MachineSink.cpp revision 541a81cc2bb8b66960e788b1d8441536354b79b8
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33using namespace llvm;
34
35static cl::opt<bool>
36SplitEdges("machine-sink-split",
37           cl::desc("Split critical edges during machine sinking"),
38           cl::init(true), cl::Hidden);
39
40STATISTIC(NumSunk,      "Number of machine instructions sunk");
41STATISTIC(NumSplit,     "Number of critical edges split");
42STATISTIC(NumCoalesces, "Number of copies coalesced");
43
44namespace {
45  class MachineSinking : public MachineFunctionPass {
46    const TargetInstrInfo *TII;
47    const TargetRegisterInfo *TRI;
48    MachineRegisterInfo  *MRI;  // Machine register information
49    MachineDominatorTree *DT;   // Machine dominator tree
50    MachineLoopInfo *LI;
51    AliasAnalysis *AA;
52    BitVector AllocatableSet;   // Which physregs are allocatable?
53
54    // Remember which edges have been considered for breaking.
55    SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
56    CEBCandidates;
57
58  public:
59    static char ID; // Pass identification
60    MachineSinking() : MachineFunctionPass(ID) {
61      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
62    }
63
64    virtual bool runOnMachineFunction(MachineFunction &MF);
65
66    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
67      AU.setPreservesCFG();
68      MachineFunctionPass::getAnalysisUsage(AU);
69      AU.addRequired<AliasAnalysis>();
70      AU.addRequired<MachineDominatorTree>();
71      AU.addRequired<MachineLoopInfo>();
72      AU.addPreserved<MachineDominatorTree>();
73      AU.addPreserved<MachineLoopInfo>();
74    }
75
76    virtual void releaseMemory() {
77      CEBCandidates.clear();
78    }
79
80  private:
81    bool ProcessBlock(MachineBasicBlock &MBB);
82    bool isWorthBreakingCriticalEdge(MachineInstr *MI,
83                                     MachineBasicBlock *From,
84                                     MachineBasicBlock *To);
85    MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
86                                         MachineBasicBlock *From,
87                                         MachineBasicBlock *To,
88                                         bool BreakPHIEdge);
89    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
90    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
91                                 MachineBasicBlock *DefMBB,
92                                 bool &BreakPHIEdge, bool &LocalUse) const;
93    bool PerformTrivialForwardCoalescing(MachineInstr *MI,
94                                         MachineBasicBlock *MBB);
95  };
96} // end anonymous namespace
97
98char MachineSinking::ID = 0;
99INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
100                "Machine code sinking", false, false)
101INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
102INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
103INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
104INITIALIZE_PASS_END(MachineSinking, "machine-sink",
105                "Machine code sinking", false, false)
106
107FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
108
109bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
110                                                     MachineBasicBlock *MBB) {
111  if (!MI->isCopy())
112    return false;
113
114  unsigned SrcReg = MI->getOperand(1).getReg();
115  unsigned DstReg = MI->getOperand(0).getReg();
116  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
117      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
118      !MRI->hasOneNonDBGUse(SrcReg))
119    return false;
120
121  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
122  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
123  if (SRC != DRC)
124    return false;
125
126  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
127  if (DefMI->isCopyLike())
128    return false;
129  DEBUG(dbgs() << "Coalescing: " << *DefMI);
130  DEBUG(dbgs() << "*** to: " << *MI);
131  MRI->replaceRegWith(DstReg, SrcReg);
132  MI->eraseFromParent();
133  ++NumCoalesces;
134  return true;
135}
136
137/// AllUsesDominatedByBlock - Return true if all uses of the specified register
138/// occur in blocks dominated by the specified block. If any use is in the
139/// definition block, then return false since it is never legal to move def
140/// after uses.
141bool
142MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
143                                        MachineBasicBlock *MBB,
144                                        MachineBasicBlock *DefMBB,
145                                        bool &BreakPHIEdge,
146                                        bool &LocalUse) const {
147  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
148         "Only makes sense for vregs");
149
150  if (MRI->use_nodbg_empty(Reg))
151    return true;
152
153  // Ignoring debug uses is necessary so debug info doesn't affect the code.
154  // This may leave a referencing dbg_value in the original block, before
155  // the definition of the vreg.  Dwarf generator handles this although the
156  // user might not get the right info at runtime.
157
158  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
159  // into and they are all PHI nodes. In this case, machine-sink must break
160  // the critical edge first. e.g.
161  //
162  // BB#1: derived from LLVM BB %bb4.preheader
163  //   Predecessors according to CFG: BB#0
164  //     ...
165  //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
166  //     ...
167  //     JE_4 <BB#37>, %EFLAGS<imp-use>
168  //   Successors according to CFG: BB#37 BB#2
169  //
170  // BB#2: derived from LLVM BB %bb.nph
171  //   Predecessors according to CFG: BB#0 BB#1
172  //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
173  BreakPHIEdge = true;
174  for (MachineRegisterInfo::use_nodbg_iterator
175         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
176       I != E; ++I) {
177    MachineInstr *UseInst = &*I;
178    MachineBasicBlock *UseBlock = UseInst->getParent();
179    if (!(UseBlock == MBB && UseInst->isPHI() &&
180          UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
181      BreakPHIEdge = false;
182      break;
183    }
184  }
185  if (BreakPHIEdge)
186    return true;
187
188  for (MachineRegisterInfo::use_nodbg_iterator
189         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
190       I != E; ++I) {
191    // Determine the block of the use.
192    MachineInstr *UseInst = &*I;
193    MachineBasicBlock *UseBlock = UseInst->getParent();
194    if (UseInst->isPHI()) {
195      // PHI nodes use the operand in the predecessor block, not the block with
196      // the PHI.
197      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
198    } else if (UseBlock == DefMBB) {
199      LocalUse = true;
200      return false;
201    }
202
203    // Check that it dominates.
204    if (!DT->dominates(MBB, UseBlock))
205      return false;
206  }
207
208  return true;
209}
210
211bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
212  DEBUG(dbgs() << "******** Machine Sinking ********\n");
213
214  const TargetMachine &TM = MF.getTarget();
215  TII = TM.getInstrInfo();
216  TRI = TM.getRegisterInfo();
217  MRI = &MF.getRegInfo();
218  DT = &getAnalysis<MachineDominatorTree>();
219  LI = &getAnalysis<MachineLoopInfo>();
220  AA = &getAnalysis<AliasAnalysis>();
221  AllocatableSet = TRI->getAllocatableSet(MF);
222
223  bool EverMadeChange = false;
224
225  while (1) {
226    bool MadeChange = false;
227
228    // Process all basic blocks.
229    CEBCandidates.clear();
230    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
231         I != E; ++I)
232      MadeChange |= ProcessBlock(*I);
233
234    // If this iteration over the code changed anything, keep iterating.
235    if (!MadeChange) break;
236    EverMadeChange = true;
237  }
238  return EverMadeChange;
239}
240
241bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
242  // Can't sink anything out of a block that has less than two successors.
243  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
244
245  // Don't bother sinking code out of unreachable blocks. In addition to being
246  // unprofitable, it can also lead to infinite looping, because in an
247  // unreachable loop there may be nowhere to stop.
248  if (!DT->isReachableFromEntry(&MBB)) return false;
249
250  bool MadeChange = false;
251
252  // Walk the basic block bottom-up.  Remember if we saw a store.
253  MachineBasicBlock::iterator I = MBB.end();
254  --I;
255  bool ProcessedBegin, SawStore = false;
256  do {
257    MachineInstr *MI = I;  // The instruction to sink.
258
259    // Predecrement I (if it's not begin) so that it isn't invalidated by
260    // sinking.
261    ProcessedBegin = I == MBB.begin();
262    if (!ProcessedBegin)
263      --I;
264
265    if (MI->isDebugValue())
266      continue;
267
268    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
269    if (Joined) {
270      MadeChange = true;
271      continue;
272    }
273
274    if (SinkInstruction(MI, SawStore))
275      ++NumSunk, MadeChange = true;
276
277    // If we just processed the first instruction in the block, we're done.
278  } while (!ProcessedBegin);
279
280  return MadeChange;
281}
282
283bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
284                                                 MachineBasicBlock *From,
285                                                 MachineBasicBlock *To) {
286  // FIXME: Need much better heuristics.
287
288  // If the pass has already considered breaking this edge (during this pass
289  // through the function), then let's go ahead and break it. This means
290  // sinking multiple "cheap" instructions into the same block.
291  if (!CEBCandidates.insert(std::make_pair(From, To)))
292    return true;
293
294  if (!MI->isCopy() && !MI->getDesc().isAsCheapAsAMove())
295    return true;
296
297  // MI is cheap, we probably don't want to break the critical edge for it.
298  // However, if this would allow some definitions of its source operands
299  // to be sunk then it's probably worth it.
300  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
301    const MachineOperand &MO = MI->getOperand(i);
302    if (!MO.isReg()) continue;
303    unsigned Reg = MO.getReg();
304    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
305      continue;
306    if (MRI->hasOneNonDBGUse(Reg))
307      return true;
308  }
309
310  return false;
311}
312
313MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
314                                                     MachineBasicBlock *FromBB,
315                                                     MachineBasicBlock *ToBB,
316                                                     bool BreakPHIEdge) {
317  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
318    return 0;
319
320  // Avoid breaking back edge. From == To means backedge for single BB loop.
321  if (!SplitEdges || FromBB == ToBB)
322    return 0;
323
324  // Check for backedges of more "complex" loops.
325  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
326      LI->isLoopHeader(ToBB))
327    return 0;
328
329  // It's not always legal to break critical edges and sink the computation
330  // to the edge.
331  //
332  // BB#1:
333  // v1024
334  // Beq BB#3
335  // <fallthrough>
336  // BB#2:
337  // ... no uses of v1024
338  // <fallthrough>
339  // BB#3:
340  // ...
341  //       = v1024
342  //
343  // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
344  //
345  // BB#1:
346  // ...
347  // Bne BB#2
348  // BB#4:
349  // v1024 =
350  // B BB#3
351  // BB#2:
352  // ... no uses of v1024
353  // <fallthrough>
354  // BB#3:
355  // ...
356  //       = v1024
357  //
358  // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
359  // flow. We need to ensure the new basic block where the computation is
360  // sunk to dominates all the uses.
361  // It's only legal to break critical edge and sink the computation to the
362  // new block if all the predecessors of "To", except for "From", are
363  // not dominated by "From". Given SSA property, this means these
364  // predecessors are dominated by "To".
365  //
366  // There is no need to do this check if all the uses are PHI nodes. PHI
367  // sources are only defined on the specific predecessor edges.
368  if (!BreakPHIEdge) {
369    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
370           E = ToBB->pred_end(); PI != E; ++PI) {
371      if (*PI == FromBB)
372        continue;
373      if (!DT->dominates(ToBB, *PI))
374        return 0;
375    }
376  }
377
378  return FromBB->SplitCriticalEdge(ToBB, this);
379}
380
381static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
382  return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
383}
384
385/// collectDebgValues - Scan instructions following MI and collect any
386/// matching DBG_VALUEs.
387static void collectDebugValues(MachineInstr *MI,
388                               SmallVector<MachineInstr *, 2> & DbgValues) {
389  DbgValues.clear();
390  if (!MI->getOperand(0).isReg())
391    return;
392
393  MachineBasicBlock::iterator DI = MI; ++DI;
394  for (MachineBasicBlock::iterator DE = MI->getParent()->end();
395       DI != DE; ++DI) {
396    if (!DI->isDebugValue())
397      return;
398    if (DI->getOperand(0).isReg() &&
399        DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
400      DbgValues.push_back(DI);
401  }
402}
403
404/// SinkInstruction - Determine whether it is safe to sink the specified machine
405/// instruction out of its current block into a successor.
406bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
407  // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
408  // be close to the source to make it easier to coalesce.
409  if (AvoidsSinking(MI, MRI))
410    return false;
411
412  // Check if it's safe to move the instruction.
413  if (!MI->isSafeToMove(TII, AA, SawStore))
414    return false;
415
416  // FIXME: This should include support for sinking instructions within the
417  // block they are currently in to shorten the live ranges.  We often get
418  // instructions sunk into the top of a large block, but it would be better to
419  // also sink them down before their first use in the block.  This xform has to
420  // be careful not to *increase* register pressure though, e.g. sinking
421  // "x = y + z" down if it kills y and z would increase the live ranges of y
422  // and z and only shrink the live range of x.
423
424  // Loop over all the operands of the specified instruction.  If there is
425  // anything we can't handle, bail out.
426  MachineBasicBlock *ParentBlock = MI->getParent();
427
428  // SuccToSinkTo - This is the successor to sink this instruction to, once we
429  // decide.
430  MachineBasicBlock *SuccToSinkTo = 0;
431
432  bool BreakPHIEdge = false;
433  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
434    const MachineOperand &MO = MI->getOperand(i);
435    if (!MO.isReg()) continue;  // Ignore non-register operands.
436
437    unsigned Reg = MO.getReg();
438    if (Reg == 0) continue;
439
440    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
441      if (MO.isUse()) {
442        // If the physreg has no defs anywhere, it's just an ambient register
443        // and we can freely move its uses. Alternatively, if it's allocatable,
444        // it could get allocated to something with a def during allocation.
445        if (!MRI->def_empty(Reg))
446          return false;
447
448        if (AllocatableSet.test(Reg))
449          return false;
450
451        // Check for a def among the register's aliases too.
452        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
453          unsigned AliasReg = *Alias;
454          if (!MRI->def_empty(AliasReg))
455            return false;
456
457          if (AllocatableSet.test(AliasReg))
458            return false;
459        }
460      } else if (!MO.isDead()) {
461        // A def that isn't dead. We can't move it.
462        return false;
463      }
464    } else {
465      // Virtual register uses are always safe to sink.
466      if (MO.isUse()) continue;
467
468      // If it's not safe to move defs of the register class, then abort.
469      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
470        return false;
471
472      // FIXME: This picks a successor to sink into based on having one
473      // successor that dominates all the uses.  However, there are cases where
474      // sinking can happen but where the sink point isn't a successor.  For
475      // example:
476      //
477      //   x = computation
478      //   if () {} else {}
479      //   use x
480      //
481      // the instruction could be sunk over the whole diamond for the
482      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
483      // after that.
484
485      // Virtual register defs can only be sunk if all their uses are in blocks
486      // dominated by one of the successors.
487      if (SuccToSinkTo) {
488        // If a previous operand picked a block to sink to, then this operand
489        // must be sinkable to the same block.
490        bool LocalUse = false;
491        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock,
492                                     BreakPHIEdge, LocalUse))
493          return false;
494
495        continue;
496      }
497
498      // Otherwise, we should look at all the successors and decide which one
499      // we should sink to.
500      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
501           E = ParentBlock->succ_end(); SI != E; ++SI) {
502        bool LocalUse = false;
503        if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock,
504                                    BreakPHIEdge, LocalUse)) {
505          SuccToSinkTo = *SI;
506          break;
507        }
508        if (LocalUse)
509          // Def is used locally, it's never safe to move this def.
510          return false;
511      }
512
513      // If we couldn't find a block to sink to, ignore this instruction.
514      if (SuccToSinkTo == 0)
515        return false;
516    }
517  }
518
519  // If there are no outputs, it must have side-effects.
520  if (SuccToSinkTo == 0)
521    return false;
522
523  // It's not safe to sink instructions to EH landing pad. Control flow into
524  // landing pad is implicitly defined.
525  if (SuccToSinkTo->isLandingPad())
526    return false;
527
528  // It is not possible to sink an instruction into its own block.  This can
529  // happen with loops.
530  if (MI->getParent() == SuccToSinkTo)
531    return false;
532
533  // If the instruction to move defines a dead physical register which is live
534  // when leaving the basic block, don't move it because it could turn into a
535  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
536  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
537    const MachineOperand &MO = MI->getOperand(I);
538    if (!MO.isReg()) continue;
539    unsigned Reg = MO.getReg();
540    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
541    if (SuccToSinkTo->isLiveIn(Reg))
542      return false;
543  }
544
545  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
546
547  // If the block has multiple predecessors, this would introduce computation on
548  // a path that it doesn't already exist.  We could split the critical edge,
549  // but for now we just punt.
550  if (SuccToSinkTo->pred_size() > 1) {
551    // We cannot sink a load across a critical edge - there may be stores in
552    // other code paths.
553    bool TryBreak = false;
554    bool store = true;
555    if (!MI->isSafeToMove(TII, AA, store)) {
556      DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
557      TryBreak = true;
558    }
559
560    // We don't want to sink across a critical edge if we don't dominate the
561    // successor. We could be introducing calculations to new code paths.
562    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
563      DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
564      TryBreak = true;
565    }
566
567    // Don't sink instructions into a loop.
568    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
569      DEBUG(dbgs() << " *** NOTE: Loop header found\n");
570      TryBreak = true;
571    }
572
573    // Otherwise we are OK with sinking along a critical edge.
574    if (!TryBreak)
575      DEBUG(dbgs() << "Sinking along critical edge.\n");
576    else {
577      MachineBasicBlock *NewSucc =
578        SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
579      if (!NewSucc) {
580        DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
581                        "break critical edge\n");
582        return false;
583      } else {
584        DEBUG(dbgs() << " *** Splitting critical edge:"
585              " BB#" << ParentBlock->getNumber()
586              << " -- BB#" << NewSucc->getNumber()
587              << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
588        SuccToSinkTo = NewSucc;
589        ++NumSplit;
590        BreakPHIEdge = false;
591      }
592    }
593  }
594
595  if (BreakPHIEdge) {
596    // BreakPHIEdge is true if all the uses are in the successor MBB being
597    // sunken into and they are all PHI nodes. In this case, machine-sink must
598    // break the critical edge first.
599    MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
600                                                   SuccToSinkTo, BreakPHIEdge);
601    if (!NewSucc) {
602      DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
603            "break critical edge\n");
604      return false;
605    }
606
607    DEBUG(dbgs() << " *** Splitting critical edge:"
608          " BB#" << ParentBlock->getNumber()
609          << " -- BB#" << NewSucc->getNumber()
610          << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
611    SuccToSinkTo = NewSucc;
612    ++NumSplit;
613  }
614
615  // Determine where to insert into. Skip phi nodes.
616  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
617  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
618    ++InsertPos;
619
620  // collect matching debug values.
621  SmallVector<MachineInstr *, 2> DbgValuesToSink;
622  collectDebugValues(MI, DbgValuesToSink);
623
624  // Move the instruction.
625  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
626                       ++MachineBasicBlock::iterator(MI));
627
628  // Move debug values.
629  for (SmallVector<MachineInstr *, 2>::iterator DBI = DbgValuesToSink.begin(),
630         DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
631    MachineInstr *DbgMI = *DBI;
632    SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
633                         ++MachineBasicBlock::iterator(DbgMI));
634  }
635
636  // Conservatively, clear any kill flags, since it's possible that they are no
637  // longer correct.
638  MI->clearKillInfo();
639
640  return true;
641}
642