RegAllocBasic.cpp revision 96f678f2d78ae9a2a8c99ca612bf59c056b36797
1//===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RABasic function pass, which provides a minimal
11// implementation of the basic register allocator.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "RegAllocBase.h"
17#include "LiveDebugVariables.h"
18#include "LiveRangeEdit.h"
19#include "RenderMachineFunction.h"
20#include "Spiller.h"
21#include "VirtRegMap.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Function.h"
24#include "llvm/PassAnalysisSupport.h"
25#include "llvm/CodeGen/CalcSpillWeights.h"
26#include "llvm/CodeGen/LiveIntervalAnalysis.h"
27#include "llvm/CodeGen/LiveStackAnalysis.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineLoopInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/CodeGen/RegAllocRegistry.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetRegisterInfo.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39
40#include <cstdlib>
41#include <queue>
42
43using namespace llvm;
44
45static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
46                                      createBasicRegisterAllocator);
47
48namespace {
49  struct CompSpillWeight {
50    bool operator()(LiveInterval *A, LiveInterval *B) const {
51      return A->weight < B->weight;
52    }
53  };
54}
55
56namespace {
57/// RABasic provides a minimal implementation of the basic register allocation
58/// algorithm. It prioritizes live virtual registers by spill weight and spills
59/// whenever a register is unavailable. This is not practical in production but
60/// provides a useful baseline both for measuring other allocators and comparing
61/// the speed of the basic algorithm against other styles of allocators.
62class RABasic : public MachineFunctionPass, public RegAllocBase
63{
64  // context
65  MachineFunction *MF;
66
67  // analyses
68  LiveStacks *LS;
69  RenderMachineFunction *RMF;
70
71  // state
72  std::auto_ptr<Spiller> SpillerInstance;
73  std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
74                      CompSpillWeight> Queue;
75public:
76  RABasic();
77
78  /// Return the pass name.
79  virtual const char* getPassName() const {
80    return "Basic Register Allocator";
81  }
82
83  /// RABasic analysis usage.
84  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
85
86  virtual void releaseMemory();
87
88  virtual Spiller &spiller() { return *SpillerInstance; }
89
90  virtual float getPriority(LiveInterval *LI) { return LI->weight; }
91
92  virtual void enqueue(LiveInterval *LI) {
93    Queue.push(LI);
94  }
95
96  virtual LiveInterval *dequeue() {
97    if (Queue.empty())
98      return 0;
99    LiveInterval *LI = Queue.top();
100    Queue.pop();
101    return LI;
102  }
103
104  virtual unsigned selectOrSplit(LiveInterval &VirtReg,
105                                 SmallVectorImpl<LiveInterval*> &SplitVRegs);
106
107  /// Perform register allocation.
108  virtual bool runOnMachineFunction(MachineFunction &mf);
109
110  // Helper for spilling all live virtual registers currently unified under preg
111  // that interfere with the most recently queried lvr.  Return true if spilling
112  // was successful, and append any new spilled/split intervals to splitLVRs.
113  bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
114                          SmallVectorImpl<LiveInterval*> &SplitVRegs);
115
116  void spillReg(LiveInterval &VirtReg, unsigned PhysReg,
117                SmallVectorImpl<LiveInterval*> &SplitVRegs);
118
119  static char ID;
120};
121
122char RABasic::ID = 0;
123
124} // end anonymous namespace
125
126RABasic::RABasic(): MachineFunctionPass(ID) {
127  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
128  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
129  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
130  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
131  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
132  initializeMachineSchedulerPassPass(*PassRegistry::getPassRegistry());
133  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
134  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
135  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
136  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
137  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
138  initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
139}
140
141void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
142  AU.setPreservesCFG();
143  AU.addRequired<AliasAnalysis>();
144  AU.addPreserved<AliasAnalysis>();
145  AU.addRequired<LiveIntervals>();
146  AU.addPreserved<SlotIndexes>();
147  AU.addRequired<LiveDebugVariables>();
148  AU.addPreserved<LiveDebugVariables>();
149  if (StrongPHIElim)
150    AU.addRequiredID(StrongPHIEliminationID);
151  AU.addRequiredTransitiveID(RegisterCoalescerPassID);
152  if (EnableMachineSched)
153    AU.addRequiredID(MachineSchedulerPassID);
154  AU.addRequired<CalculateSpillWeights>();
155  AU.addRequired<LiveStacks>();
156  AU.addPreserved<LiveStacks>();
157  AU.addRequiredID(MachineDominatorsID);
158  AU.addPreservedID(MachineDominatorsID);
159  AU.addRequired<MachineLoopInfo>();
160  AU.addPreserved<MachineLoopInfo>();
161  AU.addRequired<VirtRegMap>();
162  AU.addPreserved<VirtRegMap>();
163  DEBUG(AU.addRequired<RenderMachineFunction>());
164  MachineFunctionPass::getAnalysisUsage(AU);
165}
166
167void RABasic::releaseMemory() {
168  SpillerInstance.reset(0);
169  RegAllocBase::releaseMemory();
170}
171
172// Helper for spillInterferences() that spills all interfering vregs currently
173// assigned to this physical register.
174void RABasic::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
175                       SmallVectorImpl<LiveInterval*> &SplitVRegs) {
176  LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
177  assert(Q.seenAllInterferences() && "need collectInterferences()");
178  const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
179
180  for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
181         E = PendingSpills.end(); I != E; ++I) {
182    LiveInterval &SpilledVReg = **I;
183    DEBUG(dbgs() << "extracting from " <<
184          TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
185
186    // Deallocate the interfering vreg by removing it from the union.
187    // A LiveInterval instance may not be in a union during modification!
188    unassign(SpilledVReg, PhysReg);
189
190    // Spill the extracted interval.
191    LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills);
192    spiller().spill(LRE);
193  }
194  // After extracting segments, the query's results are invalid. But keep the
195  // contents valid until we're done accessing pendingSpills.
196  Q.clear();
197}
198
199// Spill or split all live virtual registers currently unified under PhysReg
200// that interfere with VirtReg. The newly spilled or split live intervals are
201// returned by appending them to SplitVRegs.
202bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
203                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
204  // Record each interference and determine if all are spillable before mutating
205  // either the union or live intervals.
206  unsigned NumInterferences = 0;
207  // Collect interferences assigned to any alias of the physical register.
208  for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
209    LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
210    NumInterferences += QAlias.collectInterferingVRegs();
211    if (QAlias.seenUnspillableVReg()) {
212      return false;
213    }
214  }
215  DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
216        " interferences with " << VirtReg << "\n");
217  assert(NumInterferences > 0 && "expect interference");
218
219  // Spill each interfering vreg allocated to PhysReg or an alias.
220  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
221    spillReg(VirtReg, *AliasI, SplitVRegs);
222  return true;
223}
224
225// Driver for the register assignment and splitting heuristics.
226// Manages iteration over the LiveIntervalUnions.
227//
228// This is a minimal implementation of register assignment and splitting that
229// spills whenever we run out of registers.
230//
231// selectOrSplit can only be called once per live virtual register. We then do a
232// single interference test for each register the correct class until we find an
233// available register. So, the number of interference tests in the worst case is
234// |vregs| * |machineregs|. And since the number of interference tests is
235// minimal, there is no value in caching them outside the scope of
236// selectOrSplit().
237unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
238                                SmallVectorImpl<LiveInterval*> &SplitVRegs) {
239  // Populate a list of physical register spill candidates.
240  SmallVector<unsigned, 8> PhysRegSpillCands;
241
242  // Check for an available register in this class.
243  ArrayRef<unsigned> Order =
244    RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
245  for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
246       ++I) {
247    unsigned PhysReg = *I;
248
249    // Check interference and as a side effect, intialize queries for this
250    // VirtReg and its aliases.
251    unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
252    if (interfReg == 0) {
253      // Found an available register.
254      return PhysReg;
255    }
256    LiveIntervalUnion::Query &IntfQ = query(VirtReg, interfReg);
257    IntfQ.collectInterferingVRegs(1);
258    LiveInterval *interferingVirtReg = IntfQ.interferingVRegs().front();
259
260    // The current VirtReg must either be spillable, or one of its interferences
261    // must have less spill weight.
262    if (interferingVirtReg->weight < VirtReg.weight ) {
263      PhysRegSpillCands.push_back(PhysReg);
264    }
265  }
266  // Try to spill another interfering reg with less spill weight.
267  for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
268         PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
269
270    if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
271
272    assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
273           "Interference after spill.");
274    // Tell the caller to allocate to this newly freed physical register.
275    return *PhysRegI;
276  }
277
278  // No other spill candidates were found, so spill the current VirtReg.
279  DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
280  if (!VirtReg.isSpillable())
281    return ~0u;
282  LiveRangeEdit LRE(VirtReg, SplitVRegs);
283  spiller().spill(LRE);
284
285  // The live virtual register requesting allocation was spilled, so tell
286  // the caller not to allocate anything during this round.
287  return 0;
288}
289
290bool RABasic::runOnMachineFunction(MachineFunction &mf) {
291  DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
292               << "********** Function: "
293               << ((Value*)mf.getFunction())->getName() << '\n');
294
295  MF = &mf;
296  DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
297
298  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
299  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
300
301  allocatePhysRegs();
302
303  addMBBLiveIns(MF);
304
305  // Diagnostic output before rewriting
306  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
307
308  // optional HTML output
309  DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
310
311  // FIXME: Verification currently must run before VirtRegRewriter. We should
312  // make the rewriter a separate pass and override verifyAnalysis instead. When
313  // that happens, verification naturally falls under VerifyMachineCode.
314#ifndef NDEBUG
315  if (VerifyEnabled) {
316    // Verify accuracy of LiveIntervals. The standard machine code verifier
317    // ensures that each LiveIntervals covers all uses of the virtual reg.
318
319    // FIXME: MachineVerifier is badly broken when using the standard
320    // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
321    // inline spiller, some tests fail to verify because the coalescer does not
322    // always generate verifiable code.
323    MF->verify(this, "In RABasic::verify");
324
325    // Verify that LiveIntervals are partitioned into unions and disjoint within
326    // the unions.
327    verify();
328  }
329#endif // !NDEBUG
330
331  // Run rewriter
332  VRM->rewrite(LIS->getSlotIndexes());
333
334  // Write out new DBG_VALUE instructions.
335  getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
336
337  // The pass output is in VirtRegMap. Release all the transient data.
338  releaseMemory();
339
340  return true;
341}
342
343FunctionPass* llvm::createBasicRegisterAllocator()
344{
345  return new RABasic();
346}
347