MachineSink.cpp revision 99ae3328316ca9d05b3a3483a009c1d405215ae9
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31using namespace llvm;
32
33STATISTIC(NumSunk, "Number of machine instructions sunk");
34
35namespace {
36  class MachineSinking : public MachineFunctionPass {
37    const TargetInstrInfo *TII;
38    const TargetRegisterInfo *TRI;
39    MachineRegisterInfo  *RegInfo; // Machine register information
40    MachineDominatorTree *DT;   // Machine dominator tree
41    MachineLoopInfo *LI;
42    AliasAnalysis *AA;
43    BitVector AllocatableSet;   // Which physregs are allocatable?
44
45  public:
46    static char ID; // Pass identification
47    MachineSinking() : MachineFunctionPass(ID) {}
48
49    virtual bool runOnMachineFunction(MachineFunction &MF);
50
51    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
52      AU.setPreservesCFG();
53      MachineFunctionPass::getAnalysisUsage(AU);
54      AU.addRequired<AliasAnalysis>();
55      AU.addRequired<MachineDominatorTree>();
56      AU.addRequired<MachineLoopInfo>();
57      AU.addPreserved<MachineDominatorTree>();
58      AU.addPreserved<MachineLoopInfo>();
59    }
60  private:
61    bool ProcessBlock(MachineBasicBlock &MBB);
62    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
63    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
64                               MachineBasicBlock *DefMBB, bool &LocalUse) const;
65  };
66} // end anonymous namespace
67
68char MachineSinking::ID = 0;
69INITIALIZE_PASS(MachineSinking, "machine-sink",
70                "Machine code sinking", false, false);
71
72FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
73
74/// AllUsesDominatedByBlock - Return true if all uses of the specified register
75/// occur in blocks dominated by the specified block. If any use is in the
76/// definition block, then return false since it is never legal to move def
77/// after uses.
78bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
79                                             MachineBasicBlock *MBB,
80                                             MachineBasicBlock *DefMBB,
81                                             bool &LocalUse) const {
82  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
83         "Only makes sense for vregs");
84  // Ignoring debug uses is necessary so debug info doesn't affect the code.
85  // This may leave a referencing dbg_value in the original block, before
86  // the definition of the vreg.  Dwarf generator handles this although the
87  // user might not get the right info at runtime.
88  for (MachineRegisterInfo::use_nodbg_iterator
89         I = RegInfo->use_nodbg_begin(Reg), E = RegInfo->use_nodbg_end();
90       I != E; ++I) {
91    // Determine the block of the use.
92    MachineInstr *UseInst = &*I;
93    MachineBasicBlock *UseBlock = UseInst->getParent();
94    if (UseBlock == DefMBB) {
95      LocalUse = true;
96      return false;
97    }
98
99    if (UseInst->isPHI()) {
100      // PHI nodes use the operand in the predecessor block, not the block with
101      // the PHI.
102      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
103    }
104
105    // Check that it dominates.
106    if (!DT->dominates(MBB, UseBlock))
107      return false;
108  }
109
110  return true;
111}
112
113bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
114  DEBUG(dbgs() << "******** Machine Sinking ********\n");
115
116  const TargetMachine &TM = MF.getTarget();
117  TII = TM.getInstrInfo();
118  TRI = TM.getRegisterInfo();
119  RegInfo = &MF.getRegInfo();
120  DT = &getAnalysis<MachineDominatorTree>();
121  LI = &getAnalysis<MachineLoopInfo>();
122  AA = &getAnalysis<AliasAnalysis>();
123  AllocatableSet = TRI->getAllocatableSet(MF);
124
125  bool EverMadeChange = false;
126
127  while (1) {
128    bool MadeChange = false;
129
130    // Process all basic blocks.
131    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
132         I != E; ++I)
133      MadeChange |= ProcessBlock(*I);
134
135    // If this iteration over the code changed anything, keep iterating.
136    if (!MadeChange) break;
137    EverMadeChange = true;
138  }
139  return EverMadeChange;
140}
141
142bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
143  // Can't sink anything out of a block that has less than two successors.
144  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
145
146  // Don't bother sinking code out of unreachable blocks. In addition to being
147  // unprofitable, it can also lead to infinite looping, because in an
148  // unreachable loop there may be nowhere to stop.
149  if (!DT->isReachableFromEntry(&MBB)) return false;
150
151  bool MadeChange = false;
152
153  // Walk the basic block bottom-up.  Remember if we saw a store.
154  MachineBasicBlock::iterator I = MBB.end();
155  --I;
156  bool ProcessedBegin, SawStore = false;
157  do {
158    MachineInstr *MI = I;  // The instruction to sink.
159
160    // Predecrement I (if it's not begin) so that it isn't invalidated by
161    // sinking.
162    ProcessedBegin = I == MBB.begin();
163    if (!ProcessedBegin)
164      --I;
165
166    if (MI->isDebugValue())
167      continue;
168
169    if (SinkInstruction(MI, SawStore))
170      ++NumSunk, MadeChange = true;
171
172    // If we just processed the first instruction in the block, we're done.
173  } while (!ProcessedBegin);
174
175  return MadeChange;
176}
177
178/// SinkInstruction - Determine whether it is safe to sink the specified machine
179/// instruction out of its current block into a successor.
180bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
181  // Check if it's safe to move the instruction.
182  if (!MI->isSafeToMove(TII, AA, SawStore))
183    return false;
184
185  // FIXME: This should include support for sinking instructions within the
186  // block they are currently in to shorten the live ranges.  We often get
187  // instructions sunk into the top of a large block, but it would be better to
188  // also sink them down before their first use in the block.  This xform has to
189  // be careful not to *increase* register pressure though, e.g. sinking
190  // "x = y + z" down if it kills y and z would increase the live ranges of y
191  // and z and only shrink the live range of x.
192
193  // Loop over all the operands of the specified instruction.  If there is
194  // anything we can't handle, bail out.
195  MachineBasicBlock *ParentBlock = MI->getParent();
196
197  // SuccToSinkTo - This is the successor to sink this instruction to, once we
198  // decide.
199  MachineBasicBlock *SuccToSinkTo = 0;
200
201  bool LocalUse = false;
202  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
203    const MachineOperand &MO = MI->getOperand(i);
204    if (!MO.isReg()) continue;  // Ignore non-register operands.
205
206    unsigned Reg = MO.getReg();
207    if (Reg == 0) continue;
208
209    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
210      if (MO.isUse()) {
211        // If the physreg has no defs anywhere, it's just an ambient register
212        // and we can freely move its uses. Alternatively, if it's allocatable,
213        // it could get allocated to something with a def during allocation.
214        if (!RegInfo->def_empty(Reg))
215          return false;
216
217        if (AllocatableSet.test(Reg))
218          return false;
219
220        // Check for a def among the register's aliases too.
221        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
222          unsigned AliasReg = *Alias;
223          if (!RegInfo->def_empty(AliasReg))
224            return false;
225
226          if (AllocatableSet.test(AliasReg))
227            return false;
228        }
229      } else if (!MO.isDead()) {
230        // A def that isn't dead. We can't move it.
231        return false;
232      }
233    } else {
234      // Virtual register uses are always safe to sink.
235      if (MO.isUse()) continue;
236
237      // If it's not safe to move defs of the register class, then abort.
238      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
239        return false;
240
241      // FIXME: This picks a successor to sink into based on having one
242      // successor that dominates all the uses.  However, there are cases where
243      // sinking can happen but where the sink point isn't a successor.  For
244      // example:
245      //
246      //   x = computation
247      //   if () {} else {}
248      //   use x
249      //
250      // the instruction could be sunk over the whole diamond for the
251      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
252      // after that.
253
254      // Virtual register defs can only be sunk if all their uses are in blocks
255      // dominated by one of the successors.
256      if (SuccToSinkTo) {
257        // If a previous operand picked a block to sink to, then this operand
258        // must be sinkable to the same block.
259        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock, LocalUse))
260          return false;
261
262        continue;
263      }
264
265      // Otherwise, we should look at all the successors and decide which one
266      // we should sink to.
267      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
268           E = ParentBlock->succ_end(); SI != E; ++SI) {
269        if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock, LocalUse)) {
270          SuccToSinkTo = *SI;
271          break;
272        }
273        if (LocalUse)
274          // Def is used locally, it's never safe to move this def.
275          return false;
276      }
277
278      // If we couldn't find a block to sink to, ignore this instruction.
279      if (SuccToSinkTo == 0)
280        return false;
281    }
282  }
283
284  // If there are no outputs, it must have side-effects.
285  if (SuccToSinkTo == 0)
286    return false;
287
288  // It's not safe to sink instructions to EH landing pad. Control flow into
289  // landing pad is implicitly defined.
290  if (SuccToSinkTo->isLandingPad())
291    return false;
292
293  // It is not possible to sink an instruction into its own block.  This can
294  // happen with loops.
295  if (MI->getParent() == SuccToSinkTo)
296    return false;
297
298  // If the instruction to move defines a dead physical register which is live
299  // when leaving the basic block, don't move it because it could turn into a
300  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
301  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
302    const MachineOperand &MO = MI->getOperand(I);
303    if (!MO.isReg()) continue;
304    unsigned Reg = MO.getReg();
305    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
306    if (SuccToSinkTo->isLiveIn(Reg))
307      return false;
308  }
309
310  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
311
312  // If the block has multiple predecessors, this would introduce computation on
313  // a path that it doesn't already exist.  We could split the critical edge,
314  // but for now we just punt.
315  // FIXME: Split critical edges if not backedges.
316  if (SuccToSinkTo->pred_size() > 1) {
317    // We cannot sink a load across a critical edge - there may be stores in
318    // other code paths.
319    bool store = true;
320    if (!MI->isSafeToMove(TII, AA, store)) {
321      DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
322      return false;
323    }
324
325    // We don't want to sink across a critical edge if we don't dominate the
326    // successor. We could be introducing calculations to new code paths.
327    if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
328      DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
329      return false;
330    }
331
332    // Don't sink instructions into a loop.
333    if (LI->isLoopHeader(SuccToSinkTo)) {
334      DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
335      return false;
336    }
337
338    // Otherwise we are OK with sinking along a critical edge.
339    DEBUG(dbgs() << "Sinking along critical edge.\n");
340  }
341
342  // Determine where to insert into. Skip phi nodes.
343  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
344  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
345    ++InsertPos;
346
347  // Move the instruction.
348  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
349                       ++MachineBasicBlock::iterator(MI));
350
351  // Conservatively, clear any kill flags, since it's possible that they are no
352  // longer correct.
353  MI->clearKillInfo();
354
355  return true;
356}
357