MachineSink.cpp revision 5dedd5c716f4c2741afd8ac264d5e4e09adbcf1b
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32STATISTIC(NumSunk, "Number of machine instructions sunk");
33
34namespace {
35  class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
36    const TargetMachine   *TM;
37    const TargetInstrInfo *TII;
38    const TargetRegisterInfo *TRI;
39    MachineFunction       *CurMF; // Current MachineFunction
40    MachineRegisterInfo  *RegInfo; // Machine register information
41    MachineDominatorTree *DT;   // Machine dominator tree
42
43  public:
44    static char ID; // Pass identification
45    MachineSinking() : MachineFunctionPass(&ID) {}
46
47    virtual bool runOnMachineFunction(MachineFunction &MF);
48
49    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
50      AU.setPreservesCFG();
51      MachineFunctionPass::getAnalysisUsage(AU);
52      AU.addRequired<MachineDominatorTree>();
53      AU.addPreserved<MachineDominatorTree>();
54    }
55  private:
56    bool ProcessBlock(MachineBasicBlock &MBB);
57    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
58    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
59  };
60} // end anonymous namespace
61
62char MachineSinking::ID = 0;
63static RegisterPass<MachineSinking>
64X("machine-sink", "Machine code sinking");
65
66FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
67
68/// AllUsesDominatedByBlock - Return true if all uses of the specified register
69/// occur in blocks dominated by the specified block.
70bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
71                                             MachineBasicBlock *MBB) const {
72  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
73         "Only makes sense for vregs");
74  for (MachineRegisterInfo::use_iterator I = RegInfo->use_begin(Reg),
75       E = RegInfo->use_end(); I != E; ++I) {
76    // Determine the block of the use.
77    MachineInstr *UseInst = &*I;
78    MachineBasicBlock *UseBlock = UseInst->getParent();
79    if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
80      // PHI nodes use the operand in the predecessor block, not the block with
81      // the PHI.
82      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
83    }
84    // Check that it dominates.
85    if (!DT->dominates(MBB, UseBlock))
86      return false;
87  }
88  return true;
89}
90
91
92
93bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
94  DEBUG(errs() << "******** Machine Sinking ********\n");
95
96  CurMF = &MF;
97  TM = &CurMF->getTarget();
98  TII = TM->getInstrInfo();
99  TRI = TM->getRegisterInfo();
100  RegInfo = &CurMF->getRegInfo();
101  DT = &getAnalysis<MachineDominatorTree>();
102
103  bool EverMadeChange = false;
104
105  while (1) {
106    bool MadeChange = false;
107
108    // Process all basic blocks.
109    for (MachineFunction::iterator I = CurMF->begin(), E = CurMF->end();
110         I != E; ++I)
111      MadeChange |= ProcessBlock(*I);
112
113    // If this iteration over the code changed anything, keep iterating.
114    if (!MadeChange) break;
115    EverMadeChange = true;
116  }
117  return EverMadeChange;
118}
119
120bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
121  // Can't sink anything out of a block that has less than two successors.
122  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
123
124  bool MadeChange = false;
125
126  // Walk the basic block bottom-up.  Remember if we saw a store.
127  MachineBasicBlock::iterator I = MBB.end();
128  --I;
129  bool ProcessedBegin, SawStore = false;
130  do {
131    MachineInstr *MI = I;  // The instruction to sink.
132
133    // Predecrement I (if it's not begin) so that it isn't invalidated by
134    // sinking.
135    ProcessedBegin = I == MBB.begin();
136    if (!ProcessedBegin)
137      --I;
138
139    if (SinkInstruction(MI, SawStore))
140      ++NumSunk, MadeChange = true;
141
142    // If we just processed the first instruction in the block, we're done.
143  } while (!ProcessedBegin);
144
145  return MadeChange;
146}
147
148/// SinkInstruction - Determine whether it is safe to sink the specified machine
149/// instruction out of its current block into a successor.
150bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
151  // Check if it's safe to move the instruction.
152  if (!MI->isSafeToMove(TII, SawStore))
153    return false;
154
155  // FIXME: This should include support for sinking instructions within the
156  // block they are currently in to shorten the live ranges.  We often get
157  // instructions sunk into the top of a large block, but it would be better to
158  // also sink them down before their first use in the block.  This xform has to
159  // be careful not to *increase* register pressure though, e.g. sinking
160  // "x = y + z" down if it kills y and z would increase the live ranges of y
161  // and z and only shrink the live range of x.
162
163  // Loop over all the operands of the specified instruction.  If there is
164  // anything we can't handle, bail out.
165  MachineBasicBlock *ParentBlock = MI->getParent();
166
167  // SuccToSinkTo - This is the successor to sink this instruction to, once we
168  // decide.
169  MachineBasicBlock *SuccToSinkTo = 0;
170
171  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
172    const MachineOperand &MO = MI->getOperand(i);
173    if (!MO.isReg()) continue;  // Ignore non-register operands.
174
175    unsigned Reg = MO.getReg();
176    if (Reg == 0) continue;
177
178    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
179      // If this is a physical register use, we can't move it.  If it is a def,
180      // we can move it, but only if the def is dead.
181      if (MO.isUse()) {
182        // If the physreg has no defs anywhere, it's just an ambient register
183        // and we can freely move its uses.
184        if (!RegInfo->def_empty(Reg))
185          return false;
186        // Check for a def among the register's aliases too.
187        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
188          if (!RegInfo->def_empty(*Alias))
189            return false;
190      } else if (!MO.isDead()) {
191        // A def that isn't dead. We can't move it.
192        return false;
193      }
194    } else {
195      // Virtual register uses are always safe to sink.
196      if (MO.isUse()) continue;
197
198      // If it's not safe to move defs of the register class, then abort.
199      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
200        return false;
201
202      // FIXME: This picks a successor to sink into based on having one
203      // successor that dominates all the uses.  However, there are cases where
204      // sinking can happen but where the sink point isn't a successor.  For
205      // example:
206      //   x = computation
207      //   if () {} else {}
208      //   use x
209      // the instruction could be sunk over the whole diamond for the
210      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
211      // after that.
212
213      // Virtual register defs can only be sunk if all their uses are in blocks
214      // dominated by one of the successors.
215      if (SuccToSinkTo) {
216        // If a previous operand picked a block to sink to, then this operand
217        // must be sinkable to the same block.
218        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
219          return false;
220        continue;
221      }
222
223      // Otherwise, we should look at all the successors and decide which one
224      // we should sink to.
225      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
226           E = ParentBlock->succ_end(); SI != E; ++SI) {
227        if (AllUsesDominatedByBlock(Reg, *SI)) {
228          SuccToSinkTo = *SI;
229          break;
230        }
231      }
232
233      // If we couldn't find a block to sink to, ignore this instruction.
234      if (SuccToSinkTo == 0)
235        return false;
236    }
237  }
238
239  // If there are no outputs, it must have side-effects.
240  if (SuccToSinkTo == 0)
241    return false;
242
243  // It's not safe to sink instructions to EH landing pad. Control flow into
244  // landing pad is implicitly defined.
245  if (SuccToSinkTo->isLandingPad())
246    return false;
247
248  // If is not possible to sink an instruction into its own block.  This can
249  // happen with loops.
250  if (MI->getParent() == SuccToSinkTo)
251    return false;
252
253  DEBUG(errs() << "Sink instr " << *MI);
254  DEBUG(errs() << "to block " << *SuccToSinkTo);
255
256  // If the block has multiple predecessors, this would introduce computation on
257  // a path that it doesn't already exist.  We could split the critical edge,
258  // but for now we just punt.
259  // FIXME: Split critical edges if not backedges.
260  if (SuccToSinkTo->pred_size() > 1) {
261    DEBUG(errs() << " *** PUNTING: Critical edge found\n");
262    return false;
263  }
264
265  // Determine where to insert into.  Skip phi nodes.
266  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
267  while (InsertPos != SuccToSinkTo->end() &&
268         InsertPos->getOpcode() == TargetInstrInfo::PHI)
269    ++InsertPos;
270
271  // Move the instruction.
272  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
273                       ++MachineBasicBlock::iterator(MI));
274  return true;
275}
276