PrologEpilogInserter.cpp revision 1ba150df4bd9907b5820fb1d805aa8e4e6a0a0b0
1//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass is responsible for finalizing the functions frame layout, saving
11// callee saved registers, and for emitting prolog & epilog code for the
12// function.
13//
14// This pass must be run after register allocation.  After this pass is
15// executed, it is illegal to construct MO_FrameIndex operands.
16//
17// This pass provides an optional shrink wrapping variant of prolog/epilog
18// insertion, enabled via --shrink-wrap. See ShrinkWrapping.cpp.
19//
20//===----------------------------------------------------------------------===//
21
22#include "PrologEpilogInserter.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/RegisterScavenging.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/ADT/IndexedMap.h"
37#include "llvm/ADT/STLExtras.h"
38#include <climits>
39
40using namespace llvm;
41
42char PEI::ID = 0;
43
44static RegisterPass<PEI>
45X("prologepilog", "Prologue/Epilogue Insertion");
46
47/// createPrologEpilogCodeInserter - This function returns a pass that inserts
48/// prolog and epilog code, and eliminates abstract frame references.
49///
50FunctionPass *llvm::createPrologEpilogCodeInserter() { return new PEI(); }
51
52/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
53/// frame indexes with appropriate references.
54///
55bool PEI::runOnMachineFunction(MachineFunction &Fn) {
56  const Function* F = Fn.getFunction();
57  const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
58  RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL;
59  FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn);
60
61  // Get MachineModuleInfo so that we can track the construction of the
62  // frame.
63  if (MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>())
64    Fn.getFrameInfo()->setMachineModuleInfo(MMI);
65
66  // Calculate the MaxCallFrameSize and HasCalls variables for the function's
67  // frame information. Also eliminates call frame pseudo instructions.
68  calculateCallsInformation(Fn);
69
70  // Allow the target machine to make some adjustments to the function
71  // e.g. UsedPhysRegs before calculateCalleeSavedRegisters.
72  TRI->processFunctionBeforeCalleeSavedScan(Fn, RS);
73
74  // Scan the function for modified callee saved registers and insert spill code
75  // for any callee saved registers that are modified.
76  calculateCalleeSavedRegisters(Fn);
77
78  // Determine placement of CSR spill/restore code:
79  //  - with shrink wrapping, place spills and restores to tightly
80  //    enclose regions in the Machine CFG of the function where
81  //    they are used. Without shrink wrapping
82  //  - default (no shrink wrapping), place all spills in the
83  //    entry block, all restores in return blocks.
84  placeCSRSpillsAndRestores(Fn);
85
86  // Add the code to save and restore the callee saved registers
87  if (!F->hasFnAttr(Attribute::Naked))
88    insertCSRSpillsAndRestores(Fn);
89
90  // Allow the target machine to make final modifications to the function
91  // before the frame layout is finalized.
92  TRI->processFunctionBeforeFrameFinalized(Fn);
93
94  // Calculate actual frame offsets for all abstract stack objects...
95  calculateFrameObjectOffsets(Fn);
96
97  // Add prolog and epilog code to the function.  This function is required
98  // to align the stack frame as necessary for any stack variables or
99  // called functions.  Because of this, calculateCalleeSavedRegisters
100  // must be called before this function in order to set the HasCalls
101  // and MaxCallFrameSize variables.
102  if (!F->hasFnAttr(Attribute::Naked))
103    insertPrologEpilogCode(Fn);
104
105  // Replace all MO_FrameIndex operands with physical register references
106  // and actual offsets.
107  //
108  replaceFrameIndices(Fn);
109
110  // If register scavenging is needed, as we've enabled doing it as a
111  // post-pass, scavenge the virtual registers that frame index elimiation
112  // inserted.
113  if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging)
114    scavengeFrameVirtualRegs(Fn);
115
116  delete RS;
117  clearAllSets();
118  return true;
119}
120
121#if 0
122void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
123  AU.setPreservesCFG();
124  if (ShrinkWrapping || ShrinkWrapFunc != "") {
125    AU.addRequired<MachineLoopInfo>();
126    AU.addRequired<MachineDominatorTree>();
127  }
128  AU.addPreserved<MachineLoopInfo>();
129  AU.addPreserved<MachineDominatorTree>();
130  MachineFunctionPass::getAnalysisUsage(AU);
131}
132#endif
133
134/// calculateCallsInformation - Calculate the MaxCallFrameSize and HasCalls
135/// variables for the function's frame information and eliminate call frame
136/// pseudo instructions.
137void PEI::calculateCallsInformation(MachineFunction &Fn) {
138  const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
139
140  unsigned MaxCallFrameSize = 0;
141  bool HasCalls = false;
142
143  // Get the function call frame set-up and tear-down instruction opcode
144  int FrameSetupOpcode   = RegInfo->getCallFrameSetupOpcode();
145  int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode();
146
147  // Early exit for targets which have no call frame setup/destroy pseudo
148  // instructions.
149  if (FrameSetupOpcode == -1 && FrameDestroyOpcode == -1)
150    return;
151
152  std::vector<MachineBasicBlock::iterator> FrameSDOps;
153  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB)
154    for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
155      if (I->getOpcode() == FrameSetupOpcode ||
156          I->getOpcode() == FrameDestroyOpcode) {
157        assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo"
158               " instructions should have a single immediate argument!");
159        unsigned Size = I->getOperand(0).getImm();
160        if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
161        HasCalls = true;
162        FrameSDOps.push_back(I);
163      } else if (I->getOpcode() == TargetInstrInfo::INLINEASM) {
164        // An InlineAsm might be a call; assume it is to get the stack frame
165        // aligned correctly for calls.
166        HasCalls = true;
167      }
168
169  MachineFrameInfo *FFI = Fn.getFrameInfo();
170  FFI->setHasCalls(HasCalls);
171  FFI->setMaxCallFrameSize(MaxCallFrameSize);
172
173  for (std::vector<MachineBasicBlock::iterator>::iterator
174         i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
175    MachineBasicBlock::iterator I = *i;
176
177    // If call frames are not being included as part of the stack frame, and
178    // there is no dynamic allocation (therefore referencing frame slots off
179    // sp), leave the pseudo ops alone. We'll eliminate them later.
180    if (RegInfo->hasReservedCallFrame(Fn) || RegInfo->hasFP(Fn))
181      RegInfo->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I);
182  }
183}
184
185
186/// calculateCalleeSavedRegisters - Scan the function for modified callee saved
187/// registers.
188void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) {
189  const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
190  const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo();
191  MachineFrameInfo *FFI = Fn.getFrameInfo();
192
193  // Get the callee saved register list...
194  const unsigned *CSRegs = RegInfo->getCalleeSavedRegs(&Fn);
195
196  // These are used to keep track the callee-save area. Initialize them.
197  MinCSFrameIndex = INT_MAX;
198  MaxCSFrameIndex = 0;
199
200  // Early exit for targets which have no callee saved registers.
201  if (CSRegs == 0 || CSRegs[0] == 0)
202    return;
203
204  // Figure out which *callee saved* registers are modified by the current
205  // function, thus needing to be saved and restored in the prolog/epilog.
206  const TargetRegisterClass * const *CSRegClasses =
207    RegInfo->getCalleeSavedRegClasses(&Fn);
208
209  std::vector<CalleeSavedInfo> CSI;
210  for (unsigned i = 0; CSRegs[i]; ++i) {
211    unsigned Reg = CSRegs[i];
212    if (Fn.getRegInfo().isPhysRegUsed(Reg)) {
213      // If the reg is modified, save it!
214      CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i]));
215    } else {
216      for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
217           *AliasSet; ++AliasSet) {  // Check alias registers too.
218        if (Fn.getRegInfo().isPhysRegUsed(*AliasSet)) {
219          CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i]));
220          break;
221        }
222      }
223    }
224  }
225
226  if (CSI.empty())
227    return;   // Early exit if no callee saved registers are modified!
228
229  unsigned NumFixedSpillSlots;
230  const TargetFrameInfo::SpillSlot *FixedSpillSlots =
231    TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);
232
233  // Now that we know which registers need to be saved and restored, allocate
234  // stack slots for them.
235  for (std::vector<CalleeSavedInfo>::iterator
236         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
237    unsigned Reg = I->getReg();
238    const TargetRegisterClass *RC = I->getRegClass();
239
240    int FrameIdx;
241    if (RegInfo->hasReservedSpillSlot(Fn, Reg, FrameIdx)) {
242      I->setFrameIdx(FrameIdx);
243      continue;
244    }
245
246    // Check to see if this physreg must be spilled to a particular stack slot
247    // on this target.
248    const TargetFrameInfo::SpillSlot *FixedSlot = FixedSpillSlots;
249    while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots &&
250           FixedSlot->Reg != Reg)
251      ++FixedSlot;
252
253    if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
254      // Nope, just spill it anywhere convenient.
255      unsigned Align = RC->getAlignment();
256      unsigned StackAlign = TFI->getStackAlignment();
257
258      // We may not be able to satisfy the desired alignment specification of
259      // the TargetRegisterClass if the stack alignment is smaller. Use the
260      // min.
261      Align = std::min(Align, StackAlign);
262      FrameIdx = FFI->CreateStackObject(RC->getSize(), Align, true);
263      if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
264      if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
265    } else {
266      // Spill it to the stack where we must.
267      FrameIdx = FFI->CreateFixedObject(RC->getSize(), FixedSlot->Offset);
268    }
269
270    I->setFrameIdx(FrameIdx);
271  }
272
273  FFI->setCalleeSavedInfo(CSI);
274}
275
276/// insertCSRSpillsAndRestores - Insert spill and restore code for
277/// callee saved registers used in the function, handling shrink wrapping.
278///
279void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
280  // Get callee saved register information.
281  MachineFrameInfo *FFI = Fn.getFrameInfo();
282  const std::vector<CalleeSavedInfo> &CSI = FFI->getCalleeSavedInfo();
283
284  FFI->setCalleeSavedInfoValid(true);
285
286  // Early exit if no callee saved registers are modified!
287  if (CSI.empty())
288    return;
289
290  const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
291  MachineBasicBlock::iterator I;
292
293  if (! ShrinkWrapThisFunction) {
294    // Spill using target interface.
295    I = EntryBlock->begin();
296    if (!TII.spillCalleeSavedRegisters(*EntryBlock, I, CSI)) {
297      for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
298        // Add the callee-saved register as live-in.
299        // It's killed at the spill.
300        EntryBlock->addLiveIn(CSI[i].getReg());
301
302        // Insert the spill to the stack frame.
303        TII.storeRegToStackSlot(*EntryBlock, I, CSI[i].getReg(), true,
304                                CSI[i].getFrameIdx(), CSI[i].getRegClass());
305      }
306    }
307
308    // Restore using target interface.
309    for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) {
310      MachineBasicBlock* MBB = ReturnBlocks[ri];
311      I = MBB->end(); --I;
312
313      // Skip over all terminator instructions, which are part of the return
314      // sequence.
315      MachineBasicBlock::iterator I2 = I;
316      while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator())
317        I = I2;
318
319      bool AtStart = I == MBB->begin();
320      MachineBasicBlock::iterator BeforeI = I;
321      if (!AtStart)
322        --BeforeI;
323
324      // Restore all registers immediately before the return and any
325      // terminators that preceed it.
326      if (!TII.restoreCalleeSavedRegisters(*MBB, I, CSI)) {
327        for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
328          TII.loadRegFromStackSlot(*MBB, I, CSI[i].getReg(),
329                                   CSI[i].getFrameIdx(),
330                                   CSI[i].getRegClass());
331          assert(I != MBB->begin() &&
332                 "loadRegFromStackSlot didn't insert any code!");
333          // Insert in reverse order.  loadRegFromStackSlot can insert
334          // multiple instructions.
335          if (AtStart)
336            I = MBB->begin();
337          else {
338            I = BeforeI;
339            ++I;
340          }
341        }
342      }
343    }
344    return;
345  }
346
347  // Insert spills.
348  std::vector<CalleeSavedInfo> blockCSI;
349  for (CSRegBlockMap::iterator BI = CSRSave.begin(),
350         BE = CSRSave.end(); BI != BE; ++BI) {
351    MachineBasicBlock* MBB = BI->first;
352    CSRegSet save = BI->second;
353
354    if (save.empty())
355      continue;
356
357    blockCSI.clear();
358    for (CSRegSet::iterator RI = save.begin(),
359           RE = save.end(); RI != RE; ++RI) {
360      blockCSI.push_back(CSI[*RI]);
361    }
362    assert(blockCSI.size() > 0 &&
363           "Could not collect callee saved register info");
364
365    I = MBB->begin();
366
367    // When shrink wrapping, use stack slot stores/loads.
368    for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) {
369      // Add the callee-saved register as live-in.
370      // It's killed at the spill.
371      MBB->addLiveIn(blockCSI[i].getReg());
372
373      // Insert the spill to the stack frame.
374      TII.storeRegToStackSlot(*MBB, I, blockCSI[i].getReg(),
375                              true,
376                              blockCSI[i].getFrameIdx(),
377                              blockCSI[i].getRegClass());
378    }
379  }
380
381  for (CSRegBlockMap::iterator BI = CSRRestore.begin(),
382         BE = CSRRestore.end(); BI != BE; ++BI) {
383    MachineBasicBlock* MBB = BI->first;
384    CSRegSet restore = BI->second;
385
386    if (restore.empty())
387      continue;
388
389    blockCSI.clear();
390    for (CSRegSet::iterator RI = restore.begin(),
391           RE = restore.end(); RI != RE; ++RI) {
392      blockCSI.push_back(CSI[*RI]);
393    }
394    assert(blockCSI.size() > 0 &&
395           "Could not find callee saved register info");
396
397    // If MBB is empty and needs restores, insert at the _beginning_.
398    if (MBB->empty()) {
399      I = MBB->begin();
400    } else {
401      I = MBB->end();
402      --I;
403
404      // Skip over all terminator instructions, which are part of the
405      // return sequence.
406      if (! I->getDesc().isTerminator()) {
407        ++I;
408      } else {
409        MachineBasicBlock::iterator I2 = I;
410        while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator())
411          I = I2;
412      }
413    }
414
415    bool AtStart = I == MBB->begin();
416    MachineBasicBlock::iterator BeforeI = I;
417    if (!AtStart)
418      --BeforeI;
419
420    // Restore all registers immediately before the return and any
421    // terminators that preceed it.
422    for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) {
423      TII.loadRegFromStackSlot(*MBB, I, blockCSI[i].getReg(),
424                               blockCSI[i].getFrameIdx(),
425                               blockCSI[i].getRegClass());
426      assert(I != MBB->begin() &&
427             "loadRegFromStackSlot didn't insert any code!");
428      // Insert in reverse order.  loadRegFromStackSlot can insert
429      // multiple instructions.
430      if (AtStart)
431        I = MBB->begin();
432      else {
433        I = BeforeI;
434        ++I;
435      }
436    }
437  }
438}
439
440/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
441static inline void
442AdjustStackOffset(MachineFrameInfo *FFI, int FrameIdx,
443                  bool StackGrowsDown, int64_t &Offset,
444                  unsigned &MaxAlign) {
445  // If the stack grows down, add the object size to find the lowest address.
446  if (StackGrowsDown)
447    Offset += FFI->getObjectSize(FrameIdx);
448
449  unsigned Align = FFI->getObjectAlignment(FrameIdx);
450
451  // If the alignment of this object is greater than that of the stack, then
452  // increase the stack alignment to match.
453  MaxAlign = std::max(MaxAlign, Align);
454
455  // Adjust to alignment boundary.
456  Offset = (Offset + Align - 1) / Align * Align;
457
458  if (StackGrowsDown) {
459    FFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset
460  } else {
461    FFI->setObjectOffset(FrameIdx, Offset);
462    Offset += FFI->getObjectSize(FrameIdx);
463  }
464}
465
466/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
467/// abstract stack objects.
468///
469void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
470  const TargetFrameInfo &TFI = *Fn.getTarget().getFrameInfo();
471
472  bool StackGrowsDown =
473    TFI.getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown;
474
475  // Loop over all of the stack objects, assigning sequential addresses...
476  MachineFrameInfo *FFI = Fn.getFrameInfo();
477
478  unsigned MaxAlign = 1;
479
480  // Start at the beginning of the local area.
481  // The Offset is the distance from the stack top in the direction
482  // of stack growth -- so it's always nonnegative.
483  int LocalAreaOffset = TFI.getOffsetOfLocalArea();
484  if (StackGrowsDown)
485    LocalAreaOffset = -LocalAreaOffset;
486  assert(LocalAreaOffset >= 0
487         && "Local area offset should be in direction of stack growth");
488  int64_t Offset = LocalAreaOffset;
489
490  // If there are fixed sized objects that are preallocated in the local area,
491  // non-fixed objects can't be allocated right at the start of local area.
492  // We currently don't support filling in holes in between fixed sized
493  // objects, so we adjust 'Offset' to point to the end of last fixed sized
494  // preallocated object.
495  for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
496    int64_t FixedOff;
497    if (StackGrowsDown) {
498      // The maximum distance from the stack pointer is at lower address of
499      // the object -- which is given by offset. For down growing stack
500      // the offset is negative, so we negate the offset to get the distance.
501      FixedOff = -FFI->getObjectOffset(i);
502    } else {
503      // The maximum distance from the start pointer is at the upper
504      // address of the object.
505      FixedOff = FFI->getObjectOffset(i) + FFI->getObjectSize(i);
506    }
507    if (FixedOff > Offset) Offset = FixedOff;
508  }
509
510  // First assign frame offsets to stack objects that are used to spill
511  // callee saved registers.
512  if (StackGrowsDown) {
513    for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
514      // If stack grows down, we need to add size of find the lowest
515      // address of the object.
516      Offset += FFI->getObjectSize(i);
517
518      unsigned Align = FFI->getObjectAlignment(i);
519      // If the alignment of this object is greater than that of the stack,
520      // then increase the stack alignment to match.
521      MaxAlign = std::max(MaxAlign, Align);
522      // Adjust to alignment boundary
523      Offset = (Offset+Align-1)/Align*Align;
524
525      FFI->setObjectOffset(i, -Offset);        // Set the computed offset
526    }
527  } else {
528    int MaxCSFI = MaxCSFrameIndex, MinCSFI = MinCSFrameIndex;
529    for (int i = MaxCSFI; i >= MinCSFI ; --i) {
530      unsigned Align = FFI->getObjectAlignment(i);
531      // If the alignment of this object is greater than that of the stack,
532      // then increase the stack alignment to match.
533      MaxAlign = std::max(MaxAlign, Align);
534      // Adjust to alignment boundary
535      Offset = (Offset+Align-1)/Align*Align;
536
537      FFI->setObjectOffset(i, Offset);
538      Offset += FFI->getObjectSize(i);
539    }
540  }
541
542  // Make sure the special register scavenging spill slot is closest to the
543  // frame pointer if a frame pointer is required.
544  const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
545  if (RS && RegInfo->hasFP(Fn) && !RegInfo->needsStackRealignment(Fn)) {
546    int SFI = RS->getScavengingFrameIndex();
547    if (SFI >= 0)
548      AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign);
549  }
550
551  // Make sure that the stack protector comes before the local variables on the
552  // stack.
553  if (FFI->getStackProtectorIndex() >= 0)
554    AdjustStackOffset(FFI, FFI->getStackProtectorIndex(), StackGrowsDown,
555                      Offset, MaxAlign);
556
557  // Then assign frame offsets to stack objects that are not used to spill
558  // callee saved registers.
559  for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
560    if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
561      continue;
562    if (RS && (int)i == RS->getScavengingFrameIndex())
563      continue;
564    if (FFI->isDeadObjectIndex(i))
565      continue;
566    if (FFI->getStackProtectorIndex() == (int)i)
567      continue;
568
569    AdjustStackOffset(FFI, i, StackGrowsDown, Offset, MaxAlign);
570  }
571
572  // Make sure the special register scavenging spill slot is closest to the
573  // stack pointer.
574  if (RS && (!RegInfo->hasFP(Fn) || RegInfo->needsStackRealignment(Fn))) {
575    int SFI = RS->getScavengingFrameIndex();
576    if (SFI >= 0)
577      AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign);
578  }
579
580  if (!RegInfo->targetHandlesStackFrameRounding()) {
581    // If we have reserved argument space for call sites in the function
582    // immediately on entry to the current function, count it as part of the
583    // overall stack size.
584    if (FFI->hasCalls() && RegInfo->hasReservedCallFrame(Fn))
585      Offset += FFI->getMaxCallFrameSize();
586
587    // Round up the size to a multiple of the alignment.  If the function has
588    // any calls or alloca's, align to the target's StackAlignment value to
589    // ensure that the callee's frame or the alloca data is suitably aligned;
590    // otherwise, for leaf functions, align to the TransientStackAlignment
591    // value.
592    unsigned StackAlign;
593    if (FFI->hasCalls() || FFI->hasVarSizedObjects() ||
594        (RegInfo->needsStackRealignment(Fn) && FFI->getObjectIndexEnd() != 0))
595      StackAlign = TFI.getStackAlignment();
596    else
597      StackAlign = TFI.getTransientStackAlignment();
598    // If the frame pointer is eliminated, all frame offsets will be relative
599    // to SP not FP; align to MaxAlign so this works.
600    StackAlign = std::max(StackAlign, MaxAlign);
601    unsigned AlignMask = StackAlign - 1;
602    Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
603  }
604
605  // Update frame info to pretend that this is part of the stack...
606  FFI->setStackSize(Offset - LocalAreaOffset);
607
608  // Remember the required stack alignment in case targets need it to perform
609  // dynamic stack alignment.
610  if (MaxAlign > FFI->getMaxAlignment())
611    FFI->setMaxAlignment(MaxAlign);
612}
613
614
615/// insertPrologEpilogCode - Scan the function for modified callee saved
616/// registers, insert spill code for these callee saved registers, then add
617/// prolog and epilog code to the function.
618///
619void PEI::insertPrologEpilogCode(MachineFunction &Fn) {
620  const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
621
622  // Add prologue to the function...
623  TRI->emitPrologue(Fn);
624
625  // Add epilogue to restore the callee-save registers in each exiting block
626  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
627    // If last instruction is a return instruction, add an epilogue
628    if (!I->empty() && I->back().getDesc().isReturn())
629      TRI->emitEpilogue(Fn, *I);
630  }
631}
632
633
634/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
635/// register references and actual offsets.
636///
637void PEI::replaceFrameIndices(MachineFunction &Fn) {
638  if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do?
639
640  const TargetMachine &TM = Fn.getTarget();
641  assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!");
642  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
643  const TargetFrameInfo *TFI = TM.getFrameInfo();
644  bool StackGrowsDown =
645    TFI->getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown;
646  int FrameSetupOpcode   = TRI.getCallFrameSetupOpcode();
647  int FrameDestroyOpcode = TRI.getCallFrameDestroyOpcode();
648
649  for (MachineFunction::iterator BB = Fn.begin(),
650         E = Fn.end(); BB != E; ++BB) {
651    int SPAdj = 0;  // SP offset due to call frame setup / destroy.
652    if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB);
653
654    for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
655
656      if (I->getOpcode() == FrameSetupOpcode ||
657          I->getOpcode() == FrameDestroyOpcode) {
658        // Remember how much SP has been adjusted to create the call
659        // frame.
660        int Size = I->getOperand(0).getImm();
661
662        if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) ||
663            (StackGrowsDown && I->getOpcode() == FrameDestroyOpcode))
664          Size = -Size;
665
666        SPAdj += Size;
667
668        MachineBasicBlock::iterator PrevI = BB->end();
669        if (I != BB->begin()) PrevI = prior(I);
670        TRI.eliminateCallFramePseudoInstr(Fn, *BB, I);
671
672        // Visit the instructions created by eliminateCallFramePseudoInstr().
673        if (PrevI == BB->end())
674          I = BB->begin();     // The replaced instr was the first in the block.
675        else
676          I = next(PrevI);
677        continue;
678      }
679
680      MachineInstr *MI = I;
681      bool DoIncr = true;
682      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
683        if (MI->getOperand(i).isFI()) {
684          // Some instructions (e.g. inline asm instructions) can have
685          // multiple frame indices and/or cause eliminateFrameIndex
686          // to insert more than one instruction. We need the register
687          // scavenger to go through all of these instructions so that
688          // it can update its register information. We keep the
689          // iterator at the point before insertion so that we can
690          // revisit them in full.
691          bool AtBeginning = (I == BB->begin());
692          if (!AtBeginning) --I;
693
694          // If this instruction has a FrameIndex operand, we need to
695          // use that target machine register info object to eliminate
696          // it.
697          int Value;
698          unsigned VReg =
699            TRI.eliminateFrameIndex(MI, SPAdj, &Value,
700                                    FrameIndexVirtualScavenging ?  NULL : RS);
701          if (VReg) {
702            assert (FrameIndexVirtualScavenging &&
703                    "Not scavenging, but virtual returned from "
704                    "eliminateFrameIndex()!");
705            FrameConstantRegMap[VReg] = FrameConstantEntry(Value, SPAdj);
706          }
707
708          // Reset the iterator if we were at the beginning of the BB.
709          if (AtBeginning) {
710            I = BB->begin();
711            DoIncr = false;
712          }
713
714          MI = 0;
715          break;
716        }
717
718      if (DoIncr && I != BB->end()) ++I;
719
720      // Update register states.
721      if (RS && !FrameIndexVirtualScavenging && MI) RS->forward(MI);
722    }
723
724    assert(SPAdj == 0 && "Unbalanced call frame setup / destroy pairs?");
725  }
726}
727
728/// findLastUseReg - find the killing use of the specified register within
729/// the instruciton range. Return the operand number of the kill in Operand.
730static MachineBasicBlock::iterator
731findLastUseReg(MachineBasicBlock::iterator I, MachineBasicBlock::iterator ME,
732               unsigned Reg) {
733  // Scan forward to find the last use of this virtual register
734  for (++I; I != ME; ++I) {
735    MachineInstr *MI = I;
736    bool isDefInsn = false;
737    bool isKillInsn = false;
738    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
739      if (MI->getOperand(i).isReg()) {
740        unsigned OpReg = MI->getOperand(i).getReg();
741        if (OpReg == 0 || !TargetRegisterInfo::isVirtualRegister(OpReg))
742          continue;
743        assert (OpReg == Reg
744                && "overlapping use of scavenged index register!");
745        // If this is the killing use, we have a candidate.
746        if (MI->getOperand(i).isKill())
747          isKillInsn = true;
748        else if (MI->getOperand(i).isDef())
749          isDefInsn = true;
750      }
751    if (isKillInsn && !isDefInsn)
752      return I;
753  }
754  // If we hit the end of the basic block, there was no kill of
755  // the virtual register, which is wrong.
756  assert (0 && "scavenged index register never killed!");
757  return ME;
758}
759
760/// scavengeFrameVirtualRegs - Replace all frame index virtual registers
761/// with physical registers. Use the register scavenger to find an
762/// appropriate register to use.
763void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) {
764  // Run through the instructions and find any virtual registers.
765  for (MachineFunction::iterator BB = Fn.begin(),
766       E = Fn.end(); BB != E; ++BB) {
767    RS->enterBasicBlock(BB);
768
769    // FIXME: The logic flow in this function is still too convoluted.
770    // It needs a cleanup refactoring. Do that in preparation for tracking
771    // more than one scratch register value and using ranges to find
772    // available scratch registers.
773    unsigned CurrentVirtReg = 0;
774    unsigned CurrentScratchReg = 0;
775    bool havePrevValue = false;
776    int PrevValue = 0;
777    MachineInstr *PrevLastUseMI = NULL;
778    unsigned PrevLastUseOp = 0;
779    bool trackingCurrentValue = false;
780    int SPAdj = 0;
781    int Value = 0;
782
783    // The instruction stream may change in the loop, so check BB->end()
784    // directly.
785    for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
786      MachineInstr *MI = I;
787      bool isDefInsn = false;
788      bool isKillInsn = false;
789      bool clobbersScratchReg = false;
790      bool DoIncr = true;
791      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
792        if (MI->getOperand(i).isReg()) {
793          MachineOperand &MO = MI->getOperand(i);
794          unsigned Reg = MO.getReg();
795          if (Reg == 0)
796            continue;
797          if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
798            // If we have a previous scratch reg, check and see if anything
799            // here kills whatever value is in there.
800            if (Reg == CurrentScratchReg) {
801              if (MO.isUse()) {
802                // Two-address operands implicitly kill
803                if (MO.isKill() || MI->isRegTiedToDefOperand(i))
804                  clobbersScratchReg = true;
805              } else {
806                assert (MO.isDef());
807                clobbersScratchReg = true;
808              }
809            }
810            continue;
811          }
812          // If this is a def, remember that this insn defines the value.
813          // This lets us properly consider insns which re-use the scratch
814          // register, such as r2 = sub r2, #imm, in the middle of the
815          // scratch range.
816          if (MO.isDef())
817            isDefInsn = true;
818
819          // Have we already allocated a scratch register for this virtual?
820          if (Reg != CurrentVirtReg) {
821            // When we first encounter a new virtual register, it
822            // must be a definition.
823            assert(MI->getOperand(i).isDef() &&
824                   "frame index virtual missing def!");
825            // We can't have nested virtual register live ranges because
826            // there's only a guarantee of one scavenged register at a time.
827            assert (CurrentVirtReg == 0 &&
828                    "overlapping frame index virtual registers!");
829
830            // If the target gave us information about what's in the register,
831            // we can use that to re-use scratch regs.
832            DenseMap<unsigned, FrameConstantEntry>::iterator Entry =
833              FrameConstantRegMap.find(Reg);
834            trackingCurrentValue = Entry != FrameConstantRegMap.end();
835            if (trackingCurrentValue) {
836              SPAdj = (*Entry).second.second;
837              Value = (*Entry).second.first;
838            } else
839              SPAdj = Value = 0;
840
841            // If the scratch register from the last allocation is still
842            // available, see if the value matches. If it does, just re-use it.
843            if (trackingCurrentValue && havePrevValue && PrevValue == Value) {
844              // FIXME: This assumes that the instructions in the live range
845              // for the virtual register are exclusively for the purpose
846              // of populating the value in the register. That's reasonable
847              // for these frame index registers, but it's still a very, very
848              // strong assumption. rdar://7322732. Better would be to
849              // explicitly check each instruction in the range for references
850              // to the virtual register. Only delete those insns that
851              // touch the virtual register.
852
853              // Find the last use of the new virtual register. Remove all
854              // instruction between here and there, and update the current
855              // instruction to reference the last use insn instead.
856              MachineBasicBlock::iterator LastUseMI =
857                findLastUseReg(I, BB->end(), Reg);
858
859              // Remove all instructions up 'til the last use, since they're
860              // just calculating the value we already have.
861              BB->erase(I, LastUseMI);
862              MI = I = LastUseMI;
863
864              // Extend the live range of the scratch register
865              PrevLastUseMI->getOperand(PrevLastUseOp).setIsKill(false);
866              RS->setUsed(CurrentScratchReg);
867              CurrentVirtReg = Reg;
868
869              // We deleted the instruction we were scanning the operands of.
870              // Jump back to the instruction iterator loop. Don't increment
871              // past this instruction since we updated the iterator already.
872              DoIncr = false;
873              break;
874            }
875
876            // Scavenge a new scratch register
877            CurrentVirtReg = Reg;
878            const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(Reg);
879            CurrentScratchReg = RS->FindUnusedReg(RC);
880            if (CurrentScratchReg == 0)
881              // No register is "free". Scavenge a register.
882              CurrentScratchReg = RS->scavengeRegister(RC, I, SPAdj);
883
884            PrevValue = Value;
885          }
886          // replace this reference to the virtual register with the
887          // scratch register.
888          assert (CurrentScratchReg && "Missing scratch register!");
889          MI->getOperand(i).setReg(CurrentScratchReg);
890
891          if (MI->getOperand(i).isKill()) {
892            isKillInsn = true;
893            PrevLastUseOp = i;
894            PrevLastUseMI = MI;
895          }
896        }
897      }
898      // If this is the last use of the scratch, stop tracking it. The
899      // last use will be a kill operand in an instruction that does
900      // not also define the scratch register.
901      if (isKillInsn && !isDefInsn) {
902        CurrentVirtReg = 0;
903        havePrevValue = trackingCurrentValue;
904      }
905      // Similarly, notice if instruction clobbered the value in the
906      // register we're tracking for possible later reuse. This is noted
907      // above, but enforced here since the value is still live while we
908      // process the rest of the operands of the instruction.
909      if (clobbersScratchReg) {
910        havePrevValue = false;
911        CurrentScratchReg = 0;
912      }
913      if (DoIncr) {
914        RS->forward(I);
915        ++I;
916      }
917    }
918  }
919}
920