);
232
233    // Break the block into scheduling regions [I, RegionEnd), and schedule each
234    // region as soon as it is discovered. RegionEnd points the scheduling
235    // boundary at the bottom of the region. The DAG does not include RegionEnd,
236    // but the region does (i.e. the next RegionEnd is above the previous
237    // RegionBegin). If the current block has no terminator then RegionEnd ==
238    // MBB->end() for the bottom region.
239    //
240    // The Scheduler may insert instructions during either schedule() or
241    // exitRegion(), even for empty regions. So the local iterators 'I' and
242    // 'RegionEnd' are invalid across these calls.
243    unsigned RemainingInstrs = MBB->size();
244    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
245        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
246
247      // Avoid decrementing RegionEnd for blocks with no terminator.
248      if (RegionEnd != MBB->end()
249          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
250        --RegionEnd;
251        // Count the boundary instruction.
252        --RemainingInstrs;
253      }
254
255      // The next region starts above the previous region. Look backward in the
256      // instruction stream until we find the nearest boundary.
257      MachineBasicBlock::iterator I = RegionEnd;
258      for(;I != MBB->begin(); --I, --RemainingInstrs) {
259        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
260          break;
261      }
262      // Notify the scheduler of the region, even if we may skip scheduling
263      // it. Perhaps it still needs to be bundled.
264      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
265
266      // Skip empty scheduling regions (0 or 1 schedulable instructions).
267      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
268        // Close the current region. Bundle the terminator if needed.
269        // This invalidates 'RegionEnd' and 'I'.
270        Scheduler->exitRegion();
271        continue;
272      }
273      DEBUG(dbgs() << "********** MI Scheduling **********\n");
274      DEBUG(dbgs() << MF->getName()
275            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
276            << "\n  From: " << *I << "    To: ";
277            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
278            else dbgs() << "End";
279            dbgs() << " Remaining: " << RemainingInstrs << "\n");
280
281      // Schedule a region: possibly reorder instructions.
282      // This invalidates 'RegionEnd' and 'I'.
283      Scheduler->schedule();
284
285      // Close the current region.
286      Scheduler->exitRegion();
287
288      // Scheduling has invalidated the current iterator 'I'. Ask the
289      // scheduler for the top of it's scheduled region.
290      RegionEnd = Scheduler->begin();
291    }
292    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
293    Scheduler->finishBlock();
294  }
295  Scheduler->finalizeSchedule();
296  DEBUG(LIS->print(dbgs()));
297  if (VerifyScheduling)
298    MF->verify(this, "After machine scheduling.");
299  return true;
300}
301
302void MachineScheduler::print(raw_ostream &O, const Module* m) const {
303  // unimplemented
304}
305
306#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
307void ReadyQueue::dump() {
308  dbgs() << "  " << Name << ": ";
309  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
310    dbgs() << Queue[i]->NodeNum << " ";
311  dbgs() << "\n";
312}
313#endif
314
315//===----------------------------------------------------------------------===//
316// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
317// preservation.
318//===----------------------------------------------------------------------===//
319
320ScheduleDAGMI::~ScheduleDAGMI() {
321  delete DFSResult;
322  DeleteContainerPointers(Mutations);
323  delete SchedImpl;
324}
325
326bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
327  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
328}
329
330bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
331  if (SuccSU != &ExitSU) {
332    // Do not use WillCreateCycle, it assumes SD scheduling.
333    // If Pred is reachable from Succ, then the edge creates a cycle.
334    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
335      return false;
336    Topo.AddPred(SuccSU, PredDep.getSUnit());
337  }
338  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
339  // Return true regardless of whether a new edge needed to be inserted.
340  return true;
341}
342
343/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
344/// NumPredsLeft reaches zero, release the successor node.
345///
346/// FIXME: Adjust SuccSU height based on MinLatency.
347void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
348  SUnit *SuccSU = SuccEdge->getSUnit();
349
350  if (SuccEdge->isWeak()) {
351    --SuccSU->WeakPredsLeft;
352    if (SuccEdge->isCluster())
353      NextClusterSucc = SuccSU;
354    return;
355  }
356#ifndef NDEBUG
357  if (SuccSU->NumPredsLeft == 0) {
358    dbgs() << "*** Scheduling failed! ***\n";
359    SuccSU->dump(this);
360    dbgs() << " has been released too many times!\n";
361    llvm_unreachable(0);
362  }
363#endif
364  --SuccSU->NumPredsLeft;
365  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
366    SchedImpl->releaseTopNode(SuccSU);
367}
368
369/// releaseSuccessors - Call releaseSucc on each of SU's successors.
370void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
371  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
372       I != E; ++I) {
373    releaseSucc(SU, &*I);
374  }
375}
376
377/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
378/// NumSuccsLeft reaches zero, release the predecessor node.
379///
380/// FIXME: Adjust PredSU height based on MinLatency.
381void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
382  SUnit *PredSU = PredEdge->getSUnit();
383
384  if (PredEdge->isWeak()) {
385    --PredSU->WeakSuccsLeft;
386    if (PredEdge->isCluster())
387      NextClusterPred = PredSU;
388    return;
389  }
390#ifndef NDEBUG
391  if (PredSU->NumSuccsLeft == 0) {
392    dbgs() << "*** Scheduling failed! ***\n";
393    PredSU->dump(this);
394    dbgs() << " has been released too many times!\n";
395    llvm_unreachable(0);
396  }
397#endif
398  --PredSU->NumSuccsLeft;
399  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
400    SchedImpl->releaseBottomNode(PredSU);
401}
402
403/// releasePredecessors - Call releasePred on each of SU's predecessors.
404void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
405  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
406       I != E; ++I) {
407    releasePred(SU, &*I);
408  }
409}
410
411/// This is normally called from the main scheduler loop but may also be invoked
412/// by the scheduling strategy to perform additional code motion.
413void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
414                                    MachineBasicBlock::iterator InsertPos) {
415  // Advance RegionBegin if the first instruction moves down.
416  if (&*RegionBegin == MI)
417    ++RegionBegin;
418
419  // Update the instruction stream.
420  BB->splice(InsertPos, BB, MI);
421
422  // Update LiveIntervals
423  LIS->handleMove(MI, /*UpdateFlags=*/true);
424
425  // Recede RegionBegin if an instruction moves above the first.
426  if (RegionBegin == InsertPos)
427    RegionBegin = MI;
428}
429
430bool ScheduleDAGMI::checkSchedLimit() {
431#ifndef NDEBUG
432  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
433    CurrentTop = CurrentBottom;
434    return false;
435  }
436  ++NumInstrsScheduled;
437#endif
438  return true;
439}
440
441/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
442/// crossing a scheduling boundary. [begin, end) includes all instructions in
443/// the region, including the boundary itself and single-instruction regions
444/// that don't get scheduled.
445void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
446                                MachineBasicBlock::iterator begin,
447                                MachineBasicBlock::iterator end,
448                                unsigned endcount)
449{
450  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
451
452  // For convenience remember the end of the liveness region.
453  LiveRegionEnd =
454    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
455}
456
457// Setup the register pressure trackers for the top scheduled top and bottom
458// scheduled regions.
459void ScheduleDAGMI::initRegPressure() {
460  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
461  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
462
463  // Close the RPTracker to finalize live ins.
464  RPTracker.closeRegion();
465
466  DEBUG(RPTracker.getPressure().dump(TRI));
467
468  // Initialize the live ins and live outs.
469  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
470  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
471
472  // Close one end of the tracker so we can call
473  // getMaxUpward/DownwardPressureDelta before advancing across any
474  // instructions. This converts currently live regs into live ins/outs.
475  TopRPTracker.closeTop();
476  BotRPTracker.closeBottom();
477
478  // Account for liveness generated by the region boundary.
479  if (LiveRegionEnd != RegionEnd)
480    BotRPTracker.recede();
481
482  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
483
484  // Cache the list of excess pressure sets in this region. This will also track
485  // the max pressure in the scheduled code for these sets.
486  RegionCriticalPSets.clear();
487  const std::vector<unsigned> &RegionPressure =
488    RPTracker.getPressure().MaxSetPressure;
489  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
490    unsigned Limit = TRI->getRegPressureSetLimit(i);
491    DEBUG(dbgs() << TRI->getRegPressureSetName(i)
492          << "Limit " << Limit
493          << " Actual " << RegionPressure[i] << "\n");
494    if (RegionPressure[i] > Limit)
495      RegionCriticalPSets.push_back(PressureElement(i, 0));
496  }
497  DEBUG(dbgs() << "Excess PSets: ";
498        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
499          dbgs() << TRI->getRegPressureSetName(
500            RegionCriticalPSets[i].PSetID) << " ";
501        dbgs() << "\n");
502}
503
504// FIXME: When the pressure tracker deals in pressure differences then we won't
505// iterate over all RegionCriticalPSets[i].
506void ScheduleDAGMI::
507updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
508  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
509    unsigned ID = RegionCriticalPSets[i].PSetID;
510    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
511    if ((int)NewMaxPressure[ID] > MaxUnits)
512      MaxUnits = NewMaxPressure[ID];
513  }
514  DEBUG(
515    for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
516      unsigned Limit = TRI->getRegPressureSetLimit(i);
517      if (NewMaxPressure[i] > Limit ) {
518        dbgs() << "  " << TRI->getRegPressureSetName(i) << ": "
519               << NewMaxPressure[i] << " > " << Limit << "\n";
520      }
521    });
522}
523
524/// schedule - Called back from MachineScheduler::runOnMachineFunction
525/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
526/// only includes instructions that have DAG nodes, not scheduling boundaries.
527///
528/// This is a skeletal driver, with all the functionality pushed into helpers,
529/// so that it can be easilly extended by experimental schedulers. Generally,
530/// implementing MachineSchedStrategy should be sufficient to implement a new
531/// scheduling algorithm. However, if a scheduler further subclasses
532/// ScheduleDAGMI then it will want to override this virtual method in order to
533/// update any specialized state.
534void ScheduleDAGMI::schedule() {
535  buildDAGWithRegPressure();
536
537  Topo.InitDAGTopologicalSorting();
538
539  postprocessDAG();
540
541  SmallVector<SUnit*, 8> TopRoots, BotRoots;
542  findRootsAndBiasEdges(TopRoots, BotRoots);
543
544  // Initialize the strategy before modifying the DAG.
545  // This may initialize a DFSResult to be used for queue priority.
546  SchedImpl->initialize(this);
547
548  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
549          SUnits[su].dumpAll(this));
550  if (ViewMISchedDAGs) viewGraph();
551
552  // Initialize ready queues now that the DAG and priority data are finalized.
553  initQueues(TopRoots, BotRoots);
554
555  bool IsTopNode = false;
556  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
557    assert(!SU->isScheduled && "Node already scheduled");
558    if (!checkSchedLimit())
559      break;
560
561    scheduleMI(SU, IsTopNode);
562
563    updateQueues(SU, IsTopNode);
564  }
565  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
566
567  placeDebugValues();
568
569  DEBUG({
570      unsigned BBNum = begin()->getParent()->getNumber();
571      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
572      dumpSchedule();
573      dbgs() << '\n';
574    });
575}
576
577/// Build the DAG and setup three register pressure trackers.
578void ScheduleDAGMI::buildDAGWithRegPressure() {
579  // Initialize the register pressure tracker used by buildSchedGraph.
580  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
581
582  // Account for liveness generate by the region boundary.
583  if (LiveRegionEnd != RegionEnd)
584    RPTracker.recede();
585
586  // Build the DAG, and compute current register pressure.
587  buildSchedGraph(AA, &RPTracker);
588
589  // Initialize top/bottom trackers after computing region pressure.
590  initRegPressure();
591}
592
593/// Apply each ScheduleDAGMutation step in order.
594void ScheduleDAGMI::postprocessDAG() {
595  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
596    Mutations[i]->apply(this);
597  }
598}
599
600void ScheduleDAGMI::computeDFSResult() {
601  if (!DFSResult)
602    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
603  DFSResult->clear();
604  ScheduledTrees.clear();
605  DFSResult->resize(SUnits.size());
606  DFSResult->compute(SUnits);
607  ScheduledTrees.resize(DFSResult->getNumSubtrees());
608}
609
610void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
611                                          SmallVectorImpl<SUnit*> &BotRoots) {
612  for (std::vector<SUnit>::iterator
613         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
614    SUnit *SU = &(*I);
615    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
616
617    // Order predecessors so DFSResult follows the critical path.
618    SU->biasCriticalPath();
619
620    // A SUnit is ready to top schedule if it has no predecessors.
621    if (!I->NumPredsLeft)
622      TopRoots.push_back(SU);
623    // A SUnit is ready to bottom schedule if it has no successors.
624    if (!I->NumSuccsLeft)
625      BotRoots.push_back(SU);
626  }
627  ExitSU.biasCriticalPath();
628}
629
630/// Identify DAG roots and setup scheduler queues.
631void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
632                               ArrayRef<SUnit*> BotRoots) {
633  NextClusterSucc = NULL;
634  NextClusterPred = NULL;
635
636  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
637  //
638  // Nodes with unreleased weak edges can still be roots.
639  // Release top roots in forward order.
640  for (SmallVectorImpl<SUnit*>::const_iterator
641         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
642    SchedImpl->releaseTopNode(*I);
643  }
644  // Release bottom roots in reverse order so the higher priority nodes appear
645  // first. This is more natural and slightly more efficient.
646  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
647         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
648    SchedImpl->releaseBottomNode(*I);
649  }
650
651  releaseSuccessors(&EntrySU);
652  releasePredecessors(&ExitSU);
653
654  SchedImpl->registerRoots();
655
656  // Advance past initial DebugValues.
657  assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
658  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
659  TopRPTracker.setPos(CurrentTop);
660
661  CurrentBottom = RegionEnd;
662}
663
664/// Move an instruction and update register pressure.
665void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
666  // Move the instruction to its new location in the instruction stream.
667  MachineInstr *MI = SU->getInstr();
668
669  if (IsTopNode) {
670    assert(SU->isTopReady() && "node still has unscheduled dependencies");
671    if (&*CurrentTop == MI)
672      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
673    else {
674      moveInstruction(MI, CurrentTop);
675      TopRPTracker.setPos(MI);
676    }
677
678    // Update top scheduled pressure.
679    TopRPTracker.advance();
680    assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
681    updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
682  }
683  else {
684    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
685    MachineBasicBlock::iterator priorII =
686      priorNonDebug(CurrentBottom, CurrentTop);
687    if (&*priorII == MI)
688      CurrentBottom = priorII;
689    else {
690      if (&*CurrentTop == MI) {
691        CurrentTop = nextIfDebug(++CurrentTop, priorII);
692        TopRPTracker.setPos(CurrentTop);
693      }
694      moveInstruction(MI, CurrentBottom);
695      CurrentBottom = MI;
696    }
697    // Update bottom scheduled pressure.
698    BotRPTracker.recede();
699    assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
700    updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
701  }
702}
703
704/// Update scheduler queues after scheduling an instruction.
705void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
706  // Release dependent instructions for scheduling.
707  if (IsTopNode)
708    releaseSuccessors(SU);
709  else
710    releasePredecessors(SU);
711
712  SU->isScheduled = true;
713
714  if (DFSResult) {
715    unsigned SubtreeID = DFSResult->getSubtreeID(SU);
716    if (!ScheduledTrees.test(SubtreeID)) {
717      ScheduledTrees.set(SubtreeID);
718      DFSResult->scheduleTree(SubtreeID);
719      SchedImpl->scheduleTree(SubtreeID);
720    }
721  }
722
723  // Notify the scheduling strategy after updating the DAG.
724  SchedImpl->schedNode(SU, IsTopNode);
725}
726
727/// Reinsert any remaining debug_values, just like the PostRA scheduler.
728void ScheduleDAGMI::placeDebugValues() {
729  // If first instruction was a DBG_VALUE then put it back.
730  if (FirstDbgValue) {
731    BB->splice(RegionBegin, BB, FirstDbgValue);
732    RegionBegin = FirstDbgValue;
733  }
734
735  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
736         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
737    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
738    MachineInstr *DbgValue = P.first;
739    MachineBasicBlock::iterator OrigPrevMI = P.second;
740    if (&*RegionBegin == DbgValue)
741      ++RegionBegin;
742    BB->splice(++OrigPrevMI, BB, DbgValue);
743    if (OrigPrevMI == llvm::prior(RegionEnd))
744      RegionEnd = DbgValue;
745  }
746  DbgValues.clear();
747  FirstDbgValue = NULL;
748}
749
750#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
751void ScheduleDAGMI::dumpSchedule() const {
752  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
753    if (SUnit *SU = getSUnit(&(*MI)))
754      SU->dump(this);
755    else
756      dbgs() << "Missing SUnit\n";
757  }
758}
759#endif
760
761//===----------------------------------------------------------------------===//
762// LoadClusterMutation - DAG post-processing to cluster loads.
763//===----------------------------------------------------------------------===//
764
765namespace {
766/// \brief Post-process the DAG to create cluster edges between neighboring
767/// loads.
768class LoadClusterMutation : public ScheduleDAGMutation {
769  struct LoadInfo {
770    SUnit *SU;
771    unsigned BaseReg;
772    unsigned Offset;
773    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
774      : SU(su), BaseReg(reg), Offset(ofs) {}
775  };
776  static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
777                           const LoadClusterMutation::LoadInfo &RHS);
778
779  const TargetInstrInfo *TII;
780  const TargetRegisterInfo *TRI;
781public:
782  LoadClusterMutation(const TargetInstrInfo *tii,
783                      const TargetRegisterInfo *tri)
784    : TII(tii), TRI(tri) {}
785
786  virtual void apply(ScheduleDAGMI *DAG);
787protected:
788  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
789};
790} // anonymous
791
792bool LoadClusterMutation::LoadInfoLess(
793  const LoadClusterMutation::LoadInfo &LHS,
794  const LoadClusterMutation::LoadInfo &RHS) {
795  if (LHS.BaseReg != RHS.BaseReg)
796    return LHS.BaseReg < RHS.BaseReg;
797  return LHS.Offset < RHS.Offset;
798}
799
800void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
801                                                  ScheduleDAGMI *DAG) {
802  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
803  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
804    SUnit *SU = Loads[Idx];
805    unsigned BaseReg;
806    unsigned Offset;
807    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
808      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
809  }
810  if (LoadRecords.size() < 2)
811    return;
812  std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
813  unsigned ClusterLength = 1;
814  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
815    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
816      ClusterLength = 1;
817      continue;
818    }
819
820    SUnit *SUa = LoadRecords[Idx].SU;
821    SUnit *SUb = LoadRecords[Idx+1].SU;
822    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
823        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
824
825      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
826            << SUb->NodeNum << ")\n");
827      // Copy successor edges from SUa to SUb. Interleaving computation
828      // dependent on SUa can prevent load combining due to register reuse.
829      // Predecessor edges do not need to be copied from SUb to SUa since nearby
830      // loads should have effectively the same inputs.
831      for (SUnit::const_succ_iterator
832             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
833        if (SI->getSUnit() == SUb)
834          continue;
835        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
836        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
837      }
838      ++ClusterLength;
839    }
840    else
841      ClusterLength = 1;
842  }
843}
844
845/// \brief Callback from DAG postProcessing to create cluster edges for loads.
846void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
847  // Map DAG NodeNum to store chain ID.
848  DenseMap<unsigned, unsigned> StoreChainIDs;
849  // Map each store chain to a set of dependent loads.
850  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
851  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
852    SUnit *SU = &DAG->SUnits[Idx];
853    if (!SU->getInstr()->mayLoad())
854      continue;
855    unsigned ChainPredID = DAG->SUnits.size();
856    for (SUnit::const_pred_iterator
857           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
858      if (PI->isCtrl()) {
859        ChainPredID = PI->getSUnit()->NodeNum;
860        break;
861      }
862    }
863    // Check if this chain-like pred has been seen
864    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
865    unsigned NumChains = StoreChainDependents.size();
866    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
867      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
868    if (Result.second)
869      StoreChainDependents.resize(NumChains + 1);
870    StoreChainDependents[Result.first->second].push_back(SU);
871  }
872  // Iterate over the store chains.
873  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
874    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
875}
876
877//===----------------------------------------------------------------------===//
878// MacroFusion - DAG post-processing to encourage fusion of macro ops.
879//===----------------------------------------------------------------------===//
880
881namespace {
882/// \brief Post-process the DAG to create cluster edges between instructions
883/// that may be fused by the processor into a single operation.
884class MacroFusion : public ScheduleDAGMutation {
885  const TargetInstrInfo *TII;
886public:
887  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
888
889  virtual void apply(ScheduleDAGMI *DAG);
890};
891} // anonymous
892
893/// \brief Callback from DAG postProcessing to create cluster edges to encourage
894/// fused operations.
895void MacroFusion::apply(ScheduleDAGMI *DAG) {
896  // For now, assume targets can only fuse with the branch.
897  MachineInstr *Branch = DAG->ExitSU.getInstr();
898  if (!Branch)
899    return;
900
901  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
902    SUnit *SU = &DAG->SUnits[--Idx];
903    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
904      continue;
905
906    // Create a single weak edge from SU to ExitSU. The only effect is to cause
907    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
908    // need to copy predecessor edges from ExitSU to SU, since top-down
909    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
910    // of SU, we could create an artificial edge from the deepest root, but it
911    // hasn't been needed yet.
912    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
913    (void)Success;
914    assert(Success && "No DAG nodes should be reachable from ExitSU");
915
916    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
917    break;
918  }
919}
920
921//===----------------------------------------------------------------------===//
922// CopyConstrain - DAG post-processing to encourage copy elimination.
923//===----------------------------------------------------------------------===//
924
925namespace {
926/// \brief Post-process the DAG to create weak edges from all uses of a copy to
927/// the one use that defines the copy's source vreg, most likely an induction
928/// variable increment.
929class CopyConstrain : public ScheduleDAGMutation {
930  // Transient state.
931  SlotIndex RegionBeginIdx;
932  // RegionEndIdx is the slot index of the last non-debug instruction in the
933  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
934  SlotIndex RegionEndIdx;
935public:
936  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
937
938  virtual void apply(ScheduleDAGMI *DAG);
939
940protected:
941  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
942};
943} // anonymous
944
945/// constrainLocalCopy handles two possibilities:
946/// 1) Local src:
947/// I0:     = dst
948/// I1: src = ...
949/// I2:     = dst
950/// I3: dst = src (copy)
951/// (create pred->succ edges I0->I1, I2->I1)
952///
953/// 2) Local copy:
954/// I0: dst = src (copy)
955/// I1:     = dst
956/// I2: src = ...
957/// I3:     = dst
958/// (create pred->succ edges I1->I2, I3->I2)
959///
960/// Although the MachineScheduler is currently constrained to single blocks,
961/// this algorithm should handle extended blocks. An EBB is a set of
962/// contiguously numbered blocks such that the previous block in the EBB is
963/// always the single predecessor.
964void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
965  LiveIntervals *LIS = DAG->getLIS();
966  MachineInstr *Copy = CopySU->getInstr();
967
968  // Check for pure vreg copies.
969  unsigned SrcReg = Copy->getOperand(1).getReg();
970  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
971    return;
972
973  unsigned DstReg = Copy->getOperand(0).getReg();
974  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
975    return;
976
977  // Check if either the dest or source is local. If it's live across a back
978  // edge, it's not local. Note that if both vregs are live across the back
979  // edge, we cannot successfully contrain the copy without cyclic scheduling.
980  unsigned LocalReg = DstReg;
981  unsigned GlobalReg = SrcReg;
982  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
983  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
984    LocalReg = SrcReg;
985    GlobalReg = DstReg;
986    LocalLI = &LIS->getInterval(LocalReg);
987    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
988      return;
989  }
990  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
991
992  // Find the global segment after the start of the local LI.
993  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
994  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
995  // local live range. We could create edges from other global uses to the local
996  // start, but the coalescer should have already eliminated these cases, so
997  // don't bother dealing with it.
998  if (GlobalSegment == GlobalLI->end())
999    return;
1000
1001  // If GlobalSegment is killed at the LocalLI->start, the call to find()
1002  // returned the next global segment. But if GlobalSegment overlaps with
1003  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1004  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1005  if (GlobalSegment->contains(LocalLI->beginIndex()))
1006    ++GlobalSegment;
1007
1008  if (GlobalSegment == GlobalLI->end())
1009    return;
1010
1011  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1012  if (GlobalSegment != GlobalLI->begin()) {
1013    // Two address defs have no hole.
1014    if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
1015                               GlobalSegment->start)) {
1016      return;
1017    }
1018    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1019    // it would be a disconnected component in the live range.
1020    assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
1021           "Disconnected LRG within the scheduling region.");
1022  }
1023  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1024  if (!GlobalDef)
1025    return;
1026
1027  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1028  if (!GlobalSU)
1029    return;
1030
1031  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1032  // constraining the uses of the last local def to precede GlobalDef.
1033  SmallVector<SUnit*,8> LocalUses;
1034  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1035  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1036  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1037  for (SUnit::const_succ_iterator
1038         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1039       I != E; ++I) {
1040    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1041      continue;
1042    if (I->getSUnit() == GlobalSU)
1043      continue;
1044    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1045      return;
1046    LocalUses.push_back(I->getSUnit());
1047  }
1048  // Open the top of the GlobalLI hole by constraining any earlier global uses
1049  // to precede the start of LocalLI.
1050  SmallVector<SUnit*,8> GlobalUses;
1051  MachineInstr *FirstLocalDef =
1052    LIS->getInstructionFromIndex(LocalLI->beginIndex());
1053  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1054  for (SUnit::const_pred_iterator
1055         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1056    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1057      continue;
1058    if (I->getSUnit() == FirstLocalSU)
1059      continue;
1060    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1061      return;
1062    GlobalUses.push_back(I->getSUnit());
1063  }
1064  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1065  // Add the weak edges.
1066  for (SmallVectorImpl<SUnit*>::const_iterator
1067         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1068    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1069          << GlobalSU->NodeNum << ")\n");
1070    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1071  }
1072  for (SmallVectorImpl<SUnit*>::const_iterator
1073         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1074    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1075          << FirstLocalSU->NodeNum << ")\n");
1076    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1077  }
1078}
1079
1080/// \brief Callback from DAG postProcessing to create weak edges to encourage
1081/// copy elimination.
1082void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1083  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1084  if (FirstPos == DAG->end())
1085    return;
1086  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1087  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1088    &*priorNonDebug(DAG->end(), DAG->begin()));
1089
1090  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1091    SUnit *SU = &DAG->SUnits[Idx];
1092    if (!SU->getInstr()->isCopy())
1093      continue;
1094
1095    constrainLocalCopy(SU, DAG);
1096  }
1097}
1098
1099//===----------------------------------------------------------------------===//
1100// ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
1101//===----------------------------------------------------------------------===//
1102
1103namespace {
1104/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
1105/// the schedule.
1106class ConvergingScheduler : public MachineSchedStrategy {
1107public:
1108  /// Represent the type of SchedCandidate found within a single queue.
1109  /// pickNodeBidirectional depends on these listed by decreasing priority.
1110  enum CandReason {
1111    NoCand, PhysRegCopy, SingleExcess, SingleCritical, Cluster, Weak,
1112    ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
1113    TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse,
1114    NodeOrder};
1115
1116#ifndef NDEBUG
1117  static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
1118#endif
1119
1120  /// Policy for scheduling the next instruction in the candidate's zone.
1121  struct CandPolicy {
1122    bool ReduceLatency;
1123    unsigned ReduceResIdx;
1124    unsigned DemandResIdx;
1125
1126    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
1127  };
1128
1129  /// Status of an instruction's critical resource consumption.
1130  struct SchedResourceDelta {
1131    // Count critical resources in the scheduled region required by SU.
1132    unsigned CritResources;
1133
1134    // Count critical resources from another region consumed by SU.
1135    unsigned DemandedResources;
1136
1137    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
1138
1139    bool operator==(const SchedResourceDelta &RHS) const {
1140      return CritResources == RHS.CritResources
1141        && DemandedResources == RHS.DemandedResources;
1142    }
1143    bool operator!=(const SchedResourceDelta &RHS) const {
1144      return !operator==(RHS);
1145    }
1146  };
1147
1148  /// Store the state used by ConvergingScheduler heuristics, required for the
1149  /// lifetime of one invocation of pickNode().
1150  struct SchedCandidate {
1151    CandPolicy Policy;
1152
1153    // The best SUnit candidate.
1154    SUnit *SU;
1155
1156    // The reason for this candidate.
1157    CandReason Reason;
1158
1159    // Register pressure values for the best candidate.
1160    RegPressureDelta RPDelta;
1161
1162    // Critical resource consumption of the best candidate.
1163    SchedResourceDelta ResDelta;
1164
1165    SchedCandidate(const CandPolicy &policy)
1166    : Policy(policy), SU(NULL), Reason(NoCand) {}
1167
1168    bool isValid() const { return SU; }
1169
1170    // Copy the status of another candidate without changing policy.
1171    void setBest(SchedCandidate &Best) {
1172      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
1173      SU = Best.SU;
1174      Reason = Best.Reason;
1175      RPDelta = Best.RPDelta;
1176      ResDelta = Best.ResDelta;
1177    }
1178
1179    void initResourceDelta(const ScheduleDAGMI *DAG,
1180                           const TargetSchedModel *SchedModel);
1181  };
1182
1183  /// Summarize the unscheduled region.
1184  struct SchedRemainder {
1185    // Critical path through the DAG in expected latency.
1186    unsigned CriticalPath;
1187
1188    // Scaled count of micro-ops left to schedule.
1189    unsigned RemIssueCount;
1190
1191    // Unscheduled resources
1192    SmallVector<unsigned, 16> RemainingCounts;
1193
1194    void reset() {
1195      CriticalPath = 0;
1196      RemIssueCount = 0;
1197      RemainingCounts.clear();
1198    }
1199
1200    SchedRemainder() { reset(); }
1201
1202    void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
1203  };
1204
1205  /// Each Scheduling boundary is associated with ready queues. It tracks the
1206  /// current cycle in the direction of movement, and maintains the state
1207  /// of "hazards" and other interlocks at the current cycle.
1208  struct SchedBoundary {
1209    ScheduleDAGMI *DAG;
1210    const TargetSchedModel *SchedModel;
1211    SchedRemainder *Rem;
1212
1213    ReadyQueue Available;
1214    ReadyQueue Pending;
1215    bool CheckPending;
1216
1217    // For heuristics, keep a list of the nodes that immediately depend on the
1218    // most recently scheduled node.
1219    SmallPtrSet<const SUnit*, 8> NextSUs;
1220
1221    ScheduleHazardRecognizer *HazardRec;
1222
1223    /// Number of cycles it takes to issue the instructions scheduled in this
1224    /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
1225    /// See getStalls().
1226    unsigned CurrCycle;
1227
1228    /// Micro-ops issued in the current cycle
1229    unsigned CurrMOps;
1230
1231    /// MinReadyCycle - Cycle of the soonest available instruction.
1232    unsigned MinReadyCycle;
1233
1234    // The expected latency of the critical path in this scheduled zone.
1235    unsigned ExpectedLatency;
1236
1237    // The latency of dependence chains leading into this zone.
1238    // For each node scheduled top-down: DLat = max DLat, N.Depth.
1239    // For each cycle scheduled: DLat -= 1.
1240    unsigned DependentLatency;
1241
1242    /// Count the scheduled (issued) micro-ops that can be retired by
1243    /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
1244    unsigned RetiredMOps;
1245
1246    // Count scheduled resources that have been executed. Resources are
1247    // considered executed if they become ready in the time that it takes to
1248    // saturate any resource including the one in question. Counts are scaled
1249    // for direct comparison with other resources. Counts ca be compared with
1250    // MOps * getMicroOpFactor and Latency * getLatencyFactor.
1251    SmallVector<unsigned, 16> ExecutedResCounts;
1252
1253    /// Cache the max count for a single resource.
1254    unsigned MaxExecutedResCount;
1255
1256    // Cache the critical resources ID in this scheduled zone.
1257    unsigned ZoneCritResIdx;
1258
1259    // Is the scheduled region resource limited vs. latency limited.
1260    bool IsResourceLimited;
1261
1262#ifndef NDEBUG
1263    // Remember the greatest operand latency as an upper bound on the number of
1264    // times we should retry the pending queue because of a hazard.
1265    unsigned MaxObservedLatency;
1266#endif
1267
1268    void reset() {
1269      // A new HazardRec is created for each DAG and owned by SchedBoundary.
1270      delete HazardRec;
1271
1272      Available.clear();
1273      Pending.clear();
1274      CheckPending = false;
1275      NextSUs.clear();
1276      HazardRec = 0;
1277      CurrCycle = 0;
1278      CurrMOps = 0;
1279      MinReadyCycle = UINT_MAX;
1280      ExpectedLatency = 0;
1281      DependentLatency = 0;
1282      RetiredMOps = 0;
1283      MaxExecutedResCount = 0;
1284      ZoneCritResIdx = 0;
1285      IsResourceLimited = false;
1286#ifndef NDEBUG
1287      MaxObservedLatency = 0;
1288#endif
1289      // Reserve a zero-count for invalid CritResIdx.
1290      ExecutedResCounts.resize(1);
1291      assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1292    }
1293
1294    /// Pending queues extend the ready queues with the same ID and the
1295    /// PendingFlag set.
1296    SchedBoundary(unsigned ID, const Twine &Name):
1297      DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
1298      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
1299      HazardRec(0) {
1300      reset();
1301    }
1302
1303    ~SchedBoundary() { delete HazardRec; }
1304
1305    void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
1306              SchedRemainder *rem);
1307
1308    bool isTop() const {
1309      return Available.getID() == ConvergingScheduler::TopQID;
1310    }
1311
1312    const char *getResourceName(unsigned PIdx) {
1313      if (!PIdx)
1314        return "MOps";
1315      return SchedModel->getProcResource(PIdx)->Name;
1316    }
1317
1318    /// Get the number of latency cycles "covered" by the scheduled
1319    /// instructions. This is the larger of the critical path within the zone
1320    /// and the number of cycles required to issue the instructions.
1321    unsigned getScheduledLatency() const {
1322      return std::max(ExpectedLatency, CurrCycle);
1323    }
1324
1325    unsigned getUnscheduledLatency(SUnit *SU) const {
1326      return isTop() ? SU->getHeight() : SU->getDepth();
1327    }
1328
1329    unsigned getResourceCount(unsigned ResIdx) const {
1330      return ExecutedResCounts[ResIdx];
1331    }
1332
1333    /// Get the scaled count of scheduled micro-ops and resources, including
1334    /// executed resources.
1335    unsigned getCriticalCount() const {
1336      if (!ZoneCritResIdx)
1337        return RetiredMOps * SchedModel->getMicroOpFactor();
1338      return getResourceCount(ZoneCritResIdx);
1339    }
1340
1341    /// Get a scaled count for the minimum execution time of the scheduled
1342    /// micro-ops that are ready to execute by getExecutedCount. Notice the
1343    /// feedback loop.
1344    unsigned getExecutedCount() const {
1345      return std::max(CurrCycle * SchedModel->getLatencyFactor(),
1346                      MaxExecutedResCount);
1347    }
1348
1349    bool checkHazard(SUnit *SU);
1350
1351    unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
1352
1353    unsigned getOtherResourceCount(unsigned &OtherCritIdx);
1354
1355    void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone);
1356
1357    void releaseNode(SUnit *SU, unsigned ReadyCycle);
1358
1359    void bumpCycle(unsigned NextCycle);
1360
1361    void incExecutedResources(unsigned PIdx, unsigned Count);
1362
1363    unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
1364
1365    void bumpNode(SUnit *SU);
1366
1367    void releasePending();
1368
1369    void removeReady(SUnit *SU);
1370
1371    SUnit *pickOnlyChoice();
1372
1373    void dumpScheduledState();
1374  };
1375
1376private:
1377  ScheduleDAGMI *DAG;
1378  const TargetSchedModel *SchedModel;
1379  const TargetRegisterInfo *TRI;
1380
1381  // State of the top and bottom scheduled instruction boundaries.
1382  SchedRemainder Rem;
1383  SchedBoundary Top;
1384  SchedBoundary Bot;
1385
1386public:
1387  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
1388  enum {
1389    TopQID = 1,
1390    BotQID = 2,
1391    LogMaxQID = 2
1392  };
1393
1394  ConvergingScheduler():
1395    DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
1396
1397  virtual void initialize(ScheduleDAGMI *dag);
1398
1399  virtual SUnit *pickNode(bool &IsTopNode);
1400
1401  virtual void schedNode(SUnit *SU, bool IsTopNode);
1402
1403  virtual void releaseTopNode(SUnit *SU);
1404
1405  virtual void releaseBottomNode(SUnit *SU);
1406
1407  virtual void registerRoots();
1408
1409protected:
1410  void tryCandidate(SchedCandidate &Cand,
1411                    SchedCandidate &TryCand,
1412                    SchedBoundary &Zone,
1413                    const RegPressureTracker &RPTracker,
1414                    RegPressureTracker &TempTracker);
1415
1416  SUnit *pickNodeBidirectional(bool &IsTopNode);
1417
1418  void pickNodeFromQueue(SchedBoundary &Zone,
1419                         const RegPressureTracker &RPTracker,
1420                         SchedCandidate &Candidate);
1421
1422  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
1423
1424#ifndef NDEBUG
1425  void traceCandidate(const SchedCandidate &Cand);
1426#endif
1427};
1428} // namespace
1429
1430void ConvergingScheduler::SchedRemainder::
1431init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1432  reset();
1433  if (!SchedModel->hasInstrSchedModel())
1434    return;
1435  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1436  for (std::vector<SUnit>::iterator
1437         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1438    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1439    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1440      * SchedModel->getMicroOpFactor();
1441    for (TargetSchedModel::ProcResIter
1442           PI = SchedModel->getWriteProcResBegin(SC),
1443           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1444      unsigned PIdx = PI->ProcResourceIdx;
1445      unsigned Factor = SchedModel->getResourceFactor(PIdx);
1446      RemainingCounts[PIdx] += (Factor * PI->Cycles);
1447    }
1448  }
1449}
1450
1451void ConvergingScheduler::SchedBoundary::
1452init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1453  reset();
1454  DAG = dag;
1455  SchedModel = smodel;
1456  Rem = rem;
1457  if (SchedModel->hasInstrSchedModel())
1458    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1459}
1460
1461void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
1462  DAG = dag;
1463  SchedModel = DAG->getSchedModel();
1464  TRI = DAG->TRI;
1465
1466  Rem.init(DAG, SchedModel);
1467  Top.init(DAG, SchedModel, &Rem);
1468  Bot.init(DAG, SchedModel, &Rem);
1469
1470  // Initialize resource counts.
1471
1472  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
1473  // are disabled, then these HazardRecs will be disabled.
1474  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
1475  const TargetMachine &TM = DAG->MF.getTarget();
1476  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1477  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1478
1479  assert((!ForceTopDown || !ForceBottomUp) &&
1480         "-misched-topdown incompatible with -misched-bottomup");
1481}
1482
1483void ConvergingScheduler::releaseTopNode(SUnit *SU) {
1484  if (SU->isScheduled)
1485    return;
1486
1487  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1488       I != E; ++I) {
1489    if (I->isWeak())
1490      continue;
1491    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1492    unsigned Latency = I->getLatency();
1493#ifndef NDEBUG
1494    Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency);
1495#endif
1496    if (SU->TopReadyCycle < PredReadyCycle + Latency)
1497      SU->TopReadyCycle = PredReadyCycle + Latency;
1498  }
1499  Top.releaseNode(SU, SU->TopReadyCycle);
1500}
1501
1502void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
1503  if (SU->isScheduled)
1504    return;
1505
1506  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1507
1508  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1509       I != E; ++I) {
1510    if (I->isWeak())
1511      continue;
1512    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1513    unsigned Latency = I->getLatency();
1514#ifndef NDEBUG
1515    Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency);
1516#endif
1517    if (SU->BotReadyCycle < SuccReadyCycle + Latency)
1518      SU->BotReadyCycle = SuccReadyCycle + Latency;
1519  }
1520  Bot.releaseNode(SU, SU->BotReadyCycle);
1521}
1522
1523void ConvergingScheduler::registerRoots() {
1524  Rem.CriticalPath = DAG->ExitSU.getDepth();
1525  // Some roots may not feed into ExitSU. Check all of them in case.
1526  for (std::vector<SUnit*>::const_iterator
1527         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1528    if ((*I)->getDepth() > Rem.CriticalPath)
1529      Rem.CriticalPath = (*I)->getDepth();
1530  }
1531  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1532}
1533
1534/// Does this SU have a hazard within the current instruction group.
1535///
1536/// The scheduler supports two modes of hazard recognition. The first is the
1537/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1538/// supports highly complicated in-order reservation tables
1539/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1540///
1541/// The second is a streamlined mechanism that checks for hazards based on
1542/// simple counters that the scheduler itself maintains. It explicitly checks
1543/// for instruction dispatch limitations, including the number of micro-ops that
1544/// can dispatch per cycle.
1545///
1546/// TODO: Also check whether the SU must start a new group.
1547bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1548  if (HazardRec->isEnabled())
1549    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1550
1551  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1552  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1553    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1554          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1555    return true;
1556  }
1557  return false;
1558}
1559
1560// Find the unscheduled node in ReadySUs with the highest latency.
1561unsigned ConvergingScheduler::SchedBoundary::
1562findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1563  SUnit *LateSU = 0;
1564  unsigned RemLatency = 0;
1565  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1566       I != E; ++I) {
1567    unsigned L = getUnscheduledLatency(*I);
1568    if (L > RemLatency) {
1569      RemLatency = L;
1570      LateSU = *I;
1571    }
1572  }
1573  if (LateSU) {
1574    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1575          << LateSU->NodeNum << ") " << RemLatency << "c\n");
1576  }
1577  return RemLatency;
1578}
1579
1580// Count resources in this zone and the remaining unscheduled
1581// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1582// resource index, or zero if the zone is issue limited.
1583unsigned ConvergingScheduler::SchedBoundary::
1584getOtherResourceCount(unsigned &OtherCritIdx) {
1585  if (!SchedModel->hasInstrSchedModel())
1586    return 0;
1587
1588  unsigned OtherCritCount = Rem->RemIssueCount
1589    + (RetiredMOps * SchedModel->getMicroOpFactor());
1590  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1591        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1592  OtherCritIdx = 0;
1593  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1594       PIdx != PEnd; ++PIdx) {
1595    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1596    if (OtherCount > OtherCritCount) {
1597      OtherCritCount = OtherCount;
1598      OtherCritIdx = PIdx;
1599    }
1600  }
1601  if (OtherCritIdx) {
1602    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1603          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1604          << " " << getResourceName(OtherCritIdx) << "\n");
1605  }
1606  return OtherCritCount;
1607}
1608
1609/// Set the CandPolicy for this zone given the current resources and latencies
1610/// inside and outside the zone.
1611void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
1612                                                   SchedBoundary &OtherZone) {
1613  // Now that potential stalls have been considered, apply preemptive heuristics
1614  // based on the the total latency and resources inside and outside this
1615  // zone.
1616
1617  // Compute remaining latency. We need this both to determine whether the
1618  // overall schedule has become latency-limited and whether the instructions
1619  // outside this zone are resource or latency limited.
1620  //
1621  // The "dependent" latency is updated incrementally during scheduling as the
1622  // max height/depth of scheduled nodes minus the cycles since it was
1623  // scheduled:
1624  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
1625  //
1626  // The "independent" latency is the max ready queue depth:
1627  //   ILat = max N.depth for N in Available|Pending
1628  //
1629  // RemainingLatency is the greater of independent and dependent latency.
1630  unsigned RemLatency = DependentLatency;
1631  RemLatency = std::max(RemLatency, findMaxLatency(Available.elements()));
1632  RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements()));
1633
1634  // Compute the critical resource outside the zone.
1635  unsigned OtherCritIdx;
1636  unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx);
1637
1638  bool OtherResLimited = false;
1639  if (SchedModel->hasInstrSchedModel()) {
1640    unsigned LFactor = SchedModel->getLatencyFactor();
1641    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
1642  }
1643  if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) {
1644    Policy.ReduceLatency |= true;
1645    DEBUG(dbgs() << "  " << Available.getName() << " RemainingLatency "
1646          << RemLatency << " + " << CurrCycle << "c > CritPath "
1647          << Rem->CriticalPath << "\n");
1648  }
1649  // If the same resource is limiting inside and outside the zone, do nothing.
1650  if (IsResourceLimited && OtherResLimited && (ZoneCritResIdx == OtherCritIdx))
1651    return;
1652
1653  DEBUG(
1654    if (IsResourceLimited) {
1655      dbgs() << "  " << Available.getName() << " ResourceLimited: "
1656             << getResourceName(ZoneCritResIdx) << "\n";
1657    }
1658    if (OtherResLimited)
1659      dbgs() << "  RemainingLimit: " << getResourceName(OtherCritIdx);
1660    if (!IsResourceLimited && !OtherResLimited)
1661      dbgs() << "  Latency limited both directions.\n");
1662
1663  if (IsResourceLimited && !Policy.ReduceResIdx)
1664    Policy.ReduceResIdx = ZoneCritResIdx;
1665
1666  if (OtherResLimited)
1667    Policy.DemandResIdx = OtherCritIdx;
1668}
1669
1670void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
1671                                                     unsigned ReadyCycle) {
1672  if (ReadyCycle < MinReadyCycle)
1673    MinReadyCycle = ReadyCycle;
1674
1675  // Check for interlocks first. For the purpose of other heuristics, an
1676  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1677  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1678  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1679    Pending.push(SU);
1680  else
1681    Available.push(SU);
1682
1683  // Record this node as an immediate dependent of the scheduled node.
1684  NextSUs.insert(SU);
1685}
1686
1687/// Move the boundary of scheduled code by one cycle.
1688void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
1689  if (SchedModel->getMicroOpBufferSize() == 0) {
1690    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1691    if (MinReadyCycle > NextCycle)
1692      NextCycle = MinReadyCycle;
1693  }
1694  // Update the current micro-ops, which will issue in the next cycle.
1695  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1696  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1697
1698  // Decrement DependentLatency based on the next cycle.
1699  if ((NextCycle - CurrCycle) > DependentLatency)
1700    DependentLatency = 0;
1701  else
1702    DependentLatency -= (NextCycle - CurrCycle);
1703
1704  if (!HazardRec->isEnabled()) {
1705    // Bypass HazardRec virtual calls.
1706    CurrCycle = NextCycle;
1707  }
1708  else {
1709    // Bypass getHazardType calls in case of long latency.
1710    for (; CurrCycle != NextCycle; ++CurrCycle) {
1711      if (isTop())
1712        HazardRec->AdvanceCycle();
1713      else
1714        HazardRec->RecedeCycle();
1715    }
1716  }
1717  CheckPending = true;
1718  unsigned LFactor = SchedModel->getLatencyFactor();
1719  IsResourceLimited =
1720    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1721    > (int)LFactor;
1722
1723  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1724}
1725
1726void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
1727                                                              unsigned Count) {
1728  ExecutedResCounts[PIdx] += Count;
1729  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1730    MaxExecutedResCount = ExecutedResCounts[PIdx];
1731}
1732
1733/// Add the given processor resource to this scheduled zone.
1734///
1735/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1736/// during which this resource is consumed.
1737///
1738/// \return the next cycle at which the instruction may execute without
1739/// oversubscribing resources.
1740unsigned ConvergingScheduler::SchedBoundary::
1741countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
1742  unsigned Factor = SchedModel->getResourceFactor(PIdx);
1743  unsigned Count = Factor * Cycles;
1744  DEBUG(dbgs() << "  " << getResourceName(PIdx)
1745        << " +" << Cycles << "x" << Factor << "u\n");
1746
1747  // Update Executed resources counts.
1748  incExecutedResources(PIdx, Count);
1749  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1750  Rem->RemainingCounts[PIdx] -= Count;
1751
1752  // Check if this resource exceeds the current critical resource by a full
1753  // cycle. If so, it becomes the critical resource.
1754  if (ZoneCritResIdx != PIdx
1755      && ((int)(getResourceCount(PIdx) - getCriticalCount())
1756          >= (int)SchedModel->getLatencyFactor())) {
1757    ZoneCritResIdx = PIdx;
1758    DEBUG(dbgs() << "  *** Critical resource "
1759          << getResourceName(PIdx) << ": "
1760          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1761  }
1762  // TODO: We don't yet model reserved resources. It's not hard though.
1763  return CurrCycle;
1764}
1765
1766/// Move the boundary of scheduled code by one SUnit.
1767void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
1768  // Update the reservation table.
1769  if (HazardRec->isEnabled()) {
1770    if (!isTop() && SU->isCall) {
1771      // Calls are scheduled with their preceding instructions. For bottom-up
1772      // scheduling, clear the pipeline state before emitting.
1773      HazardRec->Reset();
1774    }
1775    HazardRec->EmitInstruction(SU);
1776  }
1777  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1778  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1779  CurrMOps += IncMOps;
1780  // checkHazard prevents scheduling multiple instructions per cycle that exceed
1781  // issue width. However, we commonly reach the maximum. In this case
1782  // opportunistically bump the cycle to avoid uselessly checking everything in
1783  // the readyQ. Furthermore, a single instruction may produce more than one
1784  // cycle's worth of micro-ops.
1785  //
1786  // TODO: Also check if this SU must end a dispatch group.
1787  unsigned NextCycle = CurrCycle;
1788  if (CurrMOps >= SchedModel->getIssueWidth()) {
1789    ++NextCycle;
1790    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
1791          << " at cycle " << CurrCycle << '\n');
1792  }
1793  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1794  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
1795
1796  switch (SchedModel->getMicroOpBufferSize()) {
1797  case 0:
1798    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1799    break;
1800  case 1:
1801    if (ReadyCycle > NextCycle) {
1802      NextCycle = ReadyCycle;
1803      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
1804    }
1805    break;
1806  default:
1807    // We don't currently model the OOO reorder buffer, so consider all
1808    // scheduled MOps to be "retired".
1809    break;
1810  }
1811  RetiredMOps += IncMOps;
1812
1813  // Update resource counts and critical resource.
1814  if (SchedModel->hasInstrSchedModel()) {
1815    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1816    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1817    Rem->RemIssueCount -= DecRemIssue;
1818    if (ZoneCritResIdx) {
1819      // Scale scheduled micro-ops for comparing with the critical resource.
1820      unsigned ScaledMOps =
1821        RetiredMOps * SchedModel->getMicroOpFactor();
1822
1823      // If scaled micro-ops are now more than the previous critical resource by
1824      // a full cycle, then micro-ops issue becomes critical.
1825      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1826          >= (int)SchedModel->getLatencyFactor()) {
1827        ZoneCritResIdx = 0;
1828        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
1829              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1830      }
1831    }
1832    for (TargetSchedModel::ProcResIter
1833           PI = SchedModel->getWriteProcResBegin(SC),
1834           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1835      unsigned RCycle =
1836        countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle);
1837      if (RCycle > NextCycle)
1838        NextCycle = RCycle;
1839    }
1840  }
1841  // Update ExpectedLatency and DependentLatency.
1842  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
1843  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
1844  if (SU->getDepth() > TopLatency) {
1845    TopLatency = SU->getDepth();
1846    DEBUG(dbgs() << "  " << Available.getName()
1847          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
1848  }
1849  if (SU->getHeight() > BotLatency) {
1850    BotLatency = SU->getHeight();
1851    DEBUG(dbgs() << "  " << Available.getName()
1852          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
1853  }
1854  // If we stall for any reason, bump the cycle.
1855  if (NextCycle > CurrCycle) {
1856    bumpCycle(NextCycle);
1857  }
1858  else {
1859    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
1860    // resource limited. If a stall occured, bumpCycle does this.
1861    unsigned LFactor = SchedModel->getLatencyFactor();
1862    IsResourceLimited =
1863      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1864      > (int)LFactor;
1865  }
1866  DEBUG(dumpScheduledState());
1867}
1868
1869/// Release pending ready nodes in to the available queue. This makes them
1870/// visible to heuristics.
1871void ConvergingScheduler::SchedBoundary::releasePending() {
1872  // If the available queue is empty, it is safe to reset MinReadyCycle.
1873  if (Available.empty())
1874    MinReadyCycle = UINT_MAX;
1875
1876  // Check to see if any of the pending instructions are ready to issue.  If
1877  // so, add them to the available queue.
1878  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1879  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
1880    SUnit *SU = *(Pending.begin()+i);
1881    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
1882
1883    if (ReadyCycle < MinReadyCycle)
1884      MinReadyCycle = ReadyCycle;
1885
1886    if (!IsBuffered && ReadyCycle > CurrCycle)
1887      continue;
1888
1889    if (checkHazard(SU))
1890      continue;
1891
1892    Available.push(SU);
1893    Pending.remove(Pending.begin()+i);
1894    --i; --e;
1895  }
1896  DEBUG(if (!Pending.empty()) Pending.dump());
1897  CheckPending = false;
1898}
1899
1900/// Remove SU from the ready set for this boundary.
1901void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
1902  if (Available.isInQueue(SU))
1903    Available.remove(Available.find(SU));
1904  else {
1905    assert(Pending.isInQueue(SU) && "bad ready count");
1906    Pending.remove(Pending.find(SU));
1907  }
1908}
1909
1910/// If this queue only has one ready candidate, return it. As a side effect,
1911/// defer any nodes that now hit a hazard, and advance the cycle until at least
1912/// one node is ready. If multiple instructions are ready, return NULL.
1913SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
1914  if (CheckPending)
1915    releasePending();
1916
1917  if (CurrMOps > 0) {
1918    // Defer any ready instrs that now have a hazard.
1919    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
1920      if (checkHazard(*I)) {
1921        Pending.push(*I);
1922        I = Available.remove(I);
1923        continue;
1924      }
1925      ++I;
1926    }
1927  }
1928  for (unsigned i = 0; Available.empty(); ++i) {
1929    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
1930           "permanent hazard"); (void)i;
1931    bumpCycle(CurrCycle + 1);
1932    releasePending();
1933  }
1934  if (Available.size() == 1)
1935    return *Available.begin();
1936  return NULL;
1937}
1938
1939// This is useful information to dump after bumpNode.
1940// Note that the Queue contents are more useful before pickNodeFromQueue.
1941void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
1942  unsigned ResFactor;
1943  unsigned ResCount;
1944  if (ZoneCritResIdx) {
1945    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
1946    ResCount = getResourceCount(ZoneCritResIdx);
1947  }
1948  else {
1949    ResFactor = SchedModel->getMicroOpFactor();
1950    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
1951  }
1952  unsigned LFactor = SchedModel->getLatencyFactor();
1953  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
1954         << "  Retired: " << RetiredMOps;
1955  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
1956  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
1957         << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx)
1958         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
1959         << (IsResourceLimited ? "  - Resource" : "  - Latency")
1960         << " limited.\n";
1961}
1962
1963void ConvergingScheduler::SchedCandidate::
1964initResourceDelta(const ScheduleDAGMI *DAG,
1965                  const TargetSchedModel *SchedModel) {
1966  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
1967    return;
1968
1969  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1970  for (TargetSchedModel::ProcResIter
1971         PI = SchedModel->getWriteProcResBegin(SC),
1972         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1973    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
1974      ResDelta.CritResources += PI->Cycles;
1975    if (PI->ProcResourceIdx == Policy.DemandResIdx)
1976      ResDelta.DemandedResources += PI->Cycles;
1977  }
1978}
1979
1980/// Return true if this heuristic determines order.
1981static bool tryLess(int TryVal, int CandVal,
1982                    ConvergingScheduler::SchedCandidate &TryCand,
1983                    ConvergingScheduler::SchedCandidate &Cand,
1984                    ConvergingScheduler::CandReason Reason) {
1985  if (TryVal < CandVal) {
1986    TryCand.Reason = Reason;
1987    return true;
1988  }
1989  if (TryVal > CandVal) {
1990    if (Cand.Reason > Reason)
1991      Cand.Reason = Reason;
1992    return true;
1993  }
1994  return false;
1995}
1996
1997static bool tryGreater(int TryVal, int CandVal,
1998                       ConvergingScheduler::SchedCandidate &TryCand,
1999                       ConvergingScheduler::SchedCandidate &Cand,
2000                       ConvergingScheduler::CandReason Reason) {
2001  if (TryVal > CandVal) {
2002    TryCand.Reason = Reason;
2003    return true;
2004  }
2005  if (TryVal < CandVal) {
2006    if (Cand.Reason > Reason)
2007      Cand.Reason = Reason;
2008    return true;
2009  }
2010  return false;
2011}
2012
2013static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2014  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2015}
2016
2017/// Minimize physical register live ranges. Regalloc wants them adjacent to
2018/// their physreg def/use.
2019///
2020/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2021/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2022/// with the operation that produces or consumes the physreg. We'll do this when
2023/// regalloc has support for parallel copies.
2024static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2025  const MachineInstr *MI = SU->getInstr();
2026  if (!MI->isCopy())
2027    return 0;
2028
2029  unsigned ScheduledOper = isTop ? 1 : 0;
2030  unsigned UnscheduledOper = isTop ? 0 : 1;
2031  // If we have already scheduled the physreg produce/consumer, immediately
2032  // schedule the copy.
2033  if (TargetRegisterInfo::isPhysicalRegister(
2034        MI->getOperand(ScheduledOper).getReg()))
2035    return 1;
2036  // If the physreg is at the boundary, defer it. Otherwise schedule it
2037  // immediately to free the dependent. We can hoist the copy later.
2038  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2039  if (TargetRegisterInfo::isPhysicalRegister(
2040        MI->getOperand(UnscheduledOper).getReg()))
2041    return AtBoundary ? -1 : 1;
2042  return 0;
2043}
2044
2045/// Apply a set of heursitics to a new candidate. Heuristics are currently
2046/// hierarchical. This may be more efficient than a graduated cost model because
2047/// we don't need to evaluate all aspects of the model for each node in the
2048/// queue. But it's really done to make the heuristics easier to debug and
2049/// statistically analyze.
2050///
2051/// \param Cand provides the policy and current best candidate.
2052/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2053/// \param Zone describes the scheduled zone that we are extending.
2054/// \param RPTracker describes reg pressure within the scheduled zone.
2055/// \param TempTracker is a scratch pressure tracker to reuse in queries.
2056void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
2057                                       SchedCandidate &TryCand,
2058                                       SchedBoundary &Zone,
2059                                       const RegPressureTracker &RPTracker,
2060                                       RegPressureTracker &TempTracker) {
2061
2062  // Always initialize TryCand's RPDelta.
2063  TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
2064                                  DAG->getRegionCriticalPSets(),
2065                                  DAG->getRegPressure().MaxSetPressure);
2066
2067  // Initialize the candidate if needed.
2068  if (!Cand.isValid()) {
2069    TryCand.Reason = NodeOrder;
2070    return;
2071  }
2072
2073  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2074                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2075                 TryCand, Cand, PhysRegCopy))
2076    return;
2077
2078  // Avoid exceeding the target's limit.
2079  if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
2080              Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
2081    return;
2082  if (Cand.Reason == SingleExcess)
2083    Cand.Reason = MultiPressure;
2084
2085  // Avoid increasing the max critical pressure in the scheduled region.
2086  if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
2087              Cand.RPDelta.CriticalMax.UnitIncrease,
2088              TryCand, Cand, SingleCritical))
2089    return;
2090  if (Cand.Reason == SingleCritical)
2091    Cand.Reason = MultiPressure;
2092
2093  // Keep clustered nodes together to encourage downstream peephole
2094  // optimizations which may reduce resource requirements.
2095  //
2096  // This is a best effort to set things up for a post-RA pass. Optimizations
2097  // like generating loads of multiple registers should ideally be done within
2098  // the scheduler pass by combining the loads during DAG postprocessing.
2099  const SUnit *NextClusterSU =
2100    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2101  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2102                 TryCand, Cand, Cluster))
2103    return;
2104
2105  // Weak edges are for clustering and other constraints.
2106  //
2107  // Deferring TryCand here does not change Cand's reason. This is good in the
2108  // sense that a bad candidate shouldn't affect a previous candidate's
2109  // goodness, but bad in that it is assymetric and depends on queue order.
2110  CandReason OrigReason = Cand.Reason;
2111  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2112              getWeakLeft(Cand.SU, Zone.isTop()),
2113              TryCand, Cand, Weak)) {
2114    Cand.Reason = OrigReason;
2115    return;
2116  }
2117  // Avoid critical resource consumption and balance the schedule.
2118  TryCand.initResourceDelta(DAG, SchedModel);
2119  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2120              TryCand, Cand, ResourceReduce))
2121    return;
2122  if (tryGreater(TryCand.ResDelta.DemandedResources,
2123                 Cand.ResDelta.DemandedResources,
2124                 TryCand, Cand, ResourceDemand))
2125    return;
2126
2127  // Avoid serializing long latency dependence chains.
2128  if (Cand.Policy.ReduceLatency) {
2129    if (Zone.isTop()) {
2130      if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2131        if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2132                    TryCand, Cand, TopDepthReduce))
2133          return;
2134      }
2135      if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2136                     TryCand, Cand, TopPathReduce))
2137        return;
2138    }
2139    else {
2140      if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2141        if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2142                    TryCand, Cand, BotHeightReduce))
2143          return;
2144      }
2145      if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2146                     TryCand, Cand, BotPathReduce))
2147        return;
2148    }
2149  }
2150
2151  // Avoid increasing the max pressure of the entire region.
2152  if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
2153              Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
2154    return;
2155  if (Cand.Reason == SingleMax)
2156    Cand.Reason = MultiPressure;
2157
2158  // Prefer immediate defs/users of the last scheduled instruction. This is a
2159  // local pressure avoidance strategy that also makes the machine code
2160  // readable.
2161  if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
2162                 TryCand, Cand, NextDefUse))
2163    return;
2164
2165  // Fall through to original instruction order.
2166  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2167      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2168    TryCand.Reason = NodeOrder;
2169  }
2170}
2171
2172/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
2173/// more desirable than RHS from scheduling standpoint.
2174static bool compareRPDelta(const RegPressureDelta &LHS,
2175                           const RegPressureDelta &RHS) {
2176  // Compare each component of pressure in decreasing order of importance
2177  // without checking if any are valid. Invalid PressureElements are assumed to
2178  // have UnitIncrease==0, so are neutral.
2179
2180  // Avoid increasing the max critical pressure in the scheduled region.
2181  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
2182    DEBUG(dbgs() << "  RP excess top - bot: "
2183          << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
2184    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
2185  }
2186  // Avoid increasing the max critical pressure in the scheduled region.
2187  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
2188    DEBUG(dbgs() << "  RP critical top - bot: "
2189          << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
2190          << '\n');
2191    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
2192  }
2193  // Avoid increasing the max pressure of the entire region.
2194  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
2195    DEBUG(dbgs() << "  RP current top - bot: "
2196          << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
2197          << '\n');
2198    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
2199  }
2200  return false;
2201}
2202
2203#ifndef NDEBUG
2204const char *ConvergingScheduler::getReasonStr(
2205  ConvergingScheduler::CandReason Reason) {
2206  switch (Reason) {
2207  case NoCand:         return "NOCAND    ";
2208  case PhysRegCopy:    return "PREG-COPY";
2209  case SingleExcess:   return "REG-EXCESS";
2210  case SingleCritical: return "REG-CRIT  ";
2211  case Cluster:        return "CLUSTER   ";
2212  case Weak:           return "WEAK      ";
2213  case SingleMax:      return "REG-MAX   ";
2214  case MultiPressure:  return "REG-MULTI ";
2215  case ResourceReduce: return "RES-REDUCE";
2216  case ResourceDemand: return "RES-DEMAND";
2217  case TopDepthReduce: return "TOP-DEPTH ";
2218  case TopPathReduce:  return "TOP-PATH  ";
2219  case BotHeightReduce:return "BOT-HEIGHT";
2220  case BotPathReduce:  return "BOT-PATH  ";
2221  case NextDefUse:     return "DEF-USE   ";
2222  case NodeOrder:      return "ORDER     ";
2223  };
2224  llvm_unreachable("Unknown reason!");
2225}
2226
2227void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
2228  PressureElement P;
2229  unsigned ResIdx = 0;
2230  unsigned Latency = 0;
2231  switch (Cand.Reason) {
2232  default:
2233    break;
2234  case SingleExcess:
2235    P = Cand.RPDelta.Excess;
2236    break;
2237  case SingleCritical:
2238    P = Cand.RPDelta.CriticalMax;
2239    break;
2240  case SingleMax:
2241    P = Cand.RPDelta.CurrentMax;
2242    break;
2243  case ResourceReduce:
2244    ResIdx = Cand.Policy.ReduceResIdx;
2245    break;
2246  case ResourceDemand:
2247    ResIdx = Cand.Policy.DemandResIdx;
2248    break;
2249  case TopDepthReduce:
2250    Latency = Cand.SU->getDepth();
2251    break;
2252  case TopPathReduce:
2253    Latency = Cand.SU->getHeight();
2254    break;
2255  case BotHeightReduce:
2256    Latency = Cand.SU->getHeight();
2257    break;
2258  case BotPathReduce:
2259    Latency = Cand.SU->getDepth();
2260    break;
2261  }
2262  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2263  if (P.isValid())
2264    dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
2265           << ":" << P.UnitIncrease << " ";
2266  else
2267    dbgs() << "      ";
2268  if (ResIdx)
2269    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2270  else
2271    dbgs() << "         ";
2272  if (Latency)
2273    dbgs() << " " << Latency << " cycles ";
2274  else
2275    dbgs() << "          ";
2276  dbgs() << '\n';
2277}
2278#endif
2279
2280/// Pick the best candidate from the top queue.
2281///
2282/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2283/// DAG building. To adjust for the current scheduling location we need to
2284/// maintain the number of vreg uses remaining to be top-scheduled.
2285void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2286                                            const RegPressureTracker &RPTracker,
2287                                            SchedCandidate &Cand) {
2288  ReadyQueue &Q = Zone.Available;
2289
2290  DEBUG(Q.dump());
2291
2292  // getMaxPressureDelta temporarily modifies the tracker.
2293  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2294
2295  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2296
2297    SchedCandidate TryCand(Cand.Policy);
2298    TryCand.SU = *I;
2299    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2300    if (TryCand.Reason != NoCand) {
2301      // Initialize resource delta if needed in case future heuristics query it.
2302      if (TryCand.ResDelta == SchedResourceDelta())
2303        TryCand.initResourceDelta(DAG, SchedModel);
2304      Cand.setBest(TryCand);
2305      DEBUG(traceCandidate(Cand));
2306    }
2307  }
2308}
2309
2310static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
2311                      bool IsTop) {
2312  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2313        << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
2314}
2315
2316/// Pick the best candidate node from either the top or bottom queue.
2317SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
2318  // Schedule as far as possible in the direction of no choice. This is most
2319  // efficient, but also provides the best heuristics for CriticalPSets.
2320  if (SUnit *SU = Bot.pickOnlyChoice()) {
2321    IsTopNode = false;
2322    DEBUG(dbgs() << "Pick Bot NOCAND\n");
2323    return SU;
2324  }
2325  if (SUnit *SU = Top.pickOnlyChoice()) {
2326    IsTopNode = true;
2327    DEBUG(dbgs() << "Pick Top NOCAND\n");
2328    return SU;
2329  }
2330  CandPolicy NoPolicy;
2331  SchedCandidate BotCand(NoPolicy);
2332  SchedCandidate TopCand(NoPolicy);
2333  Bot.setPolicy(BotCand.Policy, Top);
2334  Top.setPolicy(TopCand.Policy, Bot);
2335
2336  // Prefer bottom scheduling when heuristics are silent.
2337  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2338  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2339
2340  // If either Q has a single candidate that provides the least increase in
2341  // Excess pressure, we can immediately schedule from that Q.
2342  //
2343  // RegionCriticalPSets summarizes the pressure within the scheduled region and
2344  // affects picking from either Q. If scheduling in one direction must
2345  // increase pressure for one of the excess PSets, then schedule in that
2346  // direction first to provide more freedom in the other direction.
2347  if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
2348    IsTopNode = false;
2349    tracePick(BotCand, IsTopNode);
2350    return BotCand.SU;
2351  }
2352  // Check if the top Q has a better candidate.
2353  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2354  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2355
2356  // If either Q has a single candidate that minimizes pressure above the
2357  // original region's pressure pick it.
2358  if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
2359    if (TopCand.Reason < BotCand.Reason) {
2360      IsTopNode = true;
2361      tracePick(TopCand, IsTopNode);
2362      return TopCand.SU;
2363    }
2364    IsTopNode = false;
2365    tracePick(BotCand, IsTopNode);
2366    return BotCand.SU;
2367  }
2368  // Check for a salient pressure difference and pick the best from either side.
2369  if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
2370    IsTopNode = true;
2371    tracePick(TopCand, IsTopNode);
2372    return TopCand.SU;
2373  }
2374  // Otherwise prefer the bottom candidate, in node order if all else failed.
2375  if (TopCand.Reason < BotCand.Reason) {
2376    IsTopNode = true;
2377    tracePick(TopCand, IsTopNode);
2378    return TopCand.SU;
2379  }
2380  IsTopNode = false;
2381  tracePick(BotCand, IsTopNode);
2382  return BotCand.SU;
2383}
2384
2385/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2386SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
2387  if (DAG->top() == DAG->bottom()) {
2388    assert(Top.Available.empty() && Top.Pending.empty() &&
2389           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2390    return NULL;
2391  }
2392  SUnit *SU;
2393  do {
2394    if (ForceTopDown) {
2395      SU = Top.pickOnlyChoice();
2396      if (!SU) {
2397        CandPolicy NoPolicy;
2398        SchedCandidate TopCand(NoPolicy);
2399        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2400        assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2401        SU = TopCand.SU;
2402      }
2403      IsTopNode = true;
2404    }
2405    else if (ForceBottomUp) {
2406      SU = Bot.pickOnlyChoice();
2407      if (!SU) {
2408        CandPolicy NoPolicy;
2409        SchedCandidate BotCand(NoPolicy);
2410        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2411        assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2412        SU = BotCand.SU;
2413      }
2414      IsTopNode = false;
2415    }
2416    else {
2417      SU = pickNodeBidirectional(IsTopNode);
2418    }
2419  } while (SU->isScheduled);
2420
2421  if (SU->isTopReady())
2422    Top.removeReady(SU);
2423  if (SU->isBottomReady())
2424    Bot.removeReady(SU);
2425
2426  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2427  return SU;
2428}
2429
2430void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2431
2432  MachineBasicBlock::iterator InsertPos = SU->getInstr();
2433  if (!isTop)
2434    ++InsertPos;
2435  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2436
2437  // Find already scheduled copies with a single physreg dependence and move
2438  // them just above the scheduled instruction.
2439  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2440       I != E; ++I) {
2441    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2442      continue;
2443    SUnit *DepSU = I->getSUnit();
2444    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2445      continue;
2446    MachineInstr *Copy = DepSU->getInstr();
2447    if (!Copy->isCopy())
2448      continue;
2449    DEBUG(dbgs() << "  Rescheduling physreg copy ";
2450          I->getSUnit()->dump(DAG));
2451    DAG->moveInstruction(Copy, InsertPos);
2452  }
2453}
2454
2455/// Update the scheduler's state after scheduling a node. This is the same node
2456/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
2457/// it's state based on the current cycle before MachineSchedStrategy does.
2458///
2459/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2460/// them here. See comments in biasPhysRegCopy.
2461void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2462  if (IsTopNode) {
2463    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
2464    Top.bumpNode(SU);
2465    if (SU->hasPhysRegUses)
2466      reschedulePhysRegCopies(SU, true);
2467  }
2468  else {
2469    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle);
2470    Bot.bumpNode(SU);
2471    if (SU->hasPhysRegDefs)
2472      reschedulePhysRegCopies(SU, false);
2473  }
2474}
2475
2476/// Create the standard converging machine scheduler. This will be used as the
2477/// default scheduler if the target does not set a default.
2478static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
2479  assert((!ForceTopDown || !ForceBottomUp) &&
2480         "-misched-topdown incompatible with -misched-bottomup");
2481  ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
2482  // Register DAG post-processors.
2483  //
2484  // FIXME: extend the mutation API to allow earlier mutations to instantiate
2485  // data and pass it to later mutations. Have a single mutation that gathers
2486  // the interesting nodes in one pass.
2487  DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
2488  if (EnableLoadCluster)
2489    DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
2490  if (EnableMacroFusion)
2491    DAG->addMutation(new MacroFusion(DAG->TII));
2492  return DAG;
2493}
2494static MachineSchedRegistry
2495ConvergingSchedRegistry("converge", "Standard converging scheduler.",
2496                        createConvergingSched);
2497
2498//===----------------------------------------------------------------------===//
2499// ILP Scheduler. Currently for experimental analysis of heuristics.
2500//===----------------------------------------------------------------------===//
2501
2502namespace {
2503/// \brief Order nodes by the ILP metric.
2504struct ILPOrder {
2505  const SchedDFSResult *DFSResult;
2506  const BitVector *ScheduledTrees;
2507  bool MaximizeILP;
2508
2509  ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
2510
2511  /// \brief Apply a less-than relation on node priority.
2512  ///
2513  /// (Return true if A comes after B in the Q.)
2514  bool operator()(const SUnit *A, const SUnit *B) const {
2515    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
2516    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
2517    if (SchedTreeA != SchedTreeB) {
2518      // Unscheduled trees have lower priority.
2519      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
2520        return ScheduledTrees->test(SchedTreeB);
2521
2522      // Trees with shallower connections have have lower priority.
2523      if (DFSResult->getSubtreeLevel(SchedTreeA)
2524          != DFSResult->getSubtreeLevel(SchedTreeB)) {
2525        return DFSResult->getSubtreeLevel(SchedTreeA)
2526          < DFSResult->getSubtreeLevel(SchedTreeB);
2527      }
2528    }
2529    if (MaximizeILP)
2530      return DFSResult->getILP(A) < DFSResult->getILP(B);
2531    else
2532      return DFSResult->getILP(A) > DFSResult->getILP(B);
2533  }
2534};
2535
2536/// \brief Schedule based on the ILP metric.
2537class ILPScheduler : public MachineSchedStrategy {
2538  /// In case all subtrees are eventually connected to a common root through
2539  /// data dependence (e.g. reduction), place an upper limit on their size.
2540  ///
2541  /// FIXME: A subtree limit is generally good, but in the situation commented
2542  /// above, where multiple similar subtrees feed a common root, we should
2543  /// only split at a point where the resulting subtrees will be balanced.
2544  /// (a motivating test case must be found).
2545  static const unsigned SubtreeLimit = 16;
2546
2547  ScheduleDAGMI *DAG;
2548  ILPOrder Cmp;
2549
2550  std::vector<SUnit*> ReadyQ;
2551public:
2552  ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
2553
2554  virtual void initialize(ScheduleDAGMI *dag) {
2555    DAG = dag;
2556    DAG->computeDFSResult();
2557    Cmp.DFSResult = DAG->getDFSResult();
2558    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
2559    ReadyQ.clear();
2560  }
2561
2562  virtual void registerRoots() {
2563    // Restore the heap in ReadyQ with the updated DFS results.
2564    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2565  }
2566
2567  /// Implement MachineSchedStrategy interface.
2568  /// -----------------------------------------
2569
2570  /// Callback to select the highest priority node from the ready Q.
2571  virtual SUnit *pickNode(bool &IsTopNode) {
2572    if (ReadyQ.empty()) return NULL;
2573    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2574    SUnit *SU = ReadyQ.back();
2575    ReadyQ.pop_back();
2576    IsTopNode = false;
2577    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
2578          << " ILP: " << DAG->getDFSResult()->getILP(SU)
2579          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
2580          << DAG->getDFSResult()->getSubtreeLevel(
2581            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
2582          << "Scheduling " << *SU->getInstr());
2583    return SU;
2584  }
2585
2586  /// \brief Scheduler callback to notify that a new subtree is scheduled.
2587  virtual void scheduleTree(unsigned SubtreeID) {
2588    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2589  }
2590
2591  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
2592  /// DFSResults, and resort the priority Q.
2593  virtual void schedNode(SUnit *SU, bool IsTopNode) {
2594    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
2595  }
2596
2597  virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
2598
2599  virtual void releaseBottomNode(SUnit *SU) {
2600    ReadyQ.push_back(SU);
2601    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2602  }
2603};
2604} // namespace
2605
2606static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
2607  return new ScheduleDAGMI(C, new ILPScheduler(true));
2608}
2609static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
2610  return new ScheduleDAGMI(C, new ILPScheduler(false));
2611}
2612static MachineSchedRegistry ILPMaxRegistry(
2613  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
2614static MachineSchedRegistry ILPMinRegistry(
2615  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
2616
2617//===----------------------------------------------------------------------===//
2618// Machine Instruction Shuffler for Correctness Testing
2619//===----------------------------------------------------------------------===//
2620
2621#ifndef NDEBUG
2622namespace {
2623/// Apply a less-than relation on the node order, which corresponds to the
2624/// instruction order prior to scheduling. IsReverse implements greater-than.
2625template<bool IsReverse>
2626struct SUnitOrder {
2627  bool operator()(SUnit *A, SUnit *B) const {
2628    if (IsReverse)
2629      return A->NodeNum > B->NodeNum;
2630    else
2631      return A->NodeNum < B->NodeNum;
2632  }
2633};
2634
2635/// Reorder instructions as much as possible.
2636class InstructionShuffler : public MachineSchedStrategy {
2637  bool IsAlternating;
2638  bool IsTopDown;
2639
2640  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
2641  // gives nodes with a higher number higher priority causing the latest
2642  // instructions to be scheduled first.
2643  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
2644    TopQ;
2645  // When scheduling bottom-up, use greater-than as the queue priority.
2646  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
2647    BottomQ;
2648public:
2649  InstructionShuffler(bool alternate, bool topdown)
2650    : IsAlternating(alternate), IsTopDown(topdown) {}
2651
2652  virtual void initialize(ScheduleDAGMI *) {
2653    TopQ.clear();
2654    BottomQ.clear();
2655  }
2656
2657  /// Implement MachineSchedStrategy interface.
2658  /// -----------------------------------------
2659
2660  virtual SUnit *pickNode(bool &IsTopNode) {
2661    SUnit *SU;
2662    if (IsTopDown) {
2663      do {
2664        if (TopQ.empty()) return NULL;
2665        SU = TopQ.top();
2666        TopQ.pop();
2667      } while (SU->isScheduled);
2668      IsTopNode = true;
2669    }
2670    else {
2671      do {
2672        if (BottomQ.empty()) return NULL;
2673        SU = BottomQ.top();
2674        BottomQ.pop();
2675      } while (SU->isScheduled);
2676      IsTopNode = false;
2677    }
2678    if (IsAlternating)
2679      IsTopDown = !IsTopDown;
2680    return SU;
2681  }
2682
2683  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
2684
2685  virtual void releaseTopNode(SUnit *SU) {
2686    TopQ.push(SU);
2687  }
2688  virtual void releaseBottomNode(SUnit *SU) {
2689    BottomQ.push(SU);
2690  }
2691};
2692} // namespace
2693
2694static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
2695  bool Alternate = !ForceTopDown && !ForceBottomUp;
2696  bool TopDown = !ForceBottomUp;
2697  assert((TopDown || !ForceTopDown) &&
2698         "-misched-topdown incompatible with -misched-bottomup");
2699  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
2700}
2701static MachineSchedRegistry ShufflerRegistry(
2702  "shuffle", "Shuffle machine instructions alternating directions",
2703  createInstructionShuffler);
2704#endif // !NDEBUG
2705
2706//===----------------------------------------------------------------------===//
2707// GraphWriter support for ScheduleDAGMI.
2708//===----------------------------------------------------------------------===//
2709
2710#ifndef NDEBUG
2711namespace llvm {
2712
2713template<> struct GraphTraits<
2714  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
2715
2716template<>
2717struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
2718
2719  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2720
2721  static std::string getGraphName(const ScheduleDAG *G) {
2722    return G->MF.getName();
2723  }
2724
2725  static bool renderGraphFromBottomUp() {
2726    return true;
2727  }
2728
2729  static bool isNodeHidden(const SUnit *Node) {
2730    return (Node->NumPreds > 10 || Node->NumSuccs > 10);
2731  }
2732
2733  static bool hasNodeAddressLabel(const SUnit *Node,
2734                                  const ScheduleDAG *Graph) {
2735    return false;
2736  }
2737
2738  /// If you want to override the dot attributes printed for a particular
2739  /// edge, override this method.
2740  static std::string getEdgeAttributes(const SUnit *Node,
2741                                       SUnitIterator EI,
2742                                       const ScheduleDAG *Graph) {
2743    if (EI.isArtificialDep())
2744      return "color=cyan,style=dashed";
2745    if (EI.isCtrlDep())
2746      return "color=blue,style=dashed";
2747    return "";
2748  }
2749
2750  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
2751    std::string Str;
2752    raw_string_ostream SS(Str);
2753    SS << "SU(" << SU->NodeNum << ')';
2754    return SS.str();
2755  }
2756  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
2757    return G->getGraphNodeLabel(SU);
2758  }
2759
2760  static std::string getNodeAttributes(const SUnit *N,
2761                                       const ScheduleDAG *Graph) {
2762    std::string Str("shape=Mrecord");
2763    const SchedDFSResult *DFS =
2764      static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
2765    if (DFS) {
2766      Str += ",style=filled,fillcolor=\"#";
2767      Str += DOT::getColorString(DFS->getSubtreeID(N));
2768      Str += '"';
2769    }
2770    return Str;
2771  }
2772};
2773} // namespace llvm
2774#endif // NDEBUG
2775
2776/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
2777/// rendered using 'dot'.
2778///
2779void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
2780#ifndef NDEBUG
2781  ViewGraph(this, Name, false, Title);
2782#else
2783  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
2784         << "systems with Graphviz or gv!\n";
2785#endif  // NDEBUG
2786}
2787
2788/// Out-of-line implementation with no arguments is handy for gdb.
2789void ScheduleDAGMI::viewGraph() {
2790  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
2791}
2792