MachineSink.cpp revision 1dd8c8560d45d36a8e507cd014352f1d313f9f9e
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33using namespace llvm;
34
35static cl::opt<bool>
36SplitEdges("machine-sink-split",
37           cl::desc("Split critical edges during machine sinking"),
38           cl::init(true), cl::Hidden);
39
40STATISTIC(NumSunk,      "Number of machine instructions sunk");
41STATISTIC(NumSplit,     "Number of critical edges split");
42STATISTIC(NumCoalesces, "Number of copies coalesced");
43
44namespace {
45  class MachineSinking : public MachineFunctionPass {
46    const TargetInstrInfo *TII;
47    const TargetRegisterInfo *TRI;
48    MachineRegisterInfo  *MRI;  // Machine register information
49    MachineDominatorTree *DT;   // Machine dominator tree
50    MachineLoopInfo *LI;
51    AliasAnalysis *AA;
52    BitVector AllocatableSet;   // Which physregs are allocatable?
53
54    // Remember which edges have been considered for breaking.
55    SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
56    CEBCandidates;
57
58  public:
59    static char ID; // Pass identification
60    MachineSinking() : MachineFunctionPass(ID) {
61      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
62    }
63
64    virtual bool runOnMachineFunction(MachineFunction &MF);
65
66    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
67      AU.setPreservesCFG();
68      MachineFunctionPass::getAnalysisUsage(AU);
69      AU.addRequired<AliasAnalysis>();
70      AU.addRequired<MachineDominatorTree>();
71      AU.addRequired<MachineLoopInfo>();
72      AU.addPreserved<MachineDominatorTree>();
73      AU.addPreserved<MachineLoopInfo>();
74    }
75
76    virtual void releaseMemory() {
77      CEBCandidates.clear();
78    }
79
80  private:
81    bool ProcessBlock(MachineBasicBlock &MBB);
82    bool isWorthBreakingCriticalEdge(MachineInstr *MI,
83                                     MachineBasicBlock *From,
84                                     MachineBasicBlock *To);
85    MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
86                                         MachineBasicBlock *From,
87                                         MachineBasicBlock *To,
88                                         bool BreakPHIEdge);
89    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
90    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
91                                 MachineBasicBlock *DefMBB,
92                                 bool &BreakPHIEdge, bool &LocalUse) const;
93    MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
94               bool &BreakPHIEdge);
95    bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
96                              MachineBasicBlock *MBB,
97                              MachineBasicBlock *SuccToSinkTo);
98
99    bool PerformTrivialForwardCoalescing(MachineInstr *MI,
100                                         MachineBasicBlock *MBB);
101  };
102} // end anonymous namespace
103
104char MachineSinking::ID = 0;
105char &llvm::MachineSinkingID = MachineSinking::ID;
106INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
107                "Machine code sinking", false, false)
108INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
109INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
110INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
111INITIALIZE_PASS_END(MachineSinking, "machine-sink",
112                "Machine code sinking", false, false)
113
114bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
115                                                     MachineBasicBlock *MBB) {
116  if (!MI->isCopy())
117    return false;
118
119  unsigned SrcReg = MI->getOperand(1).getReg();
120  unsigned DstReg = MI->getOperand(0).getReg();
121  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
122      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
123      !MRI->hasOneNonDBGUse(SrcReg))
124    return false;
125
126  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
127  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
128  if (SRC != DRC)
129    return false;
130
131  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
132  if (DefMI->isCopyLike())
133    return false;
134  DEBUG(dbgs() << "Coalescing: " << *DefMI);
135  DEBUG(dbgs() << "*** to: " << *MI);
136  MRI->replaceRegWith(DstReg, SrcReg);
137  MI->eraseFromParent();
138  ++NumCoalesces;
139  return true;
140}
141
142/// AllUsesDominatedByBlock - Return true if all uses of the specified register
143/// occur in blocks dominated by the specified block. If any use is in the
144/// definition block, then return false since it is never legal to move def
145/// after uses.
146bool
147MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
148                                        MachineBasicBlock *MBB,
149                                        MachineBasicBlock *DefMBB,
150                                        bool &BreakPHIEdge,
151                                        bool &LocalUse) const {
152  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
153         "Only makes sense for vregs");
154
155  // Ignore debug uses because debug info doesn't affect the code.
156  if (MRI->use_nodbg_empty(Reg))
157    return true;
158
159  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
160  // into and they are all PHI nodes. In this case, machine-sink must break
161  // the critical edge first. e.g.
162  //
163  // BB#1: derived from LLVM BB %bb4.preheader
164  //   Predecessors according to CFG: BB#0
165  //     ...
166  //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
167  //     ...
168  //     JE_4 <BB#37>, %EFLAGS<imp-use>
169  //   Successors according to CFG: BB#37 BB#2
170  //
171  // BB#2: derived from LLVM BB %bb.nph
172  //   Predecessors according to CFG: BB#0 BB#1
173  //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
174  BreakPHIEdge = true;
175  for (MachineRegisterInfo::use_nodbg_iterator
176         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
177       I != E; ++I) {
178    MachineInstr *UseInst = &*I;
179    MachineBasicBlock *UseBlock = UseInst->getParent();
180    if (!(UseBlock == MBB && UseInst->isPHI() &&
181          UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
182      BreakPHIEdge = false;
183      break;
184    }
185  }
186  if (BreakPHIEdge)
187    return true;
188
189  for (MachineRegisterInfo::use_nodbg_iterator
190         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
191       I != E; ++I) {
192    // Determine the block of the use.
193    MachineInstr *UseInst = &*I;
194    MachineBasicBlock *UseBlock = UseInst->getParent();
195    if (UseInst->isPHI()) {
196      // PHI nodes use the operand in the predecessor block, not the block with
197      // the PHI.
198      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
199    } else if (UseBlock == DefMBB) {
200      LocalUse = true;
201      return false;
202    }
203
204    // Check that it dominates.
205    if (!DT->dominates(MBB, UseBlock))
206      return false;
207  }
208
209  return true;
210}
211
212bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
213  DEBUG(dbgs() << "******** Machine Sinking ********\n");
214
215  const TargetMachine &TM = MF.getTarget();
216  TII = TM.getInstrInfo();
217  TRI = TM.getRegisterInfo();
218  MRI = &MF.getRegInfo();
219  DT = &getAnalysis<MachineDominatorTree>();
220  LI = &getAnalysis<MachineLoopInfo>();
221  AA = &getAnalysis<AliasAnalysis>();
222  AllocatableSet = TRI->getAllocatableSet(MF);
223
224  bool EverMadeChange = false;
225
226  while (1) {
227    bool MadeChange = false;
228
229    // Process all basic blocks.
230    CEBCandidates.clear();
231    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
232         I != E; ++I)
233      MadeChange |= ProcessBlock(*I);
234
235    // If this iteration over the code changed anything, keep iterating.
236    if (!MadeChange) break;
237    EverMadeChange = true;
238  }
239  return EverMadeChange;
240}
241
242bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
243  // Can't sink anything out of a block that has less than two successors.
244  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
245
246  // Don't bother sinking code out of unreachable blocks. In addition to being
247  // unprofitable, it can also lead to infinite looping, because in an
248  // unreachable loop there may be nowhere to stop.
249  if (!DT->isReachableFromEntry(&MBB)) return false;
250
251  bool MadeChange = false;
252
253  // Walk the basic block bottom-up.  Remember if we saw a store.
254  MachineBasicBlock::iterator I = MBB.end();
255  --I;
256  bool ProcessedBegin, SawStore = false;
257  do {
258    MachineInstr *MI = I;  // The instruction to sink.
259
260    // Predecrement I (if it's not begin) so that it isn't invalidated by
261    // sinking.
262    ProcessedBegin = I == MBB.begin();
263    if (!ProcessedBegin)
264      --I;
265
266    if (MI->isDebugValue())
267      continue;
268
269    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
270    if (Joined) {
271      MadeChange = true;
272      continue;
273    }
274
275    if (SinkInstruction(MI, SawStore))
276      ++NumSunk, MadeChange = true;
277
278    // If we just processed the first instruction in the block, we're done.
279  } while (!ProcessedBegin);
280
281  return MadeChange;
282}
283
284bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
285                                                 MachineBasicBlock *From,
286                                                 MachineBasicBlock *To) {
287  // FIXME: Need much better heuristics.
288
289  // If the pass has already considered breaking this edge (during this pass
290  // through the function), then let's go ahead and break it. This means
291  // sinking multiple "cheap" instructions into the same block.
292  if (!CEBCandidates.insert(std::make_pair(From, To)))
293    return true;
294
295  if (!MI->isCopy() && !MI->isAsCheapAsAMove())
296    return true;
297
298  // MI is cheap, we probably don't want to break the critical edge for it.
299  // However, if this would allow some definitions of its source operands
300  // to be sunk then it's probably worth it.
301  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
302    const MachineOperand &MO = MI->getOperand(i);
303    if (!MO.isReg()) continue;
304    unsigned Reg = MO.getReg();
305    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
306      continue;
307    if (MRI->hasOneNonDBGUse(Reg))
308      return true;
309  }
310
311  return false;
312}
313
314MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
315                                                     MachineBasicBlock *FromBB,
316                                                     MachineBasicBlock *ToBB,
317                                                     bool BreakPHIEdge) {
318  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
319    return 0;
320
321  // Avoid breaking back edge. From == To means backedge for single BB loop.
322  if (!SplitEdges || FromBB == ToBB)
323    return 0;
324
325  // Check for backedges of more "complex" loops.
326  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
327      LI->isLoopHeader(ToBB))
328    return 0;
329
330  // It's not always legal to break critical edges and sink the computation
331  // to the edge.
332  //
333  // BB#1:
334  // v1024
335  // Beq BB#3
336  // <fallthrough>
337  // BB#2:
338  // ... no uses of v1024
339  // <fallthrough>
340  // BB#3:
341  // ...
342  //       = v1024
343  //
344  // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
345  //
346  // BB#1:
347  // ...
348  // Bne BB#2
349  // BB#4:
350  // v1024 =
351  // B BB#3
352  // BB#2:
353  // ... no uses of v1024
354  // <fallthrough>
355  // BB#3:
356  // ...
357  //       = v1024
358  //
359  // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
360  // flow. We need to ensure the new basic block where the computation is
361  // sunk to dominates all the uses.
362  // It's only legal to break critical edge and sink the computation to the
363  // new block if all the predecessors of "To", except for "From", are
364  // not dominated by "From". Given SSA property, this means these
365  // predecessors are dominated by "To".
366  //
367  // There is no need to do this check if all the uses are PHI nodes. PHI
368  // sources are only defined on the specific predecessor edges.
369  if (!BreakPHIEdge) {
370    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
371           E = ToBB->pred_end(); PI != E; ++PI) {
372      if (*PI == FromBB)
373        continue;
374      if (!DT->dominates(ToBB, *PI))
375        return 0;
376    }
377  }
378
379  return FromBB->SplitCriticalEdge(ToBB, this);
380}
381
382static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
383  return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
384}
385
386/// collectDebgValues - Scan instructions following MI and collect any
387/// matching DBG_VALUEs.
388static void collectDebugValues(MachineInstr *MI,
389                               SmallVector<MachineInstr *, 2> & DbgValues) {
390  DbgValues.clear();
391  if (!MI->getOperand(0).isReg())
392    return;
393
394  MachineBasicBlock::iterator DI = MI; ++DI;
395  for (MachineBasicBlock::iterator DE = MI->getParent()->end();
396       DI != DE; ++DI) {
397    if (!DI->isDebugValue())
398      return;
399    if (DI->getOperand(0).isReg() &&
400        DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
401      DbgValues.push_back(DI);
402  }
403}
404
405/// isPostDominatedBy - Return true if A is post dominated by B.
406static bool isPostDominatedBy(MachineBasicBlock *A, MachineBasicBlock *B) {
407
408  // FIXME - Use real post dominator.
409  if (A->succ_size() != 2)
410    return false;
411  MachineBasicBlock::succ_iterator I = A->succ_begin();
412  if (B == *I)
413    ++I;
414  MachineBasicBlock *OtherSuccBlock = *I;
415  if (OtherSuccBlock->succ_size() != 1 ||
416      *(OtherSuccBlock->succ_begin()) != B)
417    return false;
418
419  return true;
420}
421
422/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
423bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
424                                          MachineBasicBlock *MBB,
425                                          MachineBasicBlock *SuccToSinkTo) {
426  assert (MI && "Invalid MachineInstr!");
427  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
428
429  if (MBB == SuccToSinkTo)
430    return false;
431
432  // It is profitable if SuccToSinkTo does not post dominate current block.
433  if (!isPostDominatedBy(MBB, SuccToSinkTo))
434      return true;
435
436  // Check if only use in post dominated block is PHI instruction.
437  bool NonPHIUse = false;
438  for (MachineRegisterInfo::use_nodbg_iterator
439         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
440       I != E; ++I) {
441    MachineInstr *UseInst = &*I;
442    MachineBasicBlock *UseBlock = UseInst->getParent();
443    if (UseBlock == SuccToSinkTo && !UseInst->isPHI())
444      NonPHIUse = true;
445  }
446  if (!NonPHIUse)
447    return true;
448
449  // If SuccToSinkTo post dominates then also it may be profitable if MI
450  // can further profitably sinked into another block in next round.
451  bool BreakPHIEdge = false;
452  // FIXME - If finding successor is compile time expensive then catch results.
453  if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
454    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);
455
456  // If SuccToSinkTo is final destination and it is a post dominator of current
457  // block then it is not profitable to sink MI into SuccToSinkTo block.
458  return false;
459}
460
461/// FindSuccToSinkTo - Find a successor to sink this instruction to.
462MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
463                                   MachineBasicBlock *MBB,
464                                   bool &BreakPHIEdge) {
465
466  assert (MI && "Invalid MachineInstr!");
467  assert (MBB && "Invalid MachineBasicBlock!");
468
469  // Loop over all the operands of the specified instruction.  If there is
470  // anything we can't handle, bail out.
471
472  // SuccToSinkTo - This is the successor to sink this instruction to, once we
473  // decide.
474  MachineBasicBlock *SuccToSinkTo = 0;
475  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
476    const MachineOperand &MO = MI->getOperand(i);
477    if (!MO.isReg()) continue;  // Ignore non-register operands.
478
479    unsigned Reg = MO.getReg();
480    if (Reg == 0) continue;
481
482    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
483      if (MO.isUse()) {
484        // If the physreg has no defs anywhere, it's just an ambient register
485        // and we can freely move its uses. Alternatively, if it's allocatable,
486        // it could get allocated to something with a def during allocation.
487        if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
488          return NULL;
489      } else if (!MO.isDead()) {
490        // A def that isn't dead. We can't move it.
491        return NULL;
492      }
493    } else {
494      // Virtual register uses are always safe to sink.
495      if (MO.isUse()) continue;
496
497      // If it's not safe to move defs of the register class, then abort.
498      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
499        return NULL;
500
501      // FIXME: This picks a successor to sink into based on having one
502      // successor that dominates all the uses.  However, there are cases where
503      // sinking can happen but where the sink point isn't a successor.  For
504      // example:
505      //
506      //   x = computation
507      //   if () {} else {}
508      //   use x
509      //
510      // the instruction could be sunk over the whole diamond for the
511      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
512      // after that.
513
514      // Virtual register defs can only be sunk if all their uses are in blocks
515      // dominated by one of the successors.
516      if (SuccToSinkTo) {
517        // If a previous operand picked a block to sink to, then this operand
518        // must be sinkable to the same block.
519        bool LocalUse = false;
520        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
521                                     BreakPHIEdge, LocalUse))
522          return NULL;
523
524        continue;
525      }
526
527      // Otherwise, we should look at all the successors and decide which one
528      // we should sink to.
529      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
530           E = MBB->succ_end(); SI != E; ++SI) {
531        MachineBasicBlock *SuccBlock = *SI;
532        bool LocalUse = false;
533        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
534                                    BreakPHIEdge, LocalUse)) {
535          SuccToSinkTo = SuccBlock;
536          break;
537        }
538        if (LocalUse)
539          // Def is used locally, it's never safe to move this def.
540          return NULL;
541      }
542
543      // If we couldn't find a block to sink to, ignore this instruction.
544      if (SuccToSinkTo == 0)
545        return NULL;
546      else if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo))
547        return NULL;
548    }
549  }
550
551  // It is not possible to sink an instruction into its own block.  This can
552  // happen with loops.
553  if (MBB == SuccToSinkTo)
554    return NULL;
555
556  // It's not safe to sink instructions to EH landing pad. Control flow into
557  // landing pad is implicitly defined.
558  if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
559    return NULL;
560
561  return SuccToSinkTo;
562}
563
564/// SinkInstruction - Determine whether it is safe to sink the specified machine
565/// instruction out of its current block into a successor.
566bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
567  // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
568  // be close to the source to make it easier to coalesce.
569  if (AvoidsSinking(MI, MRI))
570    return false;
571
572  // Check if it's safe to move the instruction.
573  if (!MI->isSafeToMove(TII, AA, SawStore))
574    return false;
575
576  // FIXME: This should include support for sinking instructions within the
577  // block they are currently in to shorten the live ranges.  We often get
578  // instructions sunk into the top of a large block, but it would be better to
579  // also sink them down before their first use in the block.  This xform has to
580  // be careful not to *increase* register pressure though, e.g. sinking
581  // "x = y + z" down if it kills y and z would increase the live ranges of y
582  // and z and only shrink the live range of x.
583
584  bool BreakPHIEdge = false;
585  MachineBasicBlock *ParentBlock = MI->getParent();
586  MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge);
587
588  // If there are no outputs, it must have side-effects.
589  if (SuccToSinkTo == 0)
590    return false;
591
592
593  // If the instruction to move defines a dead physical register which is live
594  // when leaving the basic block, don't move it because it could turn into a
595  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
596  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
597    const MachineOperand &MO = MI->getOperand(I);
598    if (!MO.isReg()) continue;
599    unsigned Reg = MO.getReg();
600    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
601    if (SuccToSinkTo->isLiveIn(Reg))
602      return false;
603  }
604
605  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
606
607  // If the block has multiple predecessors, this would introduce computation on
608  // a path that it doesn't already exist.  We could split the critical edge,
609  // but for now we just punt.
610  if (SuccToSinkTo->pred_size() > 1) {
611    // We cannot sink a load across a critical edge - there may be stores in
612    // other code paths.
613    bool TryBreak = false;
614    bool store = true;
615    if (!MI->isSafeToMove(TII, AA, store)) {
616      DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
617      TryBreak = true;
618    }
619
620    // We don't want to sink across a critical edge if we don't dominate the
621    // successor. We could be introducing calculations to new code paths.
622    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
623      DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
624      TryBreak = true;
625    }
626
627    // Don't sink instructions into a loop.
628    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
629      DEBUG(dbgs() << " *** NOTE: Loop header found\n");
630      TryBreak = true;
631    }
632
633    // Otherwise we are OK with sinking along a critical edge.
634    if (!TryBreak)
635      DEBUG(dbgs() << "Sinking along critical edge.\n");
636    else {
637      MachineBasicBlock *NewSucc =
638        SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
639      if (!NewSucc) {
640        DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
641                        "break critical edge\n");
642        return false;
643      } else {
644        DEBUG(dbgs() << " *** Splitting critical edge:"
645              " BB#" << ParentBlock->getNumber()
646              << " -- BB#" << NewSucc->getNumber()
647              << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
648        SuccToSinkTo = NewSucc;
649        ++NumSplit;
650        BreakPHIEdge = false;
651      }
652    }
653  }
654
655  if (BreakPHIEdge) {
656    // BreakPHIEdge is true if all the uses are in the successor MBB being
657    // sunken into and they are all PHI nodes. In this case, machine-sink must
658    // break the critical edge first.
659    MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
660                                                   SuccToSinkTo, BreakPHIEdge);
661    if (!NewSucc) {
662      DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
663            "break critical edge\n");
664      return false;
665    }
666
667    DEBUG(dbgs() << " *** Splitting critical edge:"
668          " BB#" << ParentBlock->getNumber()
669          << " -- BB#" << NewSucc->getNumber()
670          << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
671    SuccToSinkTo = NewSucc;
672    ++NumSplit;
673  }
674
675  // Determine where to insert into. Skip phi nodes.
676  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
677  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
678    ++InsertPos;
679
680  // collect matching debug values.
681  SmallVector<MachineInstr *, 2> DbgValuesToSink;
682  collectDebugValues(MI, DbgValuesToSink);
683
684  // Move the instruction.
685  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
686                       ++MachineBasicBlock::iterator(MI));
687
688  // Move debug values.
689  for (SmallVector<MachineInstr *, 2>::iterator DBI = DbgValuesToSink.begin(),
690         DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
691    MachineInstr *DbgMI = *DBI;
692    SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
693                         ++MachineBasicBlock::iterator(DbgMI));
694  }
695
696  // Conservatively, clear any kill flags, since it's possible that they are no
697  // longer correct.
698  MI->clearKillInfo();
699
700  return true;
701}
702