RegAllocFast.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This register allocator allocates registers to a basic block at a time,
11// attempting to keep values in registers and reusing registers as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/IndexedMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/SparseSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/RegAllocRegistry.h"
30#include "llvm/CodeGen/RegisterClassInfo.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NumStores, "Number of stores added");
42STATISTIC(NumLoads , "Number of loads added");
43STATISTIC(NumCopies, "Number of copies coalesced");
44
45static RegisterRegAlloc
46  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
47
48namespace {
49  class RAFast : public MachineFunctionPass {
50  public:
51    static char ID;
52    RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
53               isBulkSpilling(false) {}
54  private:
55    const TargetMachine *TM;
56    MachineFunction *MF;
57    MachineRegisterInfo *MRI;
58    const TargetRegisterInfo *TRI;
59    const TargetInstrInfo *TII;
60    RegisterClassInfo RegClassInfo;
61
62    // Basic block currently being allocated.
63    MachineBasicBlock *MBB;
64
65    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66    // values are spilled.
67    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
68
69    // Everything we know about a live virtual register.
70    struct LiveReg {
71      MachineInstr *LastUse;    // Last instr to use reg.
72      unsigned VirtReg;         // Virtual register number.
73      unsigned PhysReg;         // Currently held here.
74      unsigned short LastOpNum; // OpNum on LastUse.
75      bool Dirty;               // Register needs spill.
76
77      explicit LiveReg(unsigned v)
78        : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
79
80      unsigned getSparseSetIndex() const {
81        return TargetRegisterInfo::virtReg2Index(VirtReg);
82      }
83    };
84
85    typedef SparseSet<LiveReg> LiveRegMap;
86
87    // LiveVirtRegs - This map contains entries for each virtual register
88    // that is currently available in a physical register.
89    LiveRegMap LiveVirtRegs;
90
91    DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
92
93    // RegState - Track the state of a physical register.
94    enum RegState {
95      // A disabled register is not available for allocation, but an alias may
96      // be in use. A register can only be moved out of the disabled state if
97      // all aliases are disabled.
98      regDisabled,
99
100      // A free register is not currently in use and can be allocated
101      // immediately without checking aliases.
102      regFree,
103
104      // A reserved register has been assigned explicitly (e.g., setting up a
105      // call parameter), and it remains reserved until it is used.
106      regReserved
107
108      // A register state may also be a virtual register number, indication that
109      // the physical register is currently allocated to a virtual register. In
110      // that case, LiveVirtRegs contains the inverse mapping.
111    };
112
113    // PhysRegState - One of the RegState enums, or a virtreg.
114    std::vector<unsigned> PhysRegState;
115
116    // Set of register units.
117    typedef SparseSet<unsigned> UsedInInstrSet;
118
119    // Set of register units that are used in the current instruction, and so
120    // cannot be allocated.
121    UsedInInstrSet UsedInInstr;
122
123    // Mark a physreg as used in this instruction.
124    void markRegUsedInInstr(unsigned PhysReg) {
125      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
126        UsedInInstr.insert(*Units);
127    }
128
129    // Check if a physreg or any of its aliases are used in this instruction.
130    bool isRegUsedInInstr(unsigned PhysReg) const {
131      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
132        if (UsedInInstr.count(*Units))
133          return true;
134      return false;
135    }
136
137    // SkippedInstrs - Descriptors of instructions whose clobber list was
138    // ignored because all registers were spilled. It is still necessary to
139    // mark all the clobbered registers as used by the function.
140    SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
141
142    // isBulkSpilling - This flag is set when LiveRegMap will be cleared
143    // completely after spilling all live registers. LiveRegMap entries should
144    // not be erased.
145    bool isBulkSpilling;
146
147    enum : unsigned {
148      spillClean = 1,
149      spillDirty = 100,
150      spillImpossible = ~0u
151    };
152  public:
153    const char *getPassName() const override {
154      return "Fast Register Allocator";
155    }
156
157    void getAnalysisUsage(AnalysisUsage &AU) const override {
158      AU.setPreservesCFG();
159      MachineFunctionPass::getAnalysisUsage(AU);
160    }
161
162  private:
163    bool runOnMachineFunction(MachineFunction &Fn) override;
164    void AllocateBasicBlock();
165    void handleThroughOperands(MachineInstr *MI,
166                               SmallVectorImpl<unsigned> &VirtDead);
167    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
168    bool isLastUseOfLocalReg(MachineOperand&);
169
170    void addKillFlag(const LiveReg&);
171    void killVirtReg(LiveRegMap::iterator);
172    void killVirtReg(unsigned VirtReg);
173    void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
174    void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
175
176    void usePhysReg(MachineOperand&);
177    void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
178    unsigned calcSpillCost(unsigned PhysReg) const;
179    void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
180    LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
181      return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
182    }
183    LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
184      return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
185    }
186    LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
187    LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
188                                      unsigned Hint);
189    LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
190                                       unsigned VirtReg, unsigned Hint);
191    LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
192                                       unsigned VirtReg, unsigned Hint);
193    void spillAll(MachineBasicBlock::iterator MI);
194    bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
195  };
196  char RAFast::ID = 0;
197}
198
199/// getStackSpaceFor - This allocates space for the specified virtual register
200/// to be held on the stack.
201int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
202  // Find the location Reg would belong...
203  int SS = StackSlotForVirtReg[VirtReg];
204  if (SS != -1)
205    return SS;          // Already has space allocated?
206
207  // Allocate a new stack object for this spill location...
208  int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
209                                                            RC->getAlignment());
210
211  // Assign the slot.
212  StackSlotForVirtReg[VirtReg] = FrameIdx;
213  return FrameIdx;
214}
215
216/// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
217/// its virtual register, and it is guaranteed to be a block-local register.
218///
219bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
220  // If the register has ever been spilled or reloaded, we conservatively assume
221  // it is a global register used in multiple blocks.
222  if (StackSlotForVirtReg[MO.getReg()] != -1)
223    return false;
224
225  // Check that the use/def chain has exactly one operand - MO.
226  MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
227  if (&*I != &MO)
228    return false;
229  return ++I == MRI->reg_nodbg_end();
230}
231
232/// addKillFlag - Set kill flags on last use of a virtual register.
233void RAFast::addKillFlag(const LiveReg &LR) {
234  if (!LR.LastUse) return;
235  MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
236  if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
237    if (MO.getReg() == LR.PhysReg)
238      MO.setIsKill();
239    else
240      LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
241  }
242}
243
244/// killVirtReg - Mark virtreg as no longer available.
245void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
246  addKillFlag(*LRI);
247  assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
248         "Broken RegState mapping");
249  PhysRegState[LRI->PhysReg] = regFree;
250  // Erase from LiveVirtRegs unless we're spilling in bulk.
251  if (!isBulkSpilling)
252    LiveVirtRegs.erase(LRI);
253}
254
255/// killVirtReg - Mark virtreg as no longer available.
256void RAFast::killVirtReg(unsigned VirtReg) {
257  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
258         "killVirtReg needs a virtual register");
259  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
260  if (LRI != LiveVirtRegs.end())
261    killVirtReg(LRI);
262}
263
264/// spillVirtReg - This method spills the value specified by VirtReg into the
265/// corresponding stack slot if needed.
266void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
267  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
268         "Spilling a physical register is illegal!");
269  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
270  assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
271  spillVirtReg(MI, LRI);
272}
273
274/// spillVirtReg - Do the actual work of spilling.
275void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
276                          LiveRegMap::iterator LRI) {
277  LiveReg &LR = *LRI;
278  assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
279
280  if (LR.Dirty) {
281    // If this physreg is used by the instruction, we want to kill it on the
282    // instruction, not on the spill.
283    bool SpillKill = LR.LastUse != MI;
284    LR.Dirty = false;
285    DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
286                 << " in " << PrintReg(LR.PhysReg, TRI));
287    const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
288    int FI = getStackSpaceFor(LRI->VirtReg, RC);
289    DEBUG(dbgs() << " to stack slot #" << FI << "\n");
290    TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
291    ++NumStores;   // Update statistics
292
293    // If this register is used by DBG_VALUE then insert new DBG_VALUE to
294    // identify spilled location as the place to find corresponding variable's
295    // value.
296    SmallVectorImpl<MachineInstr *> &LRIDbgValues =
297      LiveDbgValueMap[LRI->VirtReg];
298    for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
299      MachineInstr *DBG = LRIDbgValues[li];
300      const MDNode *MDPtr = DBG->getOperand(2).getMetadata();
301      bool IsIndirect = DBG->isIndirectDebugValue();
302      uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
303      DebugLoc DL;
304      if (MI == MBB->end()) {
305        // If MI is at basic block end then use last instruction's location.
306        MachineBasicBlock::iterator EI = MI;
307        DL = (--EI)->getDebugLoc();
308      } else
309        DL = MI->getDebugLoc();
310      MachineBasicBlock *MBB = DBG->getParent();
311      MachineInstr *NewDV =
312          BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
313              .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr);
314      (void)NewDV;
315      DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
316    }
317    // Now this register is spilled there is should not be any DBG_VALUE
318    // pointing to this register because they are all pointing to spilled value
319    // now.
320    LRIDbgValues.clear();
321    if (SpillKill)
322      LR.LastUse = 0; // Don't kill register again
323  }
324  killVirtReg(LRI);
325}
326
327/// spillAll - Spill all dirty virtregs without killing them.
328void RAFast::spillAll(MachineBasicBlock::iterator MI) {
329  if (LiveVirtRegs.empty()) return;
330  isBulkSpilling = true;
331  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
332  // of spilling here is deterministic, if arbitrary.
333  for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
334       i != e; ++i)
335    spillVirtReg(MI, i);
336  LiveVirtRegs.clear();
337  isBulkSpilling = false;
338}
339
340/// usePhysReg - Handle the direct use of a physical register.
341/// Check that the register is not used by a virtreg.
342/// Kill the physreg, marking it free.
343/// This may add implicit kills to MO->getParent() and invalidate MO.
344void RAFast::usePhysReg(MachineOperand &MO) {
345  unsigned PhysReg = MO.getReg();
346  assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
347         "Bad usePhysReg operand");
348  markRegUsedInInstr(PhysReg);
349  switch (PhysRegState[PhysReg]) {
350  case regDisabled:
351    break;
352  case regReserved:
353    PhysRegState[PhysReg] = regFree;
354    // Fall through
355  case regFree:
356    MO.setIsKill();
357    return;
358  default:
359    // The physreg was allocated to a virtual register. That means the value we
360    // wanted has been clobbered.
361    llvm_unreachable("Instruction uses an allocated register");
362  }
363
364  // Maybe a superregister is reserved?
365  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
366    unsigned Alias = *AI;
367    switch (PhysRegState[Alias]) {
368    case regDisabled:
369      break;
370    case regReserved:
371      assert(TRI->isSuperRegister(PhysReg, Alias) &&
372             "Instruction is not using a subregister of a reserved register");
373      // Leave the superregister in the working set.
374      PhysRegState[Alias] = regFree;
375      MO.getParent()->addRegisterKilled(Alias, TRI, true);
376      return;
377    case regFree:
378      if (TRI->isSuperRegister(PhysReg, Alias)) {
379        // Leave the superregister in the working set.
380        MO.getParent()->addRegisterKilled(Alias, TRI, true);
381        return;
382      }
383      // Some other alias was in the working set - clear it.
384      PhysRegState[Alias] = regDisabled;
385      break;
386    default:
387      llvm_unreachable("Instruction uses an alias of an allocated register");
388    }
389  }
390
391  // All aliases are disabled, bring register into working set.
392  PhysRegState[PhysReg] = regFree;
393  MO.setIsKill();
394}
395
396/// definePhysReg - Mark PhysReg as reserved or free after spilling any
397/// virtregs. This is very similar to defineVirtReg except the physreg is
398/// reserved instead of allocated.
399void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
400                           RegState NewState) {
401  markRegUsedInInstr(PhysReg);
402  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
403  case regDisabled:
404    break;
405  default:
406    spillVirtReg(MI, VirtReg);
407    // Fall through.
408  case regFree:
409  case regReserved:
410    PhysRegState[PhysReg] = NewState;
411    return;
412  }
413
414  // This is a disabled register, disable all aliases.
415  PhysRegState[PhysReg] = NewState;
416  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
417    unsigned Alias = *AI;
418    switch (unsigned VirtReg = PhysRegState[Alias]) {
419    case regDisabled:
420      break;
421    default:
422      spillVirtReg(MI, VirtReg);
423      // Fall through.
424    case regFree:
425    case regReserved:
426      PhysRegState[Alias] = regDisabled;
427      if (TRI->isSuperRegister(PhysReg, Alias))
428        return;
429      break;
430    }
431  }
432}
433
434
435// calcSpillCost - Return the cost of spilling clearing out PhysReg and
436// aliases so it is free for allocation.
437// Returns 0 when PhysReg is free or disabled with all aliases disabled - it
438// can be allocated directly.
439// Returns spillImpossible when PhysReg or an alias can't be spilled.
440unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
441  if (isRegUsedInInstr(PhysReg)) {
442    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
443    return spillImpossible;
444  }
445  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
446  case regDisabled:
447    break;
448  case regFree:
449    return 0;
450  case regReserved:
451    DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
452                 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
453    return spillImpossible;
454  default: {
455    LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
456    assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
457    return I->Dirty ? spillDirty : spillClean;
458  }
459  }
460
461  // This is a disabled register, add up cost of aliases.
462  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
463  unsigned Cost = 0;
464  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
465    unsigned Alias = *AI;
466    switch (unsigned VirtReg = PhysRegState[Alias]) {
467    case regDisabled:
468      break;
469    case regFree:
470      ++Cost;
471      break;
472    case regReserved:
473      return spillImpossible;
474    default: {
475      LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
476      assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
477      Cost += I->Dirty ? spillDirty : spillClean;
478      break;
479    }
480    }
481  }
482  return Cost;
483}
484
485
486/// assignVirtToPhysReg - This method updates local state so that we know
487/// that PhysReg is the proper container for VirtReg now.  The physical
488/// register must not be used for anything else when this is called.
489///
490void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
491  DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
492               << PrintReg(PhysReg, TRI) << "\n");
493  PhysRegState[PhysReg] = LR.VirtReg;
494  assert(!LR.PhysReg && "Already assigned a physreg");
495  LR.PhysReg = PhysReg;
496}
497
498RAFast::LiveRegMap::iterator
499RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
500  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
501  assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
502  assignVirtToPhysReg(*LRI, PhysReg);
503  return LRI;
504}
505
506/// allocVirtReg - Allocate a physical register for VirtReg.
507RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
508                                                  LiveRegMap::iterator LRI,
509                                                  unsigned Hint) {
510  const unsigned VirtReg = LRI->VirtReg;
511
512  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
513         "Can only allocate virtual registers");
514
515  const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
516
517  // Ignore invalid hints.
518  if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
519               !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
520    Hint = 0;
521
522  // Take hint when possible.
523  if (Hint) {
524    // Ignore the hint if we would have to spill a dirty register.
525    unsigned Cost = calcSpillCost(Hint);
526    if (Cost < spillDirty) {
527      if (Cost)
528        definePhysReg(MI, Hint, regFree);
529      // definePhysReg may kill virtual registers and modify LiveVirtRegs.
530      // That invalidates LRI, so run a new lookup for VirtReg.
531      return assignVirtToPhysReg(VirtReg, Hint);
532    }
533  }
534
535  ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
536
537  // First try to find a completely free register.
538  for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
539    unsigned PhysReg = *I;
540    if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
541      assignVirtToPhysReg(*LRI, PhysReg);
542      return LRI;
543    }
544  }
545
546  DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
547               << RC->getName() << "\n");
548
549  unsigned BestReg = 0, BestCost = spillImpossible;
550  for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
551    unsigned Cost = calcSpillCost(*I);
552    DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
553    DEBUG(dbgs() << "\tCost: " << Cost << "\n");
554    DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
555    // Cost is 0 when all aliases are already disabled.
556    if (Cost == 0) {
557      assignVirtToPhysReg(*LRI, *I);
558      return LRI;
559    }
560    if (Cost < BestCost)
561      BestReg = *I, BestCost = Cost;
562  }
563
564  if (BestReg) {
565    definePhysReg(MI, BestReg, regFree);
566    // definePhysReg may kill virtual registers and modify LiveVirtRegs.
567    // That invalidates LRI, so run a new lookup for VirtReg.
568    return assignVirtToPhysReg(VirtReg, BestReg);
569  }
570
571  // Nothing we can do. Report an error and keep going with a bad allocation.
572  if (MI->isInlineAsm())
573    MI->emitError("inline assembly requires more registers than available");
574  else
575    MI->emitError("ran out of registers during register allocation");
576  definePhysReg(MI, *AO.begin(), regFree);
577  return assignVirtToPhysReg(VirtReg, *AO.begin());
578}
579
580/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
581RAFast::LiveRegMap::iterator
582RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
583                      unsigned VirtReg, unsigned Hint) {
584  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
585         "Not a virtual register");
586  LiveRegMap::iterator LRI;
587  bool New;
588  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
589  if (New) {
590    // If there is no hint, peek at the only use of this register.
591    if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
592        MRI->hasOneNonDBGUse(VirtReg)) {
593      const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
594      // It's a copy, use the destination register as a hint.
595      if (UseMI.isCopyLike())
596        Hint = UseMI.getOperand(0).getReg();
597    }
598    LRI = allocVirtReg(MI, LRI, Hint);
599  } else if (LRI->LastUse) {
600    // Redefining a live register - kill at the last use, unless it is this
601    // instruction defining VirtReg multiple times.
602    if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
603      addKillFlag(*LRI);
604  }
605  assert(LRI->PhysReg && "Register not assigned");
606  LRI->LastUse = MI;
607  LRI->LastOpNum = OpNum;
608  LRI->Dirty = true;
609  markRegUsedInInstr(LRI->PhysReg);
610  return LRI;
611}
612
613/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
614RAFast::LiveRegMap::iterator
615RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
616                      unsigned VirtReg, unsigned Hint) {
617  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
618         "Not a virtual register");
619  LiveRegMap::iterator LRI;
620  bool New;
621  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
622  MachineOperand &MO = MI->getOperand(OpNum);
623  if (New) {
624    LRI = allocVirtReg(MI, LRI, Hint);
625    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
626    int FrameIndex = getStackSpaceFor(VirtReg, RC);
627    DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
628                 << PrintReg(LRI->PhysReg, TRI) << "\n");
629    TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
630    ++NumLoads;
631  } else if (LRI->Dirty) {
632    if (isLastUseOfLocalReg(MO)) {
633      DEBUG(dbgs() << "Killing last use: " << MO << "\n");
634      if (MO.isUse())
635        MO.setIsKill();
636      else
637        MO.setIsDead();
638    } else if (MO.isKill()) {
639      DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
640      MO.setIsKill(false);
641    } else if (MO.isDead()) {
642      DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
643      MO.setIsDead(false);
644    }
645  } else if (MO.isKill()) {
646    // We must remove kill flags from uses of reloaded registers because the
647    // register would be killed immediately, and there might be a second use:
648    //   %foo = OR %x<kill>, %x
649    // This would cause a second reload of %x into a different register.
650    DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
651    MO.setIsKill(false);
652  } else if (MO.isDead()) {
653    DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
654    MO.setIsDead(false);
655  }
656  assert(LRI->PhysReg && "Register not assigned");
657  LRI->LastUse = MI;
658  LRI->LastOpNum = OpNum;
659  markRegUsedInInstr(LRI->PhysReg);
660  return LRI;
661}
662
663// setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
664// subregs. This may invalidate any operand pointers.
665// Return true if the operand kills its register.
666bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
667  MachineOperand &MO = MI->getOperand(OpNum);
668  bool Dead = MO.isDead();
669  if (!MO.getSubReg()) {
670    MO.setReg(PhysReg);
671    return MO.isKill() || Dead;
672  }
673
674  // Handle subregister index.
675  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
676  MO.setSubReg(0);
677
678  // A kill flag implies killing the full register. Add corresponding super
679  // register kill.
680  if (MO.isKill()) {
681    MI->addRegisterKilled(PhysReg, TRI, true);
682    return true;
683  }
684
685  // A <def,read-undef> of a sub-register requires an implicit def of the full
686  // register.
687  if (MO.isDef() && MO.isUndef())
688    MI->addRegisterDefined(PhysReg, TRI);
689
690  return Dead;
691}
692
693// Handle special instruction operand like early clobbers and tied ops when
694// there are additional physreg defines.
695void RAFast::handleThroughOperands(MachineInstr *MI,
696                                   SmallVectorImpl<unsigned> &VirtDead) {
697  DEBUG(dbgs() << "Scanning for through registers:");
698  SmallSet<unsigned, 8> ThroughRegs;
699  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
700    MachineOperand &MO = MI->getOperand(i);
701    if (!MO.isReg()) continue;
702    unsigned Reg = MO.getReg();
703    if (!TargetRegisterInfo::isVirtualRegister(Reg))
704      continue;
705    if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
706        (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
707      if (ThroughRegs.insert(Reg))
708        DEBUG(dbgs() << ' ' << PrintReg(Reg));
709    }
710  }
711
712  // If any physreg defines collide with preallocated through registers,
713  // we must spill and reallocate.
714  DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
715  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
716    MachineOperand &MO = MI->getOperand(i);
717    if (!MO.isReg() || !MO.isDef()) continue;
718    unsigned Reg = MO.getReg();
719    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
720    markRegUsedInInstr(Reg);
721    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
722      if (ThroughRegs.count(PhysRegState[*AI]))
723        definePhysReg(MI, *AI, regFree);
724    }
725  }
726
727  SmallVector<unsigned, 8> PartialDefs;
728  DEBUG(dbgs() << "Allocating tied uses.\n");
729  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
730    MachineOperand &MO = MI->getOperand(i);
731    if (!MO.isReg()) continue;
732    unsigned Reg = MO.getReg();
733    if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
734    if (MO.isUse()) {
735      unsigned DefIdx = 0;
736      if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
737      DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
738        << DefIdx << ".\n");
739      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
740      unsigned PhysReg = LRI->PhysReg;
741      setPhysReg(MI, i, PhysReg);
742      // Note: we don't update the def operand yet. That would cause the normal
743      // def-scan to attempt spilling.
744    } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
745      DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
746      // Reload the register, but don't assign to the operand just yet.
747      // That would confuse the later phys-def processing pass.
748      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
749      PartialDefs.push_back(LRI->PhysReg);
750    }
751  }
752
753  DEBUG(dbgs() << "Allocating early clobbers.\n");
754  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
755    MachineOperand &MO = MI->getOperand(i);
756    if (!MO.isReg()) continue;
757    unsigned Reg = MO.getReg();
758    if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
759    if (!MO.isEarlyClobber())
760      continue;
761    // Note: defineVirtReg may invalidate MO.
762    LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
763    unsigned PhysReg = LRI->PhysReg;
764    if (setPhysReg(MI, i, PhysReg))
765      VirtDead.push_back(Reg);
766  }
767
768  // Restore UsedInInstr to a state usable for allocating normal virtual uses.
769  UsedInInstr.clear();
770  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
771    MachineOperand &MO = MI->getOperand(i);
772    if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
773    unsigned Reg = MO.getReg();
774    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
775    DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
776                 << " as used in instr\n");
777    markRegUsedInInstr(Reg);
778  }
779
780  // Also mark PartialDefs as used to avoid reallocation.
781  for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
782    markRegUsedInInstr(PartialDefs[i]);
783}
784
785void RAFast::AllocateBasicBlock() {
786  DEBUG(dbgs() << "\nAllocating " << *MBB);
787
788  PhysRegState.assign(TRI->getNumRegs(), regDisabled);
789  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
790
791  MachineBasicBlock::iterator MII = MBB->begin();
792
793  // Add live-in registers as live.
794  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
795         E = MBB->livein_end(); I != E; ++I)
796    if (MRI->isAllocatable(*I))
797      definePhysReg(MII, *I, regReserved);
798
799  SmallVector<unsigned, 8> VirtDead;
800  SmallVector<MachineInstr*, 32> Coalesced;
801
802  // Otherwise, sequentially allocate each instruction in the MBB.
803  while (MII != MBB->end()) {
804    MachineInstr *MI = MII++;
805    const MCInstrDesc &MCID = MI->getDesc();
806    DEBUG({
807        dbgs() << "\n>> " << *MI << "Regs:";
808        for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
809          if (PhysRegState[Reg] == regDisabled) continue;
810          dbgs() << " " << TRI->getName(Reg);
811          switch(PhysRegState[Reg]) {
812          case regFree:
813            break;
814          case regReserved:
815            dbgs() << "*";
816            break;
817          default: {
818            dbgs() << '=' << PrintReg(PhysRegState[Reg]);
819            LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
820            assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
821            if (I->Dirty)
822              dbgs() << "*";
823            assert(I->PhysReg == Reg && "Bad inverse map");
824            break;
825          }
826          }
827        }
828        dbgs() << '\n';
829        // Check that LiveVirtRegs is the inverse.
830        for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
831             e = LiveVirtRegs.end(); i != e; ++i) {
832           assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
833                  "Bad map key");
834           assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
835                  "Bad map value");
836           assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
837        }
838      });
839
840    // Debug values are not allowed to change codegen in any way.
841    if (MI->isDebugValue()) {
842      bool ScanDbgValue = true;
843      while (ScanDbgValue) {
844        ScanDbgValue = false;
845        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
846          MachineOperand &MO = MI->getOperand(i);
847          if (!MO.isReg()) continue;
848          unsigned Reg = MO.getReg();
849          if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
850          LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
851          if (LRI != LiveVirtRegs.end())
852            setPhysReg(MI, i, LRI->PhysReg);
853          else {
854            int SS = StackSlotForVirtReg[Reg];
855            if (SS == -1) {
856              // We can't allocate a physreg for a DebugValue, sorry!
857              DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
858              MO.setReg(0);
859            }
860            else {
861              // Modify DBG_VALUE now that the value is in a spill slot.
862              bool IsIndirect = MI->isIndirectDebugValue();
863              uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
864              const MDNode *MDPtr =
865                MI->getOperand(MI->getNumOperands()-1).getMetadata();
866              DebugLoc DL = MI->getDebugLoc();
867              MachineBasicBlock *MBB = MI->getParent();
868              MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
869                                            TII->get(TargetOpcode::DBG_VALUE))
870                  .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr);
871              DEBUG(dbgs() << "Modifying debug info due to spill:"
872                           << "\t" << *NewDV);
873              // Scan NewDV operands from the beginning.
874              MI = NewDV;
875              ScanDbgValue = true;
876              break;
877            }
878          }
879          LiveDbgValueMap[Reg].push_back(MI);
880        }
881      }
882      // Next instruction.
883      continue;
884    }
885
886    // If this is a copy, we may be able to coalesce.
887    unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
888    if (MI->isCopy()) {
889      CopyDst = MI->getOperand(0).getReg();
890      CopySrc = MI->getOperand(1).getReg();
891      CopyDstSub = MI->getOperand(0).getSubReg();
892      CopySrcSub = MI->getOperand(1).getSubReg();
893    }
894
895    // Track registers used by instruction.
896    UsedInInstr.clear();
897
898    // First scan.
899    // Mark physreg uses and early clobbers as used.
900    // Find the end of the virtreg operands
901    unsigned VirtOpEnd = 0;
902    bool hasTiedOps = false;
903    bool hasEarlyClobbers = false;
904    bool hasPartialRedefs = false;
905    bool hasPhysDefs = false;
906    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
907      MachineOperand &MO = MI->getOperand(i);
908      // Make sure MRI knows about registers clobbered by regmasks.
909      if (MO.isRegMask()) {
910        MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
911        continue;
912      }
913      if (!MO.isReg()) continue;
914      unsigned Reg = MO.getReg();
915      if (!Reg) continue;
916      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
917        VirtOpEnd = i+1;
918        if (MO.isUse()) {
919          hasTiedOps = hasTiedOps ||
920                              MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
921        } else {
922          if (MO.isEarlyClobber())
923            hasEarlyClobbers = true;
924          if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
925            hasPartialRedefs = true;
926        }
927        continue;
928      }
929      if (!MRI->isAllocatable(Reg)) continue;
930      if (MO.isUse()) {
931        usePhysReg(MO);
932      } else if (MO.isEarlyClobber()) {
933        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
934                               regFree : regReserved);
935        hasEarlyClobbers = true;
936      } else
937        hasPhysDefs = true;
938    }
939
940    // The instruction may have virtual register operands that must be allocated
941    // the same register at use-time and def-time: early clobbers and tied
942    // operands. If there are also physical defs, these registers must avoid
943    // both physical defs and uses, making them more constrained than normal
944    // operands.
945    // Similarly, if there are multiple defs and tied operands, we must make
946    // sure the same register is allocated to uses and defs.
947    // We didn't detect inline asm tied operands above, so just make this extra
948    // pass for all inline asm.
949    if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
950        (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
951      handleThroughOperands(MI, VirtDead);
952      // Don't attempt coalescing when we have funny stuff going on.
953      CopyDst = 0;
954      // Pretend we have early clobbers so the use operands get marked below.
955      // This is not necessary for the common case of a single tied use.
956      hasEarlyClobbers = true;
957    }
958
959    // Second scan.
960    // Allocate virtreg uses.
961    for (unsigned i = 0; i != VirtOpEnd; ++i) {
962      MachineOperand &MO = MI->getOperand(i);
963      if (!MO.isReg()) continue;
964      unsigned Reg = MO.getReg();
965      if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
966      if (MO.isUse()) {
967        LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
968        unsigned PhysReg = LRI->PhysReg;
969        CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
970        if (setPhysReg(MI, i, PhysReg))
971          killVirtReg(LRI);
972      }
973    }
974
975    for (UsedInInstrSet::iterator
976         I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
977      MRI->setRegUnitUsed(*I);
978
979    // Track registers defined by instruction - early clobbers and tied uses at
980    // this point.
981    UsedInInstr.clear();
982    if (hasEarlyClobbers) {
983      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
984        MachineOperand &MO = MI->getOperand(i);
985        if (!MO.isReg()) continue;
986        unsigned Reg = MO.getReg();
987        if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
988        // Look for physreg defs and tied uses.
989        if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
990        markRegUsedInInstr(Reg);
991      }
992    }
993
994    unsigned DefOpEnd = MI->getNumOperands();
995    if (MI->isCall()) {
996      // Spill all virtregs before a call. This serves two purposes: 1. If an
997      // exception is thrown, the landing pad is going to expect to find
998      // registers in their spill slots, and 2. we don't have to wade through
999      // all the <imp-def> operands on the call instruction.
1000      DefOpEnd = VirtOpEnd;
1001      DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
1002      spillAll(MI);
1003
1004      // The imp-defs are skipped below, but we still need to mark those
1005      // registers as used by the function.
1006      SkippedInstrs.insert(&MCID);
1007    }
1008
1009    // Third scan.
1010    // Allocate defs and collect dead defs.
1011    for (unsigned i = 0; i != DefOpEnd; ++i) {
1012      MachineOperand &MO = MI->getOperand(i);
1013      if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1014        continue;
1015      unsigned Reg = MO.getReg();
1016
1017      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1018        if (!MRI->isAllocatable(Reg)) continue;
1019        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
1020                               regFree : regReserved);
1021        continue;
1022      }
1023      LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1024      unsigned PhysReg = LRI->PhysReg;
1025      if (setPhysReg(MI, i, PhysReg)) {
1026        VirtDead.push_back(Reg);
1027        CopyDst = 0; // cancel coalescing;
1028      } else
1029        CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1030    }
1031
1032    // Kill dead defs after the scan to ensure that multiple defs of the same
1033    // register are allocated identically. We didn't need to do this for uses
1034    // because we are crerating our own kill flags, and they are always at the
1035    // last use.
1036    for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1037      killVirtReg(VirtDead[i]);
1038    VirtDead.clear();
1039
1040    for (UsedInInstrSet::iterator
1041         I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
1042      MRI->setRegUnitUsed(*I);
1043
1044    if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1045      DEBUG(dbgs() << "-- coalescing: " << *MI);
1046      Coalesced.push_back(MI);
1047    } else {
1048      DEBUG(dbgs() << "<< " << *MI);
1049    }
1050  }
1051
1052  // Spill all physical registers holding virtual registers now.
1053  DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1054  spillAll(MBB->getFirstTerminator());
1055
1056  // Erase all the coalesced copies. We are delaying it until now because
1057  // LiveVirtRegs might refer to the instrs.
1058  for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1059    MBB->erase(Coalesced[i]);
1060  NumCopies += Coalesced.size();
1061
1062  DEBUG(MBB->dump());
1063}
1064
1065/// runOnMachineFunction - Register allocate the whole function
1066///
1067bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1068  DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1069               << "********** Function: " << Fn.getName() << '\n');
1070  MF = &Fn;
1071  MRI = &MF->getRegInfo();
1072  TM = &Fn.getTarget();
1073  TRI = TM->getRegisterInfo();
1074  TII = TM->getInstrInfo();
1075  MRI->freezeReservedRegs(Fn);
1076  RegClassInfo.runOnMachineFunction(Fn);
1077  UsedInInstr.clear();
1078  UsedInInstr.setUniverse(TRI->getNumRegUnits());
1079
1080  assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1081
1082  // initialize the virtual->physical register map to have a 'null'
1083  // mapping for all virtual registers
1084  StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1085  LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1086
1087  // Loop over all of the basic blocks, eliminating virtual register references
1088  for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1089       MBBi != MBBe; ++MBBi) {
1090    MBB = &*MBBi;
1091    AllocateBasicBlock();
1092  }
1093
1094  // Add the clobber lists for all the instructions we skipped earlier.
1095  for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
1096       I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1097    if (const uint16_t *Defs = (*I)->getImplicitDefs())
1098      while (*Defs)
1099        MRI->setPhysRegUsed(*Defs++);
1100
1101  // All machine operands and other references to virtual registers have been
1102  // replaced. Remove the virtual registers.
1103  MRI->clearVirtRegs();
1104
1105  SkippedInstrs.clear();
1106  StackSlotForVirtReg.clear();
1107  LiveDbgValueMap.clear();
1108  return true;
1109}
1110
1111FunctionPass *llvm::createFastRegisterAllocator() {
1112  return new RAFast();
1113}
1114