MachineSink.cpp revision 7c30304c7ba25fbae52d4db2f5ae230ba2475288
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33using namespace llvm;
34
35static cl::opt<bool>
36SplitEdges("machine-sink-split",
37           cl::desc("Split critical edges during machine sinking"),
38           cl::init(false), cl::Hidden);
39static cl::opt<unsigned>
40SplitLimit("split-limit",
41           cl::init(~0u), cl::Hidden);
42
43STATISTIC(NumSunk,      "Number of machine instructions sunk");
44STATISTIC(NumSplit,     "Number of critical edges split");
45STATISTIC(NumCoalesces, "Number of copies coalesced");
46
47namespace {
48  class MachineSinking : public MachineFunctionPass {
49    const TargetInstrInfo *TII;
50    const TargetRegisterInfo *TRI;
51    MachineRegisterInfo  *MRI;  // Machine register information
52    MachineDominatorTree *DT;   // Machine dominator tree
53    MachineLoopInfo *LI;
54    AliasAnalysis *AA;
55    BitVector AllocatableSet;   // Which physregs are allocatable?
56
57    // Remember which edges have been considered for breaking.
58    SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
59    CEBCandidates;
60
61  public:
62    static char ID; // Pass identification
63    MachineSinking() : MachineFunctionPass(ID) {}
64
65    virtual bool runOnMachineFunction(MachineFunction &MF);
66
67    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
68      AU.setPreservesCFG();
69      MachineFunctionPass::getAnalysisUsage(AU);
70      AU.addRequired<AliasAnalysis>();
71      AU.addRequired<MachineDominatorTree>();
72      AU.addRequired<MachineLoopInfo>();
73      AU.addPreserved<MachineDominatorTree>();
74      AU.addPreserved<MachineLoopInfo>();
75    }
76
77    virtual void releaseMemory() {
78      CEBCandidates.clear();
79    }
80
81  private:
82    bool ProcessBlock(MachineBasicBlock &MBB);
83    bool isWorthBreakingCriticalEdge(MachineInstr *MI,
84                                     MachineBasicBlock *From,
85                                     MachineBasicBlock *To);
86    MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
87                                         MachineBasicBlock *From,
88                                         MachineBasicBlock *To,
89                                         bool AllPHIUse);
90    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
91    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
92                                 MachineBasicBlock *DefMBB,
93                                 bool &AllPHIUse, bool &LocalUse) const;
94    bool PerformTrivialForwardCoalescing(MachineInstr *MI,
95                                         MachineBasicBlock *MBB);
96  };
97} // end anonymous namespace
98
99char MachineSinking::ID = 0;
100INITIALIZE_PASS(MachineSinking, "machine-sink",
101                "Machine code sinking", false, false);
102
103FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
104
105bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
106                                                     MachineBasicBlock *MBB) {
107  if (!MI->isCopy())
108    return false;
109
110  unsigned SrcReg = MI->getOperand(1).getReg();
111  unsigned DstReg = MI->getOperand(0).getReg();
112  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
113      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
114      !MRI->hasOneNonDBGUse(SrcReg))
115    return false;
116
117  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
118  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
119  if (SRC != DRC)
120    return false;
121
122  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
123  if (DefMI->isCopyLike())
124    return false;
125  DEBUG(dbgs() << "Coalescing: " << *DefMI);
126  DEBUG(dbgs() << "*** to: " << *MI);
127  MRI->replaceRegWith(DstReg, SrcReg);
128  MI->eraseFromParent();
129  ++NumCoalesces;
130  return true;
131}
132
133/// AllUsesDominatedByBlock - Return true if all uses of the specified register
134/// occur in blocks dominated by the specified block. If any use is in the
135/// definition block, then return false since it is never legal to move def
136/// after uses.
137bool
138MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
139                                        MachineBasicBlock *MBB,
140                                        MachineBasicBlock *DefMBB,
141                                        bool &AllPHIUse, bool &LocalUse) const {
142  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
143         "Only makes sense for vregs");
144
145  if (MRI->use_nodbg_empty(Reg))
146    return true;
147
148  // Ignoring debug uses is necessary so debug info doesn't affect the code.
149  // This may leave a referencing dbg_value in the original block, before
150  // the definition of the vreg.  Dwarf generator handles this although the
151  // user might not get the right info at runtime.
152
153  // PHI is in the successor BB. e.g.
154  // BB#1: derived from LLVM BB %bb4.preheader
155  //   Predecessors according to CFG: BB#0
156  //     ...
157  //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
158  //     ...
159  //     JE_4 <BB#37>, %EFLAGS<imp-use>
160  //   Successors according to CFG: BB#37 BB#2
161  //
162  // BB#2: derived from LLVM BB %bb.nph
163  //   Predecessors according to CFG: BB#0 BB#1
164  //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
165  //
166  // Machine sink should break the critical edge first.
167  AllPHIUse = true;
168  for (MachineRegisterInfo::use_nodbg_iterator
169         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
170       I != E; ++I) {
171    MachineInstr *UseInst = &*I;
172    MachineBasicBlock *UseBlock = UseInst->getParent();
173    if (!(UseBlock == MBB && UseInst->isPHI() &&
174          UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
175      AllPHIUse = false;
176      break;
177    }
178  }
179  if (AllPHIUse)
180    return true;
181
182  for (MachineRegisterInfo::use_nodbg_iterator
183         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
184       I != E; ++I) {
185    // Determine the block of the use.
186    MachineInstr *UseInst = &*I;
187    MachineBasicBlock *UseBlock = UseInst->getParent();
188    if (UseInst->isPHI()) {
189      // PHI nodes use the operand in the predecessor block, not the block with
190      // the PHI.
191      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
192    } else if (UseBlock == DefMBB) {
193      LocalUse = true;
194      return false;
195    }
196
197    // Check that it dominates.
198    if (!DT->dominates(MBB, UseBlock))
199      return false;
200  }
201
202  return true;
203}
204
205bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
206  DEBUG(dbgs() << "******** Machine Sinking ********\n");
207
208  const TargetMachine &TM = MF.getTarget();
209  TII = TM.getInstrInfo();
210  TRI = TM.getRegisterInfo();
211  MRI = &MF.getRegInfo();
212  DT = &getAnalysis<MachineDominatorTree>();
213  LI = &getAnalysis<MachineLoopInfo>();
214  AA = &getAnalysis<AliasAnalysis>();
215  AllocatableSet = TRI->getAllocatableSet(MF);
216
217  bool EverMadeChange = false;
218
219  while (1) {
220    bool MadeChange = false;
221
222    // Process all basic blocks.
223    CEBCandidates.clear();
224    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
225         I != E; ++I)
226      MadeChange |= ProcessBlock(*I);
227
228    // If this iteration over the code changed anything, keep iterating.
229    if (!MadeChange) break;
230    EverMadeChange = true;
231  }
232  return EverMadeChange;
233}
234
235bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
236  // Can't sink anything out of a block that has less than two successors.
237  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
238
239  // Don't bother sinking code out of unreachable blocks. In addition to being
240  // unprofitable, it can also lead to infinite looping, because in an
241  // unreachable loop there may be nowhere to stop.
242  if (!DT->isReachableFromEntry(&MBB)) return false;
243
244  bool MadeChange = false;
245
246  // Walk the basic block bottom-up.  Remember if we saw a store.
247  MachineBasicBlock::iterator I = MBB.end();
248  --I;
249  bool ProcessedBegin, SawStore = false;
250  do {
251    MachineInstr *MI = I;  // The instruction to sink.
252
253    // Predecrement I (if it's not begin) so that it isn't invalidated by
254    // sinking.
255    ProcessedBegin = I == MBB.begin();
256    if (!ProcessedBegin)
257      --I;
258
259    if (MI->isDebugValue())
260      continue;
261
262    if (PerformTrivialForwardCoalescing(MI, &MBB))
263      continue;
264
265    if (SinkInstruction(MI, SawStore))
266      ++NumSunk, MadeChange = true;
267
268    // If we just processed the first instruction in the block, we're done.
269  } while (!ProcessedBegin);
270
271  return MadeChange;
272}
273
274bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
275                                                 MachineBasicBlock *From,
276                                                 MachineBasicBlock *To) {
277  // FIXME: Need much better heuristics.
278
279  // If the pass has already considered breaking this edge (during this pass
280  // through the function), then let's go ahead and break it. This means
281  // sinking multiple "cheap" instructions into the same block.
282  if (!CEBCandidates.insert(std::make_pair(From, To)))
283    return true;
284
285  if (!(MI->isCopyLike() || MI->getDesc().isAsCheapAsAMove()))
286    return true;
287
288  // MI is cheap, we probably don't want to break the critical edge for it.
289  // However, if this would allow some definitions of its source operands
290  // to be sunk then it's probably worth it.
291  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
292    const MachineOperand &MO = MI->getOperand(i);
293    if (!MO.isReg()) continue;
294    unsigned Reg = MO.getReg();
295    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
296      continue;
297    if (MRI->hasOneNonDBGUse(Reg))
298      return true;
299  }
300
301  return false;
302}
303
304MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
305                                                     MachineBasicBlock *FromBB,
306                                                     MachineBasicBlock *ToBB,
307                                                     bool AllPHIUse) {
308  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
309    return 0;
310
311  // Avoid breaking back edge. From == To means backedge for single BB loop.
312  if (!SplitEdges || NumSplit == SplitLimit || FromBB == ToBB)
313    return 0;
314
315  // Check for backedges of more "complex" loops.
316  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
317      LI->isLoopHeader(ToBB))
318    return 0;
319
320  // It's not always legal to break critical edges and sink the computation
321  // to the edge.
322  //
323  // BB#1:
324  // v1024
325  // Beq BB#3
326  // <fallthrough>
327  // BB#2:
328  // ... no uses of v1024
329  // <fallthrough>
330  // BB#3:
331  // ...
332  //       = v1024
333  //
334  // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
335  //
336  // BB#1:
337  // ...
338  // Bne BB#2
339  // BB#4:
340  // v1024 =
341  // B BB#3
342  // BB#2:
343  // ... no uses of v1024
344  // <fallthrough>
345  // BB#3:
346  // ...
347  //       = v1024
348  //
349  // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
350  // flow. We need to ensure the new basic block where the computation is
351  // sunk to dominates all the uses.
352  // It's only legal to break critical edge and sink the computation to the
353  // new block if all the predecessors of "To", except for "From", are
354  // not dominated by "From". Given SSA property, this means these
355  // predecessors are dominated by "To".
356  //
357  // There is no need to do this check if all the uses are PHI nodes. PHI
358  // sources are only defined on the specific predecessor edges.
359  if (!AllPHIUse) {
360    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
361           E = ToBB->pred_end(); PI != E; ++PI) {
362      if (*PI == FromBB)
363        continue;
364      if (!DT->dominates(ToBB, *PI))
365        return 0;
366    }
367  }
368
369  return FromBB->SplitCriticalEdge(ToBB, this);
370}
371
372/// SinkInstruction - Determine whether it is safe to sink the specified machine
373/// instruction out of its current block into a successor.
374bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
375  // Check if it's safe to move the instruction.
376  if (!MI->isSafeToMove(TII, AA, SawStore))
377    return false;
378
379  // FIXME: This should include support for sinking instructions within the
380  // block they are currently in to shorten the live ranges.  We often get
381  // instructions sunk into the top of a large block, but it would be better to
382  // also sink them down before their first use in the block.  This xform has to
383  // be careful not to *increase* register pressure though, e.g. sinking
384  // "x = y + z" down if it kills y and z would increase the live ranges of y
385  // and z and only shrink the live range of x.
386
387  // Loop over all the operands of the specified instruction.  If there is
388  // anything we can't handle, bail out.
389  MachineBasicBlock *ParentBlock = MI->getParent();
390
391  // SuccToSinkTo - This is the successor to sink this instruction to, once we
392  // decide.
393  MachineBasicBlock *SuccToSinkTo = 0;
394
395  bool AllPHIUse = false;
396  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
397    const MachineOperand &MO = MI->getOperand(i);
398    if (!MO.isReg()) continue;  // Ignore non-register operands.
399
400    unsigned Reg = MO.getReg();
401    if (Reg == 0) continue;
402
403    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
404      if (MO.isUse()) {
405        // If the physreg has no defs anywhere, it's just an ambient register
406        // and we can freely move its uses. Alternatively, if it's allocatable,
407        // it could get allocated to something with a def during allocation.
408        if (!MRI->def_empty(Reg))
409          return false;
410
411        if (AllocatableSet.test(Reg))
412          return false;
413
414        // Check for a def among the register's aliases too.
415        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
416          unsigned AliasReg = *Alias;
417          if (!MRI->def_empty(AliasReg))
418            return false;
419
420          if (AllocatableSet.test(AliasReg))
421            return false;
422        }
423      } else if (!MO.isDead()) {
424        // A def that isn't dead. We can't move it.
425        return false;
426      }
427    } else {
428      // Virtual register uses are always safe to sink.
429      if (MO.isUse()) continue;
430
431      // If it's not safe to move defs of the register class, then abort.
432      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
433        return false;
434
435      // FIXME: This picks a successor to sink into based on having one
436      // successor that dominates all the uses.  However, there are cases where
437      // sinking can happen but where the sink point isn't a successor.  For
438      // example:
439      //
440      //   x = computation
441      //   if () {} else {}
442      //   use x
443      //
444      // the instruction could be sunk over the whole diamond for the
445      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
446      // after that.
447
448      // Virtual register defs can only be sunk if all their uses are in blocks
449      // dominated by one of the successors.
450      if (SuccToSinkTo) {
451        // If a previous operand picked a block to sink to, then this operand
452        // must be sinkable to the same block.
453        bool LocalUse = false;
454        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock,
455                                     AllPHIUse, LocalUse))
456          return false;
457
458        continue;
459      }
460
461      // Otherwise, we should look at all the successors and decide which one
462      // we should sink to.
463      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
464           E = ParentBlock->succ_end(); SI != E; ++SI) {
465        bool LocalUse = false;
466        if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock,
467                                    AllPHIUse, LocalUse)) {
468          SuccToSinkTo = *SI;
469          break;
470        }
471        if (LocalUse)
472          // Def is used locally, it's never safe to move this def.
473          return false;
474      }
475
476      // If we couldn't find a block to sink to, ignore this instruction.
477      if (SuccToSinkTo == 0)
478        return false;
479    }
480  }
481
482  // If there are no outputs, it must have side-effects.
483  if (SuccToSinkTo == 0)
484    return false;
485
486  // It's not safe to sink instructions to EH landing pad. Control flow into
487  // landing pad is implicitly defined.
488  if (SuccToSinkTo->isLandingPad())
489    return false;
490
491  // It is not possible to sink an instruction into its own block.  This can
492  // happen with loops.
493  if (MI->getParent() == SuccToSinkTo)
494    return false;
495
496  // If the instruction to move defines a dead physical register which is live
497  // when leaving the basic block, don't move it because it could turn into a
498  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
499  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
500    const MachineOperand &MO = MI->getOperand(I);
501    if (!MO.isReg()) continue;
502    unsigned Reg = MO.getReg();
503    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
504    if (SuccToSinkTo->isLiveIn(Reg))
505      return false;
506  }
507
508  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
509
510  // If the block has multiple predecessors, this would introduce computation on
511  // a path that it doesn't already exist.  We could split the critical edge,
512  // but for now we just punt.
513  if (SuccToSinkTo->pred_size() > 1) {
514    // We cannot sink a load across a critical edge - there may be stores in
515    // other code paths.
516    bool TryBreak = false;
517    bool store = true;
518    if (!MI->isSafeToMove(TII, AA, store)) {
519      DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
520      TryBreak = true;
521    }
522
523    // We don't want to sink across a critical edge if we don't dominate the
524    // successor. We could be introducing calculations to new code paths.
525    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
526      DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
527      TryBreak = true;
528    }
529
530    // Don't sink instructions into a loop.
531    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
532      DEBUG(dbgs() << " *** NOTE: Loop header found\n");
533      TryBreak = true;
534    }
535
536    // Otherwise we are OK with sinking along a critical edge.
537    if (!TryBreak)
538      DEBUG(dbgs() << "Sinking along critical edge.\n");
539    else {
540      MachineBasicBlock *NewSucc =
541        SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, AllPHIUse);
542      if (!NewSucc) {
543        DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
544                        "break critical edge\n");
545        return false;
546      } else {
547        DEBUG(dbgs() << " *** Splitting critical edge:"
548              " BB#" << ParentBlock->getNumber()
549              << " -- BB#" << NewSucc->getNumber()
550              << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
551        SuccToSinkTo = NewSucc;
552        ++NumSplit;
553      }
554    }
555  }
556
557  if (AllPHIUse) {
558    if (NumSplit == SplitLimit)
559      return false;
560    MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
561                                                   SuccToSinkTo, AllPHIUse);
562    if (!NewSucc) {
563      DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
564            "break critical edge\n");
565      return false;
566    }
567
568    DEBUG(dbgs() << " *** Splitting critical edge:"
569          " BB#" << ParentBlock->getNumber()
570          << " -- BB#" << NewSucc->getNumber()
571          << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
572    SuccToSinkTo = NewSucc;
573    ++NumSplit;
574  }
575
576  // Determine where to insert into. Skip phi nodes.
577  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
578  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
579    ++InsertPos;
580
581  // Move the instruction.
582  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
583                       ++MachineBasicBlock::iterator(MI));
584
585  // Conservatively, clear any kill flags, since it's possible that they are no
586  // longer correct.
587  MI->clearKillInfo();
588
589  return true;
590}
591