MachineSink.cpp revision e5e7946018844978d0ac09fdb35998a53b43ad34
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34static cl::opt<bool>
35SplitEdges("machine-sink-split",
36           cl::desc("Split critical edges during machine sinking"),
37           cl::init(false), cl::Hidden);
38static cl::opt<unsigned>
39SplitLimit("split-limit",
40           cl::init(~0u), cl::Hidden);
41
42STATISTIC(NumSunk,  "Number of machine instructions sunk");
43STATISTIC(NumSplit, "Number of critical edges split");
44
45namespace {
46  class MachineSinking : public MachineFunctionPass {
47    const TargetInstrInfo *TII;
48    const TargetRegisterInfo *TRI;
49    MachineRegisterInfo  *RegInfo; // Machine register information
50    MachineDominatorTree *DT;   // Machine dominator tree
51    MachineLoopInfo *LI;
52    AliasAnalysis *AA;
53    BitVector AllocatableSet;   // Which physregs are allocatable?
54
55  public:
56    static char ID; // Pass identification
57    MachineSinking() : MachineFunctionPass(ID) {}
58
59    virtual bool runOnMachineFunction(MachineFunction &MF);
60
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.setPreservesCFG();
63      MachineFunctionPass::getAnalysisUsage(AU);
64      AU.addRequired<AliasAnalysis>();
65      AU.addRequired<MachineDominatorTree>();
66      AU.addRequired<MachineLoopInfo>();
67      AU.addPreserved<MachineDominatorTree>();
68      AU.addPreserved<MachineLoopInfo>();
69    }
70  private:
71    bool ProcessBlock(MachineBasicBlock &MBB);
72    MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *From,
73                                         MachineBasicBlock *To);
74    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
75    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
76                               MachineBasicBlock *DefMBB, bool &LocalUse) const;
77  };
78} // end anonymous namespace
79
80char MachineSinking::ID = 0;
81INITIALIZE_PASS(MachineSinking, "machine-sink",
82                "Machine code sinking", false, false);
83
84FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
85
86/// AllUsesDominatedByBlock - Return true if all uses of the specified register
87/// occur in blocks dominated by the specified block. If any use is in the
88/// definition block, then return false since it is never legal to move def
89/// after uses.
90bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
91                                             MachineBasicBlock *MBB,
92                                             MachineBasicBlock *DefMBB,
93                                             bool &LocalUse) const {
94  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
95         "Only makes sense for vregs");
96  // Ignoring debug uses is necessary so debug info doesn't affect the code.
97  // This may leave a referencing dbg_value in the original block, before
98  // the definition of the vreg.  Dwarf generator handles this although the
99  // user might not get the right info at runtime.
100  for (MachineRegisterInfo::use_nodbg_iterator
101         I = RegInfo->use_nodbg_begin(Reg), E = RegInfo->use_nodbg_end();
102       I != E; ++I) {
103    // Determine the block of the use.
104    MachineInstr *UseInst = &*I;
105    MachineBasicBlock *UseBlock = UseInst->getParent();
106
107    if (UseInst->isPHI()) {
108      // PHI nodes use the operand in the predecessor block, not the block with
109      // the PHI.
110      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
111    } else if (UseBlock == DefMBB) {
112      LocalUse = true;
113      return false;
114    }
115
116    // Check that it dominates.
117    if (!DT->dominates(MBB, UseBlock))
118      return false;
119  }
120
121  return true;
122}
123
124bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
125  DEBUG(dbgs() << "******** Machine Sinking ********\n");
126
127  const TargetMachine &TM = MF.getTarget();
128  TII = TM.getInstrInfo();
129  TRI = TM.getRegisterInfo();
130  RegInfo = &MF.getRegInfo();
131  DT = &getAnalysis<MachineDominatorTree>();
132  LI = &getAnalysis<MachineLoopInfo>();
133  AA = &getAnalysis<AliasAnalysis>();
134  AllocatableSet = TRI->getAllocatableSet(MF);
135
136  bool EverMadeChange = false;
137
138  while (1) {
139    bool MadeChange = false;
140
141    // Process all basic blocks.
142    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
143         I != E; ++I)
144      MadeChange |= ProcessBlock(*I);
145
146    // If this iteration over the code changed anything, keep iterating.
147    if (!MadeChange) break;
148    EverMadeChange = true;
149  }
150  return EverMadeChange;
151}
152
153bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
154  // Can't sink anything out of a block that has less than two successors.
155  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
156
157  // Don't bother sinking code out of unreachable blocks. In addition to being
158  // unprofitable, it can also lead to infinite looping, because in an
159  // unreachable loop there may be nowhere to stop.
160  if (!DT->isReachableFromEntry(&MBB)) return false;
161
162  bool MadeChange = false;
163
164  // Walk the basic block bottom-up.  Remember if we saw a store.
165  MachineBasicBlock::iterator I = MBB.end();
166  --I;
167  bool ProcessedBegin, SawStore = false;
168  do {
169    MachineInstr *MI = I;  // The instruction to sink.
170
171    // Predecrement I (if it's not begin) so that it isn't invalidated by
172    // sinking.
173    ProcessedBegin = I == MBB.begin();
174    if (!ProcessedBegin)
175      --I;
176
177    if (MI->isDebugValue())
178      continue;
179
180    if (SinkInstruction(MI, SawStore))
181      ++NumSunk, MadeChange = true;
182
183    // If we just processed the first instruction in the block, we're done.
184  } while (!ProcessedBegin);
185
186  return MadeChange;
187}
188
189MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineBasicBlock *FromBB,
190                                                     MachineBasicBlock *ToBB) {
191  // Avoid breaking back edge. From == To means backedge for single BB loop.
192  if (!SplitEdges || NumSplit == SplitLimit || FromBB == ToBB)
193    return 0;
194
195  // Check for more "complex" loops.
196  if (LI->getLoopFor(FromBB) != LI->getLoopFor(ToBB) ||
197      !LI->isLoopHeader(ToBB)) {
198    // It's not always legal to break critical edges and sink the computation
199    // to the edge.
200    //
201    // BB#1:
202    // v1024
203    // Beq BB#3
204    // <fallthrough>
205    // BB#2:
206    // ... no uses of v1024
207    // <fallthrough>
208    // BB#3:
209    // ...
210    //       = v1024
211    //
212    // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
213    //
214    // BB#1:
215    // ...
216    // Bne BB#2
217    // BB#4:
218    // v1024 =
219    // B BB#3
220    // BB#2:
221    // ... no uses of v1024
222    // <fallthrough>
223    // BB#3:
224    // ...
225    //       = v1024
226    //
227    // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
228    // flow. We need to ensure the new basic block where the computation is
229    // sunk to dominates all the uses.
230    // It's only legal to break critical edge and sink the computation to the
231    // new block if all the predecessors of "To", except for "From", are
232    // not dominated by "From". Given SSA property, this means these
233    // predecessors are dominated by "To".
234    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
235           E = ToBB->pred_end(); PI != E; ++PI) {
236      if (*PI == FromBB)
237        continue;
238      if (!DT->dominates(ToBB, *PI))
239        return 0;
240    }
241
242    // FIXME: Determine if it's cost effective to break this edge.
243    return FromBB->SplitCriticalEdge(ToBB, this);
244  }
245
246  return 0;
247}
248
249/// SinkInstruction - Determine whether it is safe to sink the specified machine
250/// instruction out of its current block into a successor.
251bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
252  // Check if it's safe to move the instruction.
253  if (!MI->isSafeToMove(TII, AA, SawStore))
254    return false;
255
256  // FIXME: This should include support for sinking instructions within the
257  // block they are currently in to shorten the live ranges.  We often get
258  // instructions sunk into the top of a large block, but it would be better to
259  // also sink them down before their first use in the block.  This xform has to
260  // be careful not to *increase* register pressure though, e.g. sinking
261  // "x = y + z" down if it kills y and z would increase the live ranges of y
262  // and z and only shrink the live range of x.
263
264  // Loop over all the operands of the specified instruction.  If there is
265  // anything we can't handle, bail out.
266  MachineBasicBlock *ParentBlock = MI->getParent();
267
268  // SuccToSinkTo - This is the successor to sink this instruction to, once we
269  // decide.
270  MachineBasicBlock *SuccToSinkTo = 0;
271
272  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
273    const MachineOperand &MO = MI->getOperand(i);
274    if (!MO.isReg()) continue;  // Ignore non-register operands.
275
276    unsigned Reg = MO.getReg();
277    if (Reg == 0) continue;
278
279    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
280      if (MO.isUse()) {
281        // If the physreg has no defs anywhere, it's just an ambient register
282        // and we can freely move its uses. Alternatively, if it's allocatable,
283        // it could get allocated to something with a def during allocation.
284        if (!RegInfo->def_empty(Reg))
285          return false;
286
287        if (AllocatableSet.test(Reg))
288          return false;
289
290        // Check for a def among the register's aliases too.
291        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
292          unsigned AliasReg = *Alias;
293          if (!RegInfo->def_empty(AliasReg))
294            return false;
295
296          if (AllocatableSet.test(AliasReg))
297            return false;
298        }
299      } else if (!MO.isDead()) {
300        // A def that isn't dead. We can't move it.
301        return false;
302      }
303    } else {
304      // Virtual register uses are always safe to sink.
305      if (MO.isUse()) continue;
306
307      // If it's not safe to move defs of the register class, then abort.
308      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
309        return false;
310
311      // FIXME: This picks a successor to sink into based on having one
312      // successor that dominates all the uses.  However, there are cases where
313      // sinking can happen but where the sink point isn't a successor.  For
314      // example:
315      //
316      //   x = computation
317      //   if () {} else {}
318      //   use x
319      //
320      // the instruction could be sunk over the whole diamond for the
321      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
322      // after that.
323
324      // Virtual register defs can only be sunk if all their uses are in blocks
325      // dominated by one of the successors.
326      if (SuccToSinkTo) {
327        // If a previous operand picked a block to sink to, then this operand
328        // must be sinkable to the same block.
329        bool LocalUse = false;
330        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock, LocalUse))
331          return false;
332
333        continue;
334      }
335
336      // Otherwise, we should look at all the successors and decide which one
337      // we should sink to.
338      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
339           E = ParentBlock->succ_end(); SI != E; ++SI) {
340        bool LocalUse = false;
341        if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock, LocalUse)) {
342          SuccToSinkTo = *SI;
343          break;
344        }
345        if (LocalUse)
346          // Def is used locally, it's never safe to move this def.
347          return false;
348      }
349
350      // If we couldn't find a block to sink to, ignore this instruction.
351      if (SuccToSinkTo == 0)
352        return false;
353    }
354  }
355
356  // If there are no outputs, it must have side-effects.
357  if (SuccToSinkTo == 0)
358    return false;
359
360  // It's not safe to sink instructions to EH landing pad. Control flow into
361  // landing pad is implicitly defined.
362  if (SuccToSinkTo->isLandingPad())
363    return false;
364
365  // It is not possible to sink an instruction into its own block.  This can
366  // happen with loops.
367  if (MI->getParent() == SuccToSinkTo)
368    return false;
369
370  // If the instruction to move defines a dead physical register which is live
371  // when leaving the basic block, don't move it because it could turn into a
372  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
373  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
374    const MachineOperand &MO = MI->getOperand(I);
375    if (!MO.isReg()) continue;
376    unsigned Reg = MO.getReg();
377    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
378    if (SuccToSinkTo->isLiveIn(Reg))
379      return false;
380  }
381
382  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
383
384  // If the block has multiple predecessors, this would introduce computation on
385  // a path that it doesn't already exist.  We could split the critical edge,
386  // but for now we just punt.
387  // FIXME: Split critical edges if not backedges.
388  if (SuccToSinkTo->pred_size() > 1) {
389    // We cannot sink a load across a critical edge - there may be stores in
390    // other code paths.
391    bool TryBreak = false;
392    bool store = true;
393    if (!MI->isSafeToMove(TII, AA, store)) {
394      DEBUG(dbgs() << " *** PUNTING: Won't sink load along critical edge.\n");
395      TryBreak = true;
396    }
397
398    // We don't want to sink across a critical edge if we don't dominate the
399    // successor. We could be introducing calculations to new code paths.
400    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
401      DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
402      TryBreak = true;
403    }
404
405    // Don't sink instructions into a loop.
406    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
407      DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
408      TryBreak = true;
409    }
410
411    // Otherwise we are OK with sinking along a critical edge.
412    if (!TryBreak)
413      DEBUG(dbgs() << "Sinking along critical edge.\n");
414    else {
415      MachineBasicBlock *NewSucc = SplitCriticalEdge(ParentBlock, SuccToSinkTo);
416      if (!NewSucc) {
417        DEBUG(dbgs() <<
418              " *** PUNTING: Not legal or profitable to break critical edge\n");
419        return false;
420      } else {
421        DEBUG(dbgs() << "*** Splitting critical edge:"
422              " BB#" << ParentBlock->getNumber()
423              << " -- BB#" << NewSucc->getNumber()
424              << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
425        SuccToSinkTo = NewSucc;
426        ++NumSplit;
427      }
428    }
429  }
430
431  // Determine where to insert into. Skip phi nodes.
432  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
433  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
434    ++InsertPos;
435
436  // Move the instruction.
437  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
438                       ++MachineBasicBlock::iterator(MI));
439
440  // Conservatively, clear any kill flags, since it's possible that they are no
441  // longer correct.
442  MI->clearKillInfo();
443
444  return true;
445}
446