MachineSink.cpp revision 5a44ef9fd5f7c3964ad79b94778261175dea5c33
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32STATISTIC(NumSunk, "Number of machine instructions sunk");
33
34namespace {
35  class MachineSinking : public MachineFunctionPass {
36    const TargetInstrInfo *TII;
37    const TargetRegisterInfo *TRI;
38    MachineRegisterInfo  *RegInfo; // Machine register information
39    MachineDominatorTree *DT;   // Machine dominator tree
40    AliasAnalysis *AA;
41    BitVector AllocatableSet;   // Which physregs are allocatable?
42
43  public:
44    static char ID; // Pass identification
45    MachineSinking() : MachineFunctionPass(&ID) {}
46
47    virtual bool runOnMachineFunction(MachineFunction &MF);
48
49    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
50      AU.setPreservesCFG();
51      MachineFunctionPass::getAnalysisUsage(AU);
52      AU.addRequired<AliasAnalysis>();
53      AU.addRequired<MachineDominatorTree>();
54      AU.addPreserved<MachineDominatorTree>();
55    }
56  private:
57    bool ProcessBlock(MachineBasicBlock &MBB);
58    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
59    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
60  };
61} // end anonymous namespace
62
63char MachineSinking::ID = 0;
64static RegisterPass<MachineSinking>
65X("machine-sink", "Machine code sinking");
66
67FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
68
69/// AllUsesDominatedByBlock - Return true if all uses of the specified register
70/// occur in blocks dominated by the specified block.
71bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
72                                             MachineBasicBlock *MBB) const {
73  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
74         "Only makes sense for vregs");
75  for (MachineRegisterInfo::use_iterator I = RegInfo->use_begin(Reg),
76       E = RegInfo->use_end(); I != E; ++I) {
77    // Determine the block of the use.
78    MachineInstr *UseInst = &*I;
79    MachineBasicBlock *UseBlock = UseInst->getParent();
80    if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
81      // PHI nodes use the operand in the predecessor block, not the block with
82      // the PHI.
83      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
84    }
85    // Check that it dominates.
86    if (!DT->dominates(MBB, UseBlock))
87      return false;
88  }
89  return true;
90}
91
92bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
93  DEBUG(errs() << "******** Machine Sinking ********\n");
94
95  const TargetMachine &TM = MF.getTarget();
96  TII = TM.getInstrInfo();
97  TRI = TM.getRegisterInfo();
98  RegInfo = &MF.getRegInfo();
99  DT = &getAnalysis<MachineDominatorTree>();
100  AA = &getAnalysis<AliasAnalysis>();
101  AllocatableSet = TRI->getAllocatableSet(MF);
102
103  bool EverMadeChange = false;
104
105  while (1) {
106    bool MadeChange = false;
107
108    // Process all basic blocks.
109    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
110         I != E; ++I)
111      MadeChange |= ProcessBlock(*I);
112
113    // If this iteration over the code changed anything, keep iterating.
114    if (!MadeChange) break;
115    EverMadeChange = true;
116  }
117  return EverMadeChange;
118}
119
120bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
121  // Can't sink anything out of a block that has less than two successors.
122  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
123
124  bool MadeChange = false;
125
126  // Walk the basic block bottom-up.  Remember if we saw a store.
127  MachineBasicBlock::iterator I = MBB.end();
128  --I;
129  bool ProcessedBegin, SawStore = false;
130  do {
131    MachineInstr *MI = I;  // The instruction to sink.
132
133    // Predecrement I (if it's not begin) so that it isn't invalidated by
134    // sinking.
135    ProcessedBegin = I == MBB.begin();
136    if (!ProcessedBegin)
137      --I;
138
139    if (SinkInstruction(MI, SawStore))
140      ++NumSunk, MadeChange = true;
141
142    // If we just processed the first instruction in the block, we're done.
143  } while (!ProcessedBegin);
144
145  return MadeChange;
146}
147
148/// SinkInstruction - Determine whether it is safe to sink the specified machine
149/// instruction out of its current block into a successor.
150bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
151  // Check if it's safe to move the instruction.
152  if (!MI->isSafeToMove(TII, SawStore, AA))
153    return false;
154
155  // FIXME: This should include support for sinking instructions within the
156  // block they are currently in to shorten the live ranges.  We often get
157  // instructions sunk into the top of a large block, but it would be better to
158  // also sink them down before their first use in the block.  This xform has to
159  // be careful not to *increase* register pressure though, e.g. sinking
160  // "x = y + z" down if it kills y and z would increase the live ranges of y
161  // and z and only shrink the live range of x.
162
163  // Loop over all the operands of the specified instruction.  If there is
164  // anything we can't handle, bail out.
165  MachineBasicBlock *ParentBlock = MI->getParent();
166
167  // SuccToSinkTo - This is the successor to sink this instruction to, once we
168  // decide.
169  MachineBasicBlock *SuccToSinkTo = 0;
170
171  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
172    const MachineOperand &MO = MI->getOperand(i);
173    if (!MO.isReg()) continue;  // Ignore non-register operands.
174
175    unsigned Reg = MO.getReg();
176    if (Reg == 0) continue;
177
178    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
179      if (MO.isUse()) {
180        // If the physreg has no defs anywhere, it's just an ambient register
181        // and we can freely move its uses. Alternatively, if it's allocatable,
182        // it could get allocated to something with a def during allocation.
183        if (!RegInfo->def_empty(Reg))
184          return false;
185        if (AllocatableSet.test(Reg))
186          return false;
187        // Check for a def among the register's aliases too.
188        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
189          unsigned AliasReg = *Alias;
190          if (!RegInfo->def_empty(AliasReg))
191            return false;
192          if (AllocatableSet.test(AliasReg))
193            return false;
194        }
195      } else if (!MO.isDead()) {
196        // A def that isn't dead. We can't move it.
197        return false;
198      }
199    } else {
200      // Virtual register uses are always safe to sink.
201      if (MO.isUse()) continue;
202
203      // If it's not safe to move defs of the register class, then abort.
204      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
205        return false;
206
207      // FIXME: This picks a successor to sink into based on having one
208      // successor that dominates all the uses.  However, there are cases where
209      // sinking can happen but where the sink point isn't a successor.  For
210      // example:
211      //   x = computation
212      //   if () {} else {}
213      //   use x
214      // the instruction could be sunk over the whole diamond for the
215      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
216      // after that.
217
218      // Virtual register defs can only be sunk if all their uses are in blocks
219      // dominated by one of the successors.
220      if (SuccToSinkTo) {
221        // If a previous operand picked a block to sink to, then this operand
222        // must be sinkable to the same block.
223        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
224          return false;
225        continue;
226      }
227
228      // Otherwise, we should look at all the successors and decide which one
229      // we should sink to.
230      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
231           E = ParentBlock->succ_end(); SI != E; ++SI) {
232        if (AllUsesDominatedByBlock(Reg, *SI)) {
233          SuccToSinkTo = *SI;
234          break;
235        }
236      }
237
238      // If we couldn't find a block to sink to, ignore this instruction.
239      if (SuccToSinkTo == 0)
240        return false;
241    }
242  }
243
244  // If there are no outputs, it must have side-effects.
245  if (SuccToSinkTo == 0)
246    return false;
247
248  // It's not safe to sink instructions to EH landing pad. Control flow into
249  // landing pad is implicitly defined.
250  if (SuccToSinkTo->isLandingPad())
251    return false;
252
253  // It is not possible to sink an instruction into its own block.  This can
254  // happen with loops.
255  if (MI->getParent() == SuccToSinkTo)
256    return false;
257
258  DEBUG(errs() << "Sink instr " << *MI);
259  DEBUG(errs() << "to block " << *SuccToSinkTo);
260
261  // If the block has multiple predecessors, this would introduce computation on
262  // a path that it doesn't already exist.  We could split the critical edge,
263  // but for now we just punt.
264  // FIXME: Split critical edges if not backedges.
265  if (SuccToSinkTo->pred_size() > 1) {
266    DEBUG(errs() << " *** PUNTING: Critical edge found\n");
267    return false;
268  }
269
270  // Determine where to insert into.  Skip phi nodes.
271  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
272  while (InsertPos != SuccToSinkTo->end() &&
273         InsertPos->getOpcode() == TargetInstrInfo::PHI)
274    ++InsertPos;
275
276  // Move the instruction.
277  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
278                       ++MachineBasicBlock::iterator(MI));
279  return true;
280}
281