RegAllocBasic.cpp revision 38f6bd0fc8095ef79a89b3db15ff6dc734ac90e7
1//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RABasic function pass, which provides a minimal
11// implementation of the basic register allocator.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "LiveIntervalUnion.h"
17#include "RegAllocBase.h"
18#include "RenderMachineFunction.h"
19#include "Spiller.h"
20#include "VirtRegMap.h"
21#include "llvm/ADT/OwningPtr.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Function.h"
25#include "llvm/PassAnalysisSupport.h"
26#include "llvm/CodeGen/CalcSpillWeights.h"
27#include "llvm/CodeGen/LiveIntervalAnalysis.h"
28#include "llvm/CodeGen/LiveStackAnalysis.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/CodeGen/RegAllocRegistry.h"
35#include "llvm/CodeGen/RegisterCoalescer.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#ifndef NDEBUG
40#include "llvm/ADT/SparseBitVector.h"
41#endif
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Timer.h"
46
47#include <cstdlib>
48#include <queue>
49
50using namespace llvm;
51
52STATISTIC(NumAssigned     , "Number of registers assigned");
53STATISTIC(NumUnassigned   , "Number of registers unassigned");
54STATISTIC(NumNewQueued    , "Number of new live ranges queued");
55
56static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
57                                      createBasicRegisterAllocator);
58
59// Temporary verification option until we can put verification inside
60// MachineVerifier.
61static cl::opt<bool, true>
62VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
63               cl::desc("Verify during register allocation"));
64
65const char *RegAllocBase::TimerGroupName = "Register Allocation";
66bool RegAllocBase::VerifyEnabled = false;
67
68namespace {
69  struct CompSpillWeight {
70    bool operator()(LiveInterval *A, LiveInterval *B) const {
71      return A->weight < B->weight;
72    }
73  };
74}
75
76namespace {
77/// RABasic provides a minimal implementation of the basic register allocation
78/// algorithm. It prioritizes live virtual registers by spill weight and spills
79/// whenever a register is unavailable. This is not practical in production but
80/// provides a useful baseline both for measuring other allocators and comparing
81/// the speed of the basic algorithm against other styles of allocators.
82class RABasic : public MachineFunctionPass, public RegAllocBase
83{
84  // context
85  MachineFunction *MF;
86  BitVector ReservedRegs;
87
88  // analyses
89  LiveStacks *LS;
90  RenderMachineFunction *RMF;
91
92  // state
93  std::auto_ptr<Spiller> SpillerInstance;
94  std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
95                      CompSpillWeight> Queue;
96public:
97  RABasic();
98
99  /// Return the pass name.
100  virtual const char* getPassName() const {
101    return "Basic Register Allocator";
102  }
103
104  /// RABasic analysis usage.
105  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
106
107  virtual void releaseMemory();
108
109  virtual Spiller &spiller() { return *SpillerInstance; }
110
111  virtual float getPriority(LiveInterval *LI) { return LI->weight; }
112
113  virtual void enqueue(LiveInterval *LI) {
114    Queue.push(LI);
115  }
116
117  virtual LiveInterval *dequeue() {
118    if (Queue.empty())
119      return 0;
120    LiveInterval *LI = Queue.top();
121    Queue.pop();
122    return LI;
123  }
124
125  virtual unsigned selectOrSplit(LiveInterval &VirtReg,
126                                 SmallVectorImpl<LiveInterval*> &SplitVRegs);
127
128  /// Perform register allocation.
129  virtual bool runOnMachineFunction(MachineFunction &mf);
130
131  static char ID;
132};
133
134char RABasic::ID = 0;
135
136} // end anonymous namespace
137
138RABasic::RABasic(): MachineFunctionPass(ID) {
139  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
140  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
141  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
142  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
143  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
144  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
145  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
146  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
147  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
148  initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
149}
150
151void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
152  AU.setPreservesCFG();
153  AU.addRequired<AliasAnalysis>();
154  AU.addPreserved<AliasAnalysis>();
155  AU.addRequired<LiveIntervals>();
156  AU.addPreserved<SlotIndexes>();
157  if (StrongPHIElim)
158    AU.addRequiredID(StrongPHIEliminationID);
159  AU.addRequiredTransitive<RegisterCoalescer>();
160  AU.addRequired<CalculateSpillWeights>();
161  AU.addRequired<LiveStacks>();
162  AU.addPreserved<LiveStacks>();
163  AU.addRequiredID(MachineDominatorsID);
164  AU.addPreservedID(MachineDominatorsID);
165  AU.addRequired<MachineLoopInfo>();
166  AU.addPreserved<MachineLoopInfo>();
167  AU.addRequired<VirtRegMap>();
168  AU.addPreserved<VirtRegMap>();
169  DEBUG(AU.addRequired<RenderMachineFunction>());
170  MachineFunctionPass::getAnalysisUsage(AU);
171}
172
173void RABasic::releaseMemory() {
174  SpillerInstance.reset(0);
175  RegAllocBase::releaseMemory();
176}
177
178#ifndef NDEBUG
179// Verify each LiveIntervalUnion.
180void RegAllocBase::verify() {
181  LiveVirtRegBitSet VisitedVRegs;
182  OwningArrayPtr<LiveVirtRegBitSet>
183    unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
184
185  // Verify disjoint unions.
186  for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
187    DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
188    LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
189    PhysReg2LiveUnion[PhysReg].verify(VRegs);
190    // Union + intersection test could be done efficiently in one pass, but
191    // don't add a method to SparseBitVector unless we really need it.
192    assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
193    VisitedVRegs |= VRegs;
194  }
195
196  // Verify vreg coverage.
197  for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
198       liItr != liEnd; ++liItr) {
199    unsigned reg = liItr->first;
200    if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
201    if (!VRM->hasPhys(reg)) continue; // spilled?
202    unsigned PhysReg = VRM->getPhys(reg);
203    if (!unionVRegs[PhysReg].test(reg)) {
204      dbgs() << "LiveVirtReg " << reg << " not in union " <<
205        TRI->getName(PhysReg) << "\n";
206      llvm_unreachable("unallocated live vreg");
207    }
208  }
209  // FIXME: I'm not sure how to verify spilled intervals.
210}
211#endif //!NDEBUG
212
213//===----------------------------------------------------------------------===//
214//                         RegAllocBase Implementation
215//===----------------------------------------------------------------------===//
216
217// Instantiate a LiveIntervalUnion for each physical register.
218void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
219                                        unsigned NRegs) {
220  NumRegs = NRegs;
221  Array =
222    static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
223  for (unsigned r = 0; r != NRegs; ++r)
224    new(Array + r) LiveIntervalUnion(r, allocator);
225}
226
227void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
228  NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
229  TRI = &vrm.getTargetRegInfo();
230  MRI = &vrm.getRegInfo();
231  VRM = &vrm;
232  LIS = &lis;
233  PhysReg2LiveUnion.init(UnionAllocator, TRI->getNumRegs());
234  // Cache an interferece query for each physical reg
235  Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
236}
237
238void RegAllocBase::LiveUnionArray::clear() {
239  if (!Array)
240    return;
241  for (unsigned r = 0; r != NumRegs; ++r)
242    Array[r].~LiveIntervalUnion();
243  free(Array);
244  NumRegs =  0;
245  Array = 0;
246}
247
248void RegAllocBase::releaseMemory() {
249  PhysReg2LiveUnion.clear();
250}
251
252// Visit all the live registers. If they are already assigned to a physical
253// register, unify them with the corresponding LiveIntervalUnion, otherwise push
254// them on the priority queue for later assignment.
255void RegAllocBase::seedLiveRegs() {
256  for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
257    unsigned RegNum = I->first;
258    LiveInterval &VirtReg = *I->second;
259    if (TargetRegisterInfo::isPhysicalRegister(RegNum))
260      PhysReg2LiveUnion[RegNum].unify(VirtReg);
261    else
262      enqueue(&VirtReg);
263  }
264}
265
266void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
267  DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
268               << " to " << PrintReg(PhysReg, TRI) << '\n');
269  assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
270  VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
271  PhysReg2LiveUnion[PhysReg].unify(VirtReg);
272  ++NumAssigned;
273}
274
275void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
276  DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
277               << " from " << PrintReg(PhysReg, TRI) << '\n');
278  assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
279  PhysReg2LiveUnion[PhysReg].extract(VirtReg);
280  VRM->clearVirt(VirtReg.reg);
281  ++NumUnassigned;
282}
283
284// Top-level driver to manage the queue of unassigned VirtRegs and call the
285// selectOrSplit implementation.
286void RegAllocBase::allocatePhysRegs() {
287  seedLiveRegs();
288
289  // Continue assigning vregs one at a time to available physical registers.
290  while (LiveInterval *VirtReg = dequeue()) {
291    // selectOrSplit requests the allocator to return an available physical
292    // register if possible and populate a list of new live intervals that
293    // result from splitting.
294    DEBUG(dbgs() << "\nselectOrSplit "
295                 << MRI->getRegClass(VirtReg->reg)->getName()
296                 << ':' << *VirtReg << '\n');
297    typedef SmallVector<LiveInterval*, 4> VirtRegVec;
298    VirtRegVec SplitVRegs;
299    unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
300
301    if (AvailablePhysReg)
302      assign(*VirtReg, AvailablePhysReg);
303
304    for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
305         I != E; ++I) {
306      LiveInterval *SplitVirtReg = *I;
307      if (SplitVirtReg->empty()) continue;
308      DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
309      assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
310             "expect split value in virtual register");
311      enqueue(SplitVirtReg);
312      ++NumNewQueued;
313    }
314  }
315}
316
317// Check if this live virtual register interferes with a physical register. If
318// not, then check for interference on each register that aliases with the
319// physical register. Return the interfering register.
320unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
321                                                unsigned PhysReg) {
322  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
323    if (query(VirtReg, *AliasI).checkInterference())
324      return *AliasI;
325  return 0;
326}
327
328// Helper for spillInteferences() that spills all interfering vregs currently
329// assigned to this physical register.
330void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
331                            SmallVectorImpl<LiveInterval*> &SplitVRegs) {
332  LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
333  assert(Q.seenAllInterferences() && "need collectInterferences()");
334  const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
335
336  for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
337         E = PendingSpills.end(); I != E; ++I) {
338    LiveInterval &SpilledVReg = **I;
339    DEBUG(dbgs() << "extracting from " <<
340          TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
341
342    // Deallocate the interfering vreg by removing it from the union.
343    // A LiveInterval instance may not be in a union during modification!
344    unassign(SpilledVReg, PhysReg);
345
346    // Spill the extracted interval.
347    spiller().spill(&SpilledVReg, SplitVRegs, &PendingSpills);
348  }
349  // After extracting segments, the query's results are invalid. But keep the
350  // contents valid until we're done accessing pendingSpills.
351  Q.clear();
352}
353
354// Spill or split all live virtual registers currently unified under PhysReg
355// that interfere with VirtReg. The newly spilled or split live intervals are
356// returned by appending them to SplitVRegs.
357bool
358RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
359                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
360  // Record each interference and determine if all are spillable before mutating
361  // either the union or live intervals.
362  unsigned NumInterferences = 0;
363  // Collect interferences assigned to any alias of the physical register.
364  for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
365    LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
366    NumInterferences += QAlias.collectInterferingVRegs();
367    if (QAlias.seenUnspillableVReg()) {
368      return false;
369    }
370  }
371  DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
372        " interferences with " << VirtReg << "\n");
373  assert(NumInterferences > 0 && "expect interference");
374
375  // Spill each interfering vreg allocated to PhysReg or an alias.
376  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
377    spillReg(VirtReg, *AliasI, SplitVRegs);
378  return true;
379}
380
381// Add newly allocated physical registers to the MBB live in sets.
382void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
383  NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
384  typedef SmallVector<MachineBasicBlock*, 8> MBBVec;
385  MBBVec liveInMBBs;
386  MachineBasicBlock &entryMBB = *MF->begin();
387
388  for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
389    LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
390    if (LiveUnion.empty())
391      continue;
392    for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(); SI.valid();
393         ++SI) {
394
395      // Find the set of basic blocks which this range is live into...
396      liveInMBBs.clear();
397      if (!LIS->findLiveInMBBs(SI.start(), SI.stop(), liveInMBBs)) continue;
398
399      // And add the physreg for this interval to their live-in sets.
400      for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end();
401           I != E; ++I) {
402        MachineBasicBlock *MBB = *I;
403        if (MBB == &entryMBB) continue;
404        if (MBB->isLiveIn(PhysReg)) continue;
405        MBB->addLiveIn(PhysReg);
406      }
407    }
408  }
409}
410
411
412//===----------------------------------------------------------------------===//
413//                         RABasic Implementation
414//===----------------------------------------------------------------------===//
415
416// Driver for the register assignment and splitting heuristics.
417// Manages iteration over the LiveIntervalUnions.
418//
419// This is a minimal implementation of register assignment and splitting that
420// spills whenever we run out of registers.
421//
422// selectOrSplit can only be called once per live virtual register. We then do a
423// single interference test for each register the correct class until we find an
424// available register. So, the number of interference tests in the worst case is
425// |vregs| * |machineregs|. And since the number of interference tests is
426// minimal, there is no value in caching them outside the scope of
427// selectOrSplit().
428unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
429                                SmallVectorImpl<LiveInterval*> &SplitVRegs) {
430  // Populate a list of physical register spill candidates.
431  SmallVector<unsigned, 8> PhysRegSpillCands;
432
433  // Check for an available register in this class.
434  const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg);
435
436  for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
437         E = TRC->allocation_order_end(*MF);
438       I != E; ++I) {
439
440    unsigned PhysReg = *I;
441    if (ReservedRegs.test(PhysReg)) continue;
442
443    // Check interference and as a side effect, intialize queries for this
444    // VirtReg and its aliases.
445    unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
446    if (interfReg == 0) {
447      // Found an available register.
448      return PhysReg;
449    }
450    LiveInterval *interferingVirtReg =
451      Queries[interfReg].firstInterference().liveUnionPos().value();
452
453    // The current VirtReg must either be spillable, or one of its interferences
454    // must have less spill weight.
455    if (interferingVirtReg->weight < VirtReg.weight ) {
456      PhysRegSpillCands.push_back(PhysReg);
457    }
458  }
459  // Try to spill another interfering reg with less spill weight.
460  for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
461         PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
462
463    if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
464
465    assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
466           "Interference after spill.");
467    // Tell the caller to allocate to this newly freed physical register.
468    return *PhysRegI;
469  }
470  // No other spill candidates were found, so spill the current VirtReg.
471  DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
472  spiller().spill(&VirtReg, SplitVRegs, 0);
473
474  // The live virtual register requesting allocation was spilled, so tell
475  // the caller not to allocate anything during this round.
476  return 0;
477}
478
479bool RABasic::runOnMachineFunction(MachineFunction &mf) {
480  DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
481               << "********** Function: "
482               << ((Value*)mf.getFunction())->getName() << '\n');
483
484  MF = &mf;
485  DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
486
487  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
488
489  ReservedRegs = TRI->getReservedRegs(*MF);
490
491  SpillerInstance.reset(createSpiller(*this, *MF, *VRM));
492
493  allocatePhysRegs();
494
495  addMBBLiveIns(MF);
496
497  // Diagnostic output before rewriting
498  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
499
500  // optional HTML output
501  DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
502
503  // FIXME: Verification currently must run before VirtRegRewriter. We should
504  // make the rewriter a separate pass and override verifyAnalysis instead. When
505  // that happens, verification naturally falls under VerifyMachineCode.
506#ifndef NDEBUG
507  if (VerifyEnabled) {
508    // Verify accuracy of LiveIntervals. The standard machine code verifier
509    // ensures that each LiveIntervals covers all uses of the virtual reg.
510
511    // FIXME: MachineVerifier is badly broken when using the standard
512    // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
513    // inline spiller, some tests fail to verify because the coalescer does not
514    // always generate verifiable code.
515    MF->verify(this, "In RABasic::verify");
516
517    // Verify that LiveIntervals are partitioned into unions and disjoint within
518    // the unions.
519    verify();
520  }
521#endif // !NDEBUG
522
523  // Run rewriter
524  VRM->rewrite(LIS->getSlotIndexes());
525
526  // The pass output is in VirtRegMap. Release all the transient data.
527  releaseMemory();
528
529  return true;
530}
531
532FunctionPass* llvm::createBasicRegisterAllocator()
533{
534  return new RABasic();
535}
536