MachineSink.cpp revision d24c9d5f91442f893bebc2ea8d5ee845bc8b77a9
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumSunk, "Number of machine instructions sunk");
35
36namespace {
37  class MachineSinking : public MachineFunctionPass {
38    const TargetInstrInfo *TII;
39    const TargetRegisterInfo *TRI;
40    MachineRegisterInfo  *RegInfo; // Machine register information
41    MachineDominatorTree *DT;   // Machine dominator tree
42    MachineLoopInfo *LI;
43    AliasAnalysis *AA;
44    BitVector AllocatableSet;   // Which physregs are allocatable?
45
46  public:
47    static char ID; // Pass identification
48    MachineSinking() : MachineFunctionPass(&ID) {}
49
50    virtual bool runOnMachineFunction(MachineFunction &MF);
51
52    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
53      AU.setPreservesCFG();
54      MachineFunctionPass::getAnalysisUsage(AU);
55      AU.addRequired<AliasAnalysis>();
56      AU.addRequired<MachineDominatorTree>();
57      AU.addRequired<MachineLoopInfo>();
58      AU.addPreserved<MachineDominatorTree>();
59      AU.addPreserved<MachineLoopInfo>();
60    }
61  private:
62    bool ProcessBlock(MachineBasicBlock &MBB);
63    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
64    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
65    bool LiveOutOfBasicBlock(const MachineInstr *MI, unsigned Reg) const;
66  };
67} // end anonymous namespace
68
69char MachineSinking::ID = 0;
70static RegisterPass<MachineSinking>
71X("machine-sink", "Machine code sinking");
72
73FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
74
75/// AllUsesDominatedByBlock - Return true if all uses of the specified register
76/// occur in blocks dominated by the specified block.
77bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
78                                             MachineBasicBlock *MBB) const {
79  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
80         "Only makes sense for vregs");
81  // Ignoring debug uses is necessary so debug info doesn't affect the code.
82  // This may leave a referencing dbg_value in the original block, before
83  // the definition of the vreg.  Dwarf generator handles this although the
84  // user might not get the right info at runtime.
85  for (MachineRegisterInfo::use_nodbg_iterator
86         I = RegInfo->use_nodbg_begin(Reg), E = RegInfo->use_nodbg_end();
87       I != E; ++I) {
88    // Determine the block of the use.
89    MachineInstr *UseInst = &*I;
90    MachineBasicBlock *UseBlock = UseInst->getParent();
91
92    if (UseInst->isPHI()) {
93      // PHI nodes use the operand in the predecessor block, not the block with
94      // the PHI.
95      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
96    }
97
98    // Check that it dominates.
99    if (!DT->dominates(MBB, UseBlock))
100      return false;
101  }
102
103  return true;
104}
105
106bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
107  DEBUG(dbgs() << "******** Machine Sinking ********\n");
108
109  const TargetMachine &TM = MF.getTarget();
110  TII = TM.getInstrInfo();
111  TRI = TM.getRegisterInfo();
112  RegInfo = &MF.getRegInfo();
113  DT = &getAnalysis<MachineDominatorTree>();
114  LI = &getAnalysis<MachineLoopInfo>();
115  AA = &getAnalysis<AliasAnalysis>();
116  AllocatableSet = TRI->getAllocatableSet(MF);
117
118  bool EverMadeChange = false;
119
120  while (1) {
121    bool MadeChange = false;
122
123    // Process all basic blocks.
124    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
125         I != E; ++I)
126      MadeChange |= ProcessBlock(*I);
127
128    // If this iteration over the code changed anything, keep iterating.
129    if (!MadeChange) break;
130    EverMadeChange = true;
131  }
132  return EverMadeChange;
133}
134
135bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
136  // Can't sink anything out of a block that has less than two successors.
137  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
138
139  // Don't bother sinking code out of unreachable blocks. In addition to being
140  // unprofitable, it can also lead to infinite looping, because in an
141  // unreachable loop there may be nowhere to stop.
142  if (!DT->isReachableFromEntry(&MBB)) return false;
143
144  bool MadeChange = false;
145
146  // Walk the basic block bottom-up.  Remember if we saw a store.
147  MachineBasicBlock::iterator I = MBB.end();
148  --I;
149  bool ProcessedBegin, SawStore = false;
150  do {
151    MachineInstr *MI = I;  // The instruction to sink.
152
153    // Predecrement I (if it's not begin) so that it isn't invalidated by
154    // sinking.
155    ProcessedBegin = I == MBB.begin();
156    if (!ProcessedBegin)
157      --I;
158
159    if (MI->isDebugValue())
160      continue;
161
162    if (SinkInstruction(MI, SawStore))
163      ++NumSunk, MadeChange = true;
164
165    // If we just processed the first instruction in the block, we're done.
166  } while (!ProcessedBegin);
167
168  return MadeChange;
169}
170
171/// LiveOutOfBasicBlock - Determine if the physical register, defined and dead
172/// in MI, is live on exit from the basic block.
173bool MachineSinking::LiveOutOfBasicBlock(const MachineInstr *MI,
174                                         unsigned Reg) const {
175  assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
176         "Only want to determine if a physical register is live out of a BB!");
177
178  const MachineBasicBlock *MBB = MI->getParent();
179  SmallSet<unsigned, 8> KilledRegs;
180  MachineBasicBlock::const_iterator I = MBB->end();
181  MachineBasicBlock::const_iterator E = MBB->begin();
182  assert(I != E && "How can there be an empty block at this point?!");
183
184  // Loop through the instructions bottom-up. If we see a kill of the preg
185  // first, then it's not live out of the BB. If we see a use or def first, then
186  // we assume that it is live out of the BB.
187  do {
188    const MachineInstr &CurMI = *--I;
189
190    for (unsigned i = 0, e = CurMI.getNumOperands(); i != e; ++i) {
191      const MachineOperand &MO = CurMI.getOperand(i);
192      if (!MO.isReg()) continue;  // Ignore non-register operands.
193
194      unsigned MOReg = MO.getReg();
195      if (MOReg == 0) continue;
196
197      if (MOReg == Reg) {
198        if (MO.isKill())
199          return false;
200        if (MO.isUse() || MO.isDef())
201          return true;
202      }
203    }
204  } while (I != E);
205
206  return false;
207}
208
209/// SinkInstruction - Determine whether it is safe to sink the specified machine
210/// instruction out of its current block into a successor.
211bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
212  // Check if it's safe to move the instruction.
213  if (!MI->isSafeToMove(TII, AA, SawStore))
214    return false;
215
216  // FIXME: This should include support for sinking instructions within the
217  // block they are currently in to shorten the live ranges.  We often get
218  // instructions sunk into the top of a large block, but it would be better to
219  // also sink them down before their first use in the block.  This xform has to
220  // be careful not to *increase* register pressure though, e.g. sinking
221  // "x = y + z" down if it kills y and z would increase the live ranges of y
222  // and z and only shrink the live range of x.
223
224  // Loop over all the operands of the specified instruction.  If there is
225  // anything we can't handle, bail out.
226  MachineBasicBlock *ParentBlock = MI->getParent();
227
228  // SuccToSinkTo - This is the successor to sink this instruction to, once we
229  // decide.
230  MachineBasicBlock *SuccToSinkTo = 0;
231  SmallVector<unsigned, 4> PhysRegs;
232
233  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234    const MachineOperand &MO = MI->getOperand(i);
235    if (!MO.isReg()) continue;  // Ignore non-register operands.
236
237    unsigned Reg = MO.getReg();
238    if (Reg == 0) continue;
239
240    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
241      if (MO.isUse()) {
242        // If the physreg has no defs anywhere, it's just an ambient register
243        // and we can freely move its uses. Alternatively, if it's allocatable,
244        // it could get allocated to something with a def during allocation.
245        if (!RegInfo->def_empty(Reg))
246          return false;
247
248        if (AllocatableSet.test(Reg))
249          return false;
250
251        // Check for a def among the register's aliases too.
252        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
253          unsigned AliasReg = *Alias;
254          if (!RegInfo->def_empty(AliasReg))
255            return false;
256
257          if (AllocatableSet.test(AliasReg))
258            return false;
259        }
260      } else {
261        if (!MO.isDead())
262          // A def that isn't dead. We can't move it.
263          return false;
264        else
265          PhysRegs.push_back(Reg);
266      }
267    } else {
268      // Virtual register uses are always safe to sink.
269      if (MO.isUse()) continue;
270
271      // If it's not safe to move defs of the register class, then abort.
272      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
273        return false;
274
275      // FIXME: This picks a successor to sink into based on having one
276      // successor that dominates all the uses.  However, there are cases where
277      // sinking can happen but where the sink point isn't a successor.  For
278      // example:
279      //
280      //   x = computation
281      //   if () {} else {}
282      //   use x
283      //
284      // the instruction could be sunk over the whole diamond for the
285      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
286      // after that.
287
288      // Virtual register defs can only be sunk if all their uses are in blocks
289      // dominated by one of the successors.
290      if (SuccToSinkTo) {
291        // If a previous operand picked a block to sink to, then this operand
292        // must be sinkable to the same block.
293        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
294          return false;
295
296        continue;
297      }
298
299      // Otherwise, we should look at all the successors and decide which one
300      // we should sink to.
301      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
302           E = ParentBlock->succ_end(); SI != E; ++SI) {
303        if (AllUsesDominatedByBlock(Reg, *SI)) {
304          SuccToSinkTo = *SI;
305          break;
306        }
307      }
308
309      // If we couldn't find a block to sink to, ignore this instruction.
310      if (SuccToSinkTo == 0)
311        return false;
312    }
313  }
314
315  // If there are no outputs, it must have side-effects.
316  if (SuccToSinkTo == 0)
317    return false;
318
319  // It's not safe to sink instructions to EH landing pad. Control flow into
320  // landing pad is implicitly defined.
321  if (SuccToSinkTo->isLandingPad())
322    return false;
323
324  // It is not possible to sink an instruction into its own block.  This can
325  // happen with loops.
326  if (MI->getParent() == SuccToSinkTo)
327    return false;
328
329  // If the instruction to move defines a dead physical register which is live
330  // when leaving the basic block, don't move it because it could turn into a
331  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
332  for (SmallVectorImpl<unsigned>::const_iterator
333         I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I)
334    if (LiveOutOfBasicBlock(MI, *I))
335      return false;
336
337  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
338
339  // If the block has multiple predecessors, this would introduce computation on
340  // a path that it doesn't already exist.  We could split the critical edge,
341  // but for now we just punt.
342  // FIXME: Split critical edges if not backedges.
343  if (SuccToSinkTo->pred_size() > 1) {
344    // We cannot sink a load across a critical edge - there may be stores in
345    // other code paths.
346    bool store = true;
347    if (!MI->isSafeToMove(TII, AA, store)) {
348      DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
349      return false;
350    }
351
352    // We don't want to sink across a critical edge if we don't dominate the
353    // successor. We could be introducing calculations to new code paths.
354    if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
355      DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
356      return false;
357    }
358
359    // Don't sink instructions into a loop.
360    if (LI->isLoopHeader(SuccToSinkTo)) {
361      DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
362      return false;
363    }
364
365    // Otherwise we are OK with sinking along a critical edge.
366    DEBUG(dbgs() << "Sinking along critical edge.\n");
367  }
368
369  // Determine where to insert into. Skip phi nodes.
370  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
371  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
372    ++InsertPos;
373
374  // Move the instruction.
375  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
376                       ++MachineBasicBlock::iterator(MI));
377
378  // Conservatively, clear any kill flags, since it's possible that they are no
379  // longer correct.
380  MI->clearKillInfo();
381
382  return true;
383}
384