RegAllocFast.cpp revision 5818a3ee4d1a5b4474c67ce70e245237b1edf29b
1//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This register allocator allocates registers to a basic block at a time,
11// attempting to keep values in registers and reusing registers as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "llvm/BasicBlock.h"
17#include "llvm/CodeGen/MachineFunctionPass.h"
18#include "llvm/CodeGen/MachineInstr.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/RegAllocRegistry.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/IndexedMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/STLExtras.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumStores, "Number of stores added");
40STATISTIC(NumLoads , "Number of loads added");
41STATISTIC(NumCopies, "Number of copies coalesced");
42
43static RegisterRegAlloc
44  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
45
46namespace {
47  class RAFast : public MachineFunctionPass {
48  public:
49    static char ID;
50    RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
51               isBulkSpilling(false) {}
52  private:
53    const TargetMachine *TM;
54    MachineFunction *MF;
55    MachineRegisterInfo *MRI;
56    const TargetRegisterInfo *TRI;
57    const TargetInstrInfo *TII;
58
59    // Basic block currently being allocated.
60    MachineBasicBlock *MBB;
61
62    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
63    // values are spilled.
64    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
65
66    // Everything we know about a live virtual register.
67    struct LiveReg {
68      MachineInstr *LastUse;    // Last instr to use reg.
69      unsigned PhysReg;         // Currently held here.
70      unsigned short LastOpNum; // OpNum on LastUse.
71      bool Dirty;               // Register needs spill.
72
73      LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0),
74                              Dirty(false) {}
75    };
76
77    typedef DenseMap<unsigned, LiveReg> LiveRegMap;
78    typedef LiveRegMap::value_type LiveRegEntry;
79
80    // LiveVirtRegs - This map contains entries for each virtual register
81    // that is currently available in a physical register.
82    LiveRegMap LiveVirtRegs;
83
84    DenseMap<unsigned, MachineInstr *> LiveDbgValueMap;
85
86    // RegState - Track the state of a physical register.
87    enum RegState {
88      // A disabled register is not available for allocation, but an alias may
89      // be in use. A register can only be moved out of the disabled state if
90      // all aliases are disabled.
91      regDisabled,
92
93      // A free register is not currently in use and can be allocated
94      // immediately without checking aliases.
95      regFree,
96
97      // A reserved register has been assigned expolicitly (e.g., setting up a
98      // call parameter), and it remains reserved until it is used.
99      regReserved
100
101      // A register state may also be a virtual register number, indication that
102      // the physical register is currently allocated to a virtual register. In
103      // that case, LiveVirtRegs contains the inverse mapping.
104    };
105
106    // PhysRegState - One of the RegState enums, or a virtreg.
107    std::vector<unsigned> PhysRegState;
108
109    // UsedInInstr - BitVector of physregs that are used in the current
110    // instruction, and so cannot be allocated.
111    BitVector UsedInInstr;
112
113    // Allocatable - vector of allocatable physical registers.
114    BitVector Allocatable;
115
116    // SkippedInstrs - Descriptors of instructions whose clobber list was
117    // ignored because all registers were spilled. It is still necessary to
118    // mark all the clobbered registers as used by the function.
119    SmallPtrSet<const TargetInstrDesc*, 4> SkippedInstrs;
120
121    // isBulkSpilling - This flag is set when LiveRegMap will be cleared
122    // completely after spilling all live registers. LiveRegMap entries should
123    // not be erased.
124    bool isBulkSpilling;
125
126    enum {
127      spillClean = 1,
128      spillDirty = 100,
129      spillImpossible = ~0u
130    };
131  public:
132    virtual const char *getPassName() const {
133      return "Fast Register Allocator";
134    }
135
136    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
137      AU.setPreservesCFG();
138      AU.addRequiredID(PHIEliminationID);
139      AU.addRequiredID(TwoAddressInstructionPassID);
140      MachineFunctionPass::getAnalysisUsage(AU);
141    }
142
143  private:
144    bool runOnMachineFunction(MachineFunction &Fn);
145    void AllocateBasicBlock();
146    void handleThroughOperands(MachineInstr *MI,
147                               SmallVectorImpl<unsigned> &VirtDead);
148    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
149    bool isLastUseOfLocalReg(MachineOperand&);
150
151    void addKillFlag(const LiveReg&);
152    void killVirtReg(LiveRegMap::iterator);
153    void killVirtReg(unsigned VirtReg);
154    void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
155    void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
156
157    void usePhysReg(MachineOperand&);
158    void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
159    unsigned calcSpillCost(unsigned PhysReg) const;
160    void assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg);
161    void allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint);
162    LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
163                                       unsigned VirtReg, unsigned Hint);
164    LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
165                                       unsigned VirtReg, unsigned Hint);
166    void spillAll(MachineInstr *MI);
167    bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
168  };
169  char RAFast::ID = 0;
170}
171
172/// getStackSpaceFor - This allocates space for the specified virtual register
173/// to be held on the stack.
174int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
175  // Find the location Reg would belong...
176  int SS = StackSlotForVirtReg[VirtReg];
177  if (SS != -1)
178    return SS;          // Already has space allocated?
179
180  // Allocate a new stack object for this spill location...
181  int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
182                                                            RC->getAlignment());
183
184  // Assign the slot.
185  StackSlotForVirtReg[VirtReg] = FrameIdx;
186  return FrameIdx;
187}
188
189/// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
190/// its virtual register, and it is guaranteed to be a block-local register.
191///
192bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
193  // Check for non-debug uses or defs following MO.
194  // This is the most likely way to fail - fast path it.
195  MachineOperand *Next = &MO;
196  while ((Next = Next->getNextOperandForReg()))
197    if (!Next->isDebug())
198      return false;
199
200  // If the register has ever been spilled or reloaded, we conservatively assume
201  // it is a global register used in multiple blocks.
202  if (StackSlotForVirtReg[MO.getReg()] != -1)
203    return false;
204
205  // Check that the use/def chain has exactly one operand - MO.
206  return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO;
207}
208
209/// addKillFlag - Set kill flags on last use of a virtual register.
210void RAFast::addKillFlag(const LiveReg &LR) {
211  if (!LR.LastUse) return;
212  MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
213  if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
214    if (MO.getReg() == LR.PhysReg)
215      MO.setIsKill();
216    else
217      LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
218  }
219}
220
221/// killVirtReg - Mark virtreg as no longer available.
222void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
223  addKillFlag(LRI->second);
224  const LiveReg &LR = LRI->second;
225  assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping");
226  PhysRegState[LR.PhysReg] = regFree;
227  // Erase from LiveVirtRegs unless we're spilling in bulk.
228  if (!isBulkSpilling)
229    LiveVirtRegs.erase(LRI);
230}
231
232/// killVirtReg - Mark virtreg as no longer available.
233void RAFast::killVirtReg(unsigned VirtReg) {
234  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
235         "killVirtReg needs a virtual register");
236  LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg);
237  if (LRI != LiveVirtRegs.end())
238    killVirtReg(LRI);
239}
240
241/// spillVirtReg - This method spills the value specified by VirtReg into the
242/// corresponding stack slot if needed.
243void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
244  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
245         "Spilling a physical register is illegal!");
246  LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg);
247  assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
248  spillVirtReg(MI, LRI);
249}
250
251/// spillVirtReg - Do the actual work of spilling.
252void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
253                          LiveRegMap::iterator LRI) {
254  LiveReg &LR = LRI->second;
255  assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping");
256
257  if (LR.Dirty) {
258    // If this physreg is used by the instruction, we want to kill it on the
259    // instruction, not on the spill.
260    bool SpillKill = LR.LastUse != MI;
261    LR.Dirty = false;
262    DEBUG(dbgs() << "Spilling %reg" << LRI->first
263                 << " in " << TRI->getName(LR.PhysReg));
264    const TargetRegisterClass *RC = MRI->getRegClass(LRI->first);
265    int FI = getStackSpaceFor(LRI->first, RC);
266    DEBUG(dbgs() << " to stack slot #" << FI << "\n");
267    TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
268    ++NumStores;   // Update statistics
269
270    // If this register is used by DBG_VALUE then insert new DBG_VALUE to
271    // identify spilled location as the place to find corresponding variable's
272    // value.
273    if (MachineInstr *DBG = LiveDbgValueMap.lookup(LRI->first)) {
274      const MDNode *MDPtr =
275        DBG->getOperand(DBG->getNumOperands()-1).getMetadata();
276      int64_t Offset = 0;
277      if (DBG->getOperand(1).isImm())
278        Offset = DBG->getOperand(1).getImm();
279      DebugLoc DL;
280      if (MI == MBB->end()) {
281        // If MI is at basic block end then use last instruction's location.
282        MachineBasicBlock::iterator EI = MI;
283        DL = (--EI)->getDebugLoc();
284      }
285      else
286        DL = MI->getDebugLoc();
287      if (MachineInstr *NewDV =
288          TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) {
289        MachineBasicBlock *MBB = DBG->getParent();
290        MBB->insert(MI, NewDV);
291        DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
292        LiveDbgValueMap[LRI->first] = NewDV;
293      }
294    }
295    if (SpillKill)
296      LR.LastUse = 0; // Don't kill register again
297  }
298  killVirtReg(LRI);
299}
300
301/// spillAll - Spill all dirty virtregs without killing them.
302void RAFast::spillAll(MachineInstr *MI) {
303  if (LiveVirtRegs.empty()) return;
304  isBulkSpilling = true;
305  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
306  // of spilling here is deterministic, if arbitrary.
307  for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
308       i != e; ++i)
309    spillVirtReg(MI, i);
310  LiveVirtRegs.clear();
311  isBulkSpilling = false;
312}
313
314/// usePhysReg - Handle the direct use of a physical register.
315/// Check that the register is not used by a virtreg.
316/// Kill the physreg, marking it free.
317/// This may add implicit kills to MO->getParent() and invalidate MO.
318void RAFast::usePhysReg(MachineOperand &MO) {
319  unsigned PhysReg = MO.getReg();
320  assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
321         "Bad usePhysReg operand");
322
323  switch (PhysRegState[PhysReg]) {
324  case regDisabled:
325    break;
326  case regReserved:
327    PhysRegState[PhysReg] = regFree;
328    // Fall through
329  case regFree:
330    UsedInInstr.set(PhysReg);
331    MO.setIsKill();
332    return;
333  default:
334    // The physreg was allocated to a virtual register. That means to value we
335    // wanted has been clobbered.
336    llvm_unreachable("Instruction uses an allocated register");
337  }
338
339  // Maybe a superregister is reserved?
340  for (const unsigned *AS = TRI->getAliasSet(PhysReg);
341       unsigned Alias = *AS; ++AS) {
342    switch (PhysRegState[Alias]) {
343    case regDisabled:
344      break;
345    case regReserved:
346      assert(TRI->isSuperRegister(PhysReg, Alias) &&
347             "Instruction is not using a subregister of a reserved register");
348      // Leave the superregister in the working set.
349      PhysRegState[Alias] = regFree;
350      UsedInInstr.set(Alias);
351      MO.getParent()->addRegisterKilled(Alias, TRI, true);
352      return;
353    case regFree:
354      if (TRI->isSuperRegister(PhysReg, Alias)) {
355        // Leave the superregister in the working set.
356        UsedInInstr.set(Alias);
357        MO.getParent()->addRegisterKilled(Alias, TRI, true);
358        return;
359      }
360      // Some other alias was in the working set - clear it.
361      PhysRegState[Alias] = regDisabled;
362      break;
363    default:
364      llvm_unreachable("Instruction uses an alias of an allocated register");
365    }
366  }
367
368  // All aliases are disabled, bring register into working set.
369  PhysRegState[PhysReg] = regFree;
370  UsedInInstr.set(PhysReg);
371  MO.setIsKill();
372}
373
374/// definePhysReg - Mark PhysReg as reserved or free after spilling any
375/// virtregs. This is very similar to defineVirtReg except the physreg is
376/// reserved instead of allocated.
377void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
378                           RegState NewState) {
379  UsedInInstr.set(PhysReg);
380  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
381  case regDisabled:
382    break;
383  default:
384    spillVirtReg(MI, VirtReg);
385    // Fall through.
386  case regFree:
387  case regReserved:
388    PhysRegState[PhysReg] = NewState;
389    return;
390  }
391
392  // This is a disabled register, disable all aliases.
393  PhysRegState[PhysReg] = NewState;
394  for (const unsigned *AS = TRI->getAliasSet(PhysReg);
395       unsigned Alias = *AS; ++AS) {
396    UsedInInstr.set(Alias);
397    switch (unsigned VirtReg = PhysRegState[Alias]) {
398    case regDisabled:
399      break;
400    default:
401      spillVirtReg(MI, VirtReg);
402      // Fall through.
403    case regFree:
404    case regReserved:
405      PhysRegState[Alias] = regDisabled;
406      if (TRI->isSuperRegister(PhysReg, Alias))
407        return;
408      break;
409    }
410  }
411}
412
413
414// calcSpillCost - Return the cost of spilling clearing out PhysReg and
415// aliases so it is free for allocation.
416// Returns 0 when PhysReg is free or disabled with all aliases disabled - it
417// can be allocated directly.
418// Returns spillImpossible when PhysReg or an alias can't be spilled.
419unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
420  if (UsedInInstr.test(PhysReg))
421    return spillImpossible;
422  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
423  case regDisabled:
424    break;
425  case regFree:
426    return 0;
427  case regReserved:
428    return spillImpossible;
429  default:
430    return LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean;
431  }
432
433  // This is a disabled register, add up const of aliases.
434  unsigned Cost = 0;
435  for (const unsigned *AS = TRI->getAliasSet(PhysReg);
436       unsigned Alias = *AS; ++AS) {
437    if (UsedInInstr.test(Alias))
438      return spillImpossible;
439    switch (unsigned VirtReg = PhysRegState[Alias]) {
440    case regDisabled:
441      break;
442    case regFree:
443      ++Cost;
444      break;
445    case regReserved:
446      return spillImpossible;
447    default:
448      Cost += LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean;
449      break;
450    }
451  }
452  return Cost;
453}
454
455
456/// assignVirtToPhysReg - This method updates local state so that we know
457/// that PhysReg is the proper container for VirtReg now.  The physical
458/// register must not be used for anything else when this is called.
459///
460void RAFast::assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg) {
461  DEBUG(dbgs() << "Assigning %reg" << LRE.first << " to "
462               << TRI->getName(PhysReg) << "\n");
463  PhysRegState[PhysReg] = LRE.first;
464  assert(!LRE.second.PhysReg && "Already assigned a physreg");
465  LRE.second.PhysReg = PhysReg;
466}
467
468/// allocVirtReg - Allocate a physical register for VirtReg.
469void RAFast::allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint) {
470  const unsigned VirtReg = LRE.first;
471
472  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
473         "Can only allocate virtual registers");
474
475  const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
476
477  // Ignore invalid hints.
478  if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
479               !RC->contains(Hint) || !Allocatable.test(Hint)))
480    Hint = 0;
481
482  // Take hint when possible.
483  if (Hint) {
484    switch(calcSpillCost(Hint)) {
485    default:
486      definePhysReg(MI, Hint, regFree);
487      // Fall through.
488    case 0:
489      return assignVirtToPhysReg(LRE, Hint);
490    case spillImpossible:
491      break;
492    }
493  }
494
495  TargetRegisterClass::iterator AOB = RC->allocation_order_begin(*MF);
496  TargetRegisterClass::iterator AOE = RC->allocation_order_end(*MF);
497
498  // First try to find a completely free register.
499  for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) {
500    unsigned PhysReg = *I;
501    if (PhysRegState[PhysReg] == regFree && !UsedInInstr.test(PhysReg))
502      return assignVirtToPhysReg(LRE, PhysReg);
503  }
504
505  DEBUG(dbgs() << "Allocating %reg" << VirtReg << " from " << RC->getName()
506               << "\n");
507
508  unsigned BestReg = 0, BestCost = spillImpossible;
509  for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) {
510    unsigned Cost = calcSpillCost(*I);
511    // Cost is 0 when all aliases are already disabled.
512    if (Cost == 0)
513      return assignVirtToPhysReg(LRE, *I);
514    if (Cost < BestCost)
515      BestReg = *I, BestCost = Cost;
516  }
517
518  if (BestReg) {
519    definePhysReg(MI, BestReg, regFree);
520    return assignVirtToPhysReg(LRE, BestReg);
521  }
522
523  // Nothing we can do.
524  std::string msg;
525  raw_string_ostream Msg(msg);
526  Msg << "Ran out of registers during register allocation!";
527  if (MI->isInlineAsm()) {
528    Msg << "\nPlease check your inline asm statement for "
529        << "invalid constraints:\n";
530    MI->print(Msg, TM);
531  }
532  report_fatal_error(Msg.str());
533}
534
535/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
536RAFast::LiveRegMap::iterator
537RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
538                      unsigned VirtReg, unsigned Hint) {
539  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
540         "Not a virtual register");
541  LiveRegMap::iterator LRI;
542  bool New;
543  tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg()));
544  LiveReg &LR = LRI->second;
545  if (New) {
546    // If there is no hint, peek at the only use of this register.
547    if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
548        MRI->hasOneNonDBGUse(VirtReg)) {
549      const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
550      // It's a copy, use the destination register as a hint.
551      if (UseMI.isCopyLike())
552        Hint = UseMI.getOperand(0).getReg();
553    }
554    allocVirtReg(MI, *LRI, Hint);
555  } else if (LR.LastUse) {
556    // Redefining a live register - kill at the last use, unless it is this
557    // instruction defining VirtReg multiple times.
558    if (LR.LastUse != MI || LR.LastUse->getOperand(LR.LastOpNum).isUse())
559      addKillFlag(LR);
560  }
561  assert(LR.PhysReg && "Register not assigned");
562  LR.LastUse = MI;
563  LR.LastOpNum = OpNum;
564  LR.Dirty = true;
565  UsedInInstr.set(LR.PhysReg);
566  return LRI;
567}
568
569/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
570RAFast::LiveRegMap::iterator
571RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
572                      unsigned VirtReg, unsigned Hint) {
573  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
574         "Not a virtual register");
575  LiveRegMap::iterator LRI;
576  bool New;
577  tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg()));
578  LiveReg &LR = LRI->second;
579  MachineOperand &MO = MI->getOperand(OpNum);
580  if (New) {
581    allocVirtReg(MI, *LRI, Hint);
582    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
583    int FrameIndex = getStackSpaceFor(VirtReg, RC);
584    DEBUG(dbgs() << "Reloading %reg" << VirtReg << " into "
585                 << TRI->getName(LR.PhysReg) << "\n");
586    TII->loadRegFromStackSlot(*MBB, MI, LR.PhysReg, FrameIndex, RC, TRI);
587    ++NumLoads;
588  } else if (LR.Dirty) {
589    if (isLastUseOfLocalReg(MO)) {
590      DEBUG(dbgs() << "Killing last use: " << MO << "\n");
591      if (MO.isUse())
592        MO.setIsKill();
593      else
594        MO.setIsDead();
595    } else if (MO.isKill()) {
596      DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
597      MO.setIsKill(false);
598    } else if (MO.isDead()) {
599      DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
600      MO.setIsDead(false);
601    }
602  } else if (MO.isKill()) {
603    // We must remove kill flags from uses of reloaded registers because the
604    // register would be killed immediately, and there might be a second use:
605    //   %foo = OR %x<kill>, %x
606    // This would cause a second reload of %x into a different register.
607    DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
608    MO.setIsKill(false);
609  } else if (MO.isDead()) {
610    DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
611    MO.setIsDead(false);
612  }
613  assert(LR.PhysReg && "Register not assigned");
614  LR.LastUse = MI;
615  LR.LastOpNum = OpNum;
616  UsedInInstr.set(LR.PhysReg);
617  return LRI;
618}
619
620// setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
621// subregs. This may invalidate any operand pointers.
622// Return true if the operand kills its register.
623bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
624  MachineOperand &MO = MI->getOperand(OpNum);
625  if (!MO.getSubReg()) {
626    MO.setReg(PhysReg);
627    return MO.isKill() || MO.isDead();
628  }
629
630  // Handle subregister index.
631  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
632  MO.setSubReg(0);
633
634  // A kill flag implies killing the full register. Add corresponding super
635  // register kill.
636  if (MO.isKill()) {
637    MI->addRegisterKilled(PhysReg, TRI, true);
638    return true;
639  }
640  return MO.isDead();
641}
642
643// Handle special instruction operand like early clobbers and tied ops when
644// there are additional physreg defines.
645void RAFast::handleThroughOperands(MachineInstr *MI,
646                                   SmallVectorImpl<unsigned> &VirtDead) {
647  DEBUG(dbgs() << "Scanning for through registers:");
648  SmallSet<unsigned, 8> ThroughRegs;
649  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
650    MachineOperand &MO = MI->getOperand(i);
651    if (!MO.isReg()) continue;
652    unsigned Reg = MO.getReg();
653    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
654    if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
655        (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
656      if (ThroughRegs.insert(Reg))
657        DEBUG(dbgs() << " %reg" << Reg);
658    }
659  }
660
661  // If any physreg defines collide with preallocated through registers,
662  // we must spill and reallocate.
663  DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
664  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
665    MachineOperand &MO = MI->getOperand(i);
666    if (!MO.isReg() || !MO.isDef()) continue;
667    unsigned Reg = MO.getReg();
668    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
669    UsedInInstr.set(Reg);
670    if (ThroughRegs.count(PhysRegState[Reg]))
671      definePhysReg(MI, Reg, regFree);
672    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
673      UsedInInstr.set(*AS);
674      if (ThroughRegs.count(PhysRegState[*AS]))
675        definePhysReg(MI, *AS, regFree);
676    }
677  }
678
679  SmallVector<unsigned, 8> PartialDefs;
680  DEBUG(dbgs() << "Allocating tied uses and early clobbers.\n");
681  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
682    MachineOperand &MO = MI->getOperand(i);
683    if (!MO.isReg()) continue;
684    unsigned Reg = MO.getReg();
685    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
686    if (MO.isUse()) {
687      unsigned DefIdx = 0;
688      if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
689      DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
690        << DefIdx << ".\n");
691      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
692      unsigned PhysReg = LRI->second.PhysReg;
693      setPhysReg(MI, i, PhysReg);
694      // Note: we don't update the def operand yet. That would cause the normal
695      // def-scan to attempt spilling.
696    } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
697      DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
698      // Reload the register, but don't assign to the operand just yet.
699      // That would confuse the later phys-def processing pass.
700      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
701      PartialDefs.push_back(LRI->second.PhysReg);
702    } else if (MO.isEarlyClobber()) {
703      // Note: defineVirtReg may invalidate MO.
704      LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
705      unsigned PhysReg = LRI->second.PhysReg;
706      if (setPhysReg(MI, i, PhysReg))
707        VirtDead.push_back(Reg);
708    }
709  }
710
711  // Restore UsedInInstr to a state usable for allocating normal virtual uses.
712  UsedInInstr.reset();
713  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
714    MachineOperand &MO = MI->getOperand(i);
715    if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
716    unsigned Reg = MO.getReg();
717    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
718    UsedInInstr.set(Reg);
719    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
720      UsedInInstr.set(*AS);
721  }
722
723  // Also mark PartialDefs as used to avoid reallocation.
724  for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
725    UsedInInstr.set(PartialDefs[i]);
726}
727
728void RAFast::AllocateBasicBlock() {
729  DEBUG(dbgs() << "\nAllocating " << *MBB);
730
731  PhysRegState.assign(TRI->getNumRegs(), regDisabled);
732  assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?");
733
734  MachineBasicBlock::iterator MII = MBB->begin();
735
736  // Add live-in registers as live.
737  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
738         E = MBB->livein_end(); I != E; ++I)
739    if (Allocatable.test(*I))
740      definePhysReg(MII, *I, regReserved);
741
742  SmallVector<unsigned, 8> VirtDead;
743  SmallVector<MachineInstr*, 32> Coalesced;
744
745  // Otherwise, sequentially allocate each instruction in the MBB.
746  while (MII != MBB->end()) {
747    MachineInstr *MI = MII++;
748    const TargetInstrDesc &TID = MI->getDesc();
749    DEBUG({
750        dbgs() << "\n>> " << *MI << "Regs:";
751        for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
752          if (PhysRegState[Reg] == regDisabled) continue;
753          dbgs() << " " << TRI->getName(Reg);
754          switch(PhysRegState[Reg]) {
755          case regFree:
756            break;
757          case regReserved:
758            dbgs() << "*";
759            break;
760          default:
761            dbgs() << "=%reg" << PhysRegState[Reg];
762            if (LiveVirtRegs[PhysRegState[Reg]].Dirty)
763              dbgs() << "*";
764            assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg &&
765                   "Bad inverse map");
766            break;
767          }
768        }
769        dbgs() << '\n';
770        // Check that LiveVirtRegs is the inverse.
771        for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
772             e = LiveVirtRegs.end(); i != e; ++i) {
773           assert(TargetRegisterInfo::isVirtualRegister(i->first) &&
774                  "Bad map key");
775           assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) &&
776                  "Bad map value");
777           assert(PhysRegState[i->second.PhysReg] == i->first &&
778                  "Bad inverse map");
779        }
780      });
781
782    // Debug values are not allowed to change codegen in any way.
783    if (MI->isDebugValue()) {
784      bool ScanDbgValue = true;
785      while (ScanDbgValue) {
786        ScanDbgValue = false;
787        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
788          MachineOperand &MO = MI->getOperand(i);
789          if (!MO.isReg()) continue;
790          unsigned Reg = MO.getReg();
791          if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
792          LiveDbgValueMap[Reg] = MI;
793          LiveRegMap::iterator LRI = LiveVirtRegs.find(Reg);
794          if (LRI != LiveVirtRegs.end())
795            setPhysReg(MI, i, LRI->second.PhysReg);
796          else {
797            int SS = StackSlotForVirtReg[Reg];
798            if (SS == -1)
799              // We can't allocate a physreg for a DebugValue, sorry!
800              MO.setReg(0);
801            else {
802              // Modify DBG_VALUE now that the value is in a spill slot.
803              int64_t Offset = MI->getOperand(1).getImm();
804              const MDNode *MDPtr =
805                MI->getOperand(MI->getNumOperands()-1).getMetadata();
806              DebugLoc DL = MI->getDebugLoc();
807              if (MachineInstr *NewDV =
808                  TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) {
809                DEBUG(dbgs() << "Modifying debug info due to spill:" <<
810                      "\t" << *MI);
811                MachineBasicBlock *MBB = MI->getParent();
812                MBB->insert(MBB->erase(MI), NewDV);
813                // Scan NewDV operands from the beginning.
814                MI = NewDV;
815                ScanDbgValue = true;
816                break;
817              } else
818                // We can't allocate a physreg for a DebugValue; sorry!
819                MO.setReg(0);
820            }
821          }
822        }
823      }
824      // Next instruction.
825      continue;
826    }
827
828    // If this is a copy, we may be able to coalesce.
829    unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
830    if (MI->isCopy()) {
831      CopyDst = MI->getOperand(0).getReg();
832      CopySrc = MI->getOperand(1).getReg();
833      CopyDstSub = MI->getOperand(0).getSubReg();
834      CopySrcSub = MI->getOperand(1).getSubReg();
835    }
836
837    // Track registers used by instruction.
838    UsedInInstr.reset();
839
840    // First scan.
841    // Mark physreg uses and early clobbers as used.
842    // Find the end of the virtreg operands
843    unsigned VirtOpEnd = 0;
844    bool hasTiedOps = false;
845    bool hasEarlyClobbers = false;
846    bool hasPartialRedefs = false;
847    bool hasPhysDefs = false;
848    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
849      MachineOperand &MO = MI->getOperand(i);
850      if (!MO.isReg()) continue;
851      unsigned Reg = MO.getReg();
852      if (!Reg) continue;
853      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
854        VirtOpEnd = i+1;
855        if (MO.isUse()) {
856          hasTiedOps = hasTiedOps ||
857                                TID.getOperandConstraint(i, TOI::TIED_TO) != -1;
858        } else {
859          if (MO.isEarlyClobber())
860            hasEarlyClobbers = true;
861          if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
862            hasPartialRedefs = true;
863        }
864        continue;
865      }
866      if (!Allocatable.test(Reg)) continue;
867      if (MO.isUse()) {
868        usePhysReg(MO);
869      } else if (MO.isEarlyClobber()) {
870        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
871                               regFree : regReserved);
872        hasEarlyClobbers = true;
873      } else
874        hasPhysDefs = true;
875    }
876
877    // The instruction may have virtual register operands that must be allocated
878    // the same register at use-time and def-time: early clobbers and tied
879    // operands. If there are also physical defs, these registers must avoid
880    // both physical defs and uses, making them more constrained than normal
881    // operands.
882    // Similarly, if there are multiple defs and tied operands, we must make
883    // sure the same register is allocated to uses and defs.
884    // We didn't detect inline asm tied operands above, so just make this extra
885    // pass for all inline asm.
886    if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
887        (hasTiedOps && (hasPhysDefs || TID.getNumDefs() > 1))) {
888      handleThroughOperands(MI, VirtDead);
889      // Don't attempt coalescing when we have funny stuff going on.
890      CopyDst = 0;
891      // Pretend we have early clobbers so the use operands get marked below.
892      // This is not necessary for the common case of a single tied use.
893      hasEarlyClobbers = true;
894    }
895
896    // Second scan.
897    // Allocate virtreg uses.
898    for (unsigned i = 0; i != VirtOpEnd; ++i) {
899      MachineOperand &MO = MI->getOperand(i);
900      if (!MO.isReg()) continue;
901      unsigned Reg = MO.getReg();
902      if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
903      if (MO.isUse()) {
904        LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
905        unsigned PhysReg = LRI->second.PhysReg;
906        CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
907        if (setPhysReg(MI, i, PhysReg))
908          killVirtReg(LRI);
909      }
910    }
911
912    MRI->addPhysRegsUsed(UsedInInstr);
913
914    // Track registers defined by instruction - early clobbers and tied uses at
915    // this point.
916    UsedInInstr.reset();
917    if (hasEarlyClobbers) {
918      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
919        MachineOperand &MO = MI->getOperand(i);
920        if (!MO.isReg()) continue;
921        unsigned Reg = MO.getReg();
922        if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
923        // Look for physreg defs and tied uses.
924        if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
925        UsedInInstr.set(Reg);
926        for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
927          UsedInInstr.set(*AS);
928      }
929    }
930
931    unsigned DefOpEnd = MI->getNumOperands();
932    if (TID.isCall()) {
933      // Spill all virtregs before a call. This serves two purposes: 1. If an
934      // exception is thrown, the landing pad is going to expect to find
935      // registers in their spill slots, and 2. we don't have to wade through
936      // all the <imp-def> operands on the call instruction.
937      DefOpEnd = VirtOpEnd;
938      DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
939      spillAll(MI);
940
941      // The imp-defs are skipped below, but we still need to mark those
942      // registers as used by the function.
943      SkippedInstrs.insert(&TID);
944    }
945
946    // Third scan.
947    // Allocate defs and collect dead defs.
948    for (unsigned i = 0; i != DefOpEnd; ++i) {
949      MachineOperand &MO = MI->getOperand(i);
950      if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
951        continue;
952      unsigned Reg = MO.getReg();
953
954      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
955        if (!Allocatable.test(Reg)) continue;
956        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
957                               regFree : regReserved);
958        continue;
959      }
960      LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
961      unsigned PhysReg = LRI->second.PhysReg;
962      if (setPhysReg(MI, i, PhysReg)) {
963        VirtDead.push_back(Reg);
964        CopyDst = 0; // cancel coalescing;
965      } else
966        CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
967    }
968
969    // Kill dead defs after the scan to ensure that multiple defs of the same
970    // register are allocated identically. We didn't need to do this for uses
971    // because we are crerating our own kill flags, and they are always at the
972    // last use.
973    for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
974      killVirtReg(VirtDead[i]);
975    VirtDead.clear();
976
977    MRI->addPhysRegsUsed(UsedInInstr);
978
979    if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
980      DEBUG(dbgs() << "-- coalescing: " << *MI);
981      Coalesced.push_back(MI);
982    } else {
983      DEBUG(dbgs() << "<< " << *MI);
984    }
985  }
986
987  // Spill all physical registers holding virtual registers now.
988  DEBUG(dbgs() << "Spilling live registers at end of block.\n");
989  spillAll(MBB->getFirstTerminator());
990
991  // Erase all the coalesced copies. We are delaying it until now because
992  // LiveVirtRegs might refer to the instrs.
993  for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
994    MBB->erase(Coalesced[i]);
995  NumCopies += Coalesced.size();
996
997  DEBUG(MBB->dump());
998}
999
1000/// runOnMachineFunction - Register allocate the whole function
1001///
1002bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1003  DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1004               << "********** Function: "
1005               << ((Value*)Fn.getFunction())->getName() << '\n');
1006  MF = &Fn;
1007  MRI = &MF->getRegInfo();
1008  TM = &Fn.getTarget();
1009  TRI = TM->getRegisterInfo();
1010  TII = TM->getInstrInfo();
1011
1012  UsedInInstr.resize(TRI->getNumRegs());
1013  Allocatable = TRI->getAllocatableSet(*MF);
1014
1015  // initialize the virtual->physical register map to have a 'null'
1016  // mapping for all virtual registers
1017  unsigned LastVirtReg = MRI->getLastVirtReg();
1018  StackSlotForVirtReg.grow(LastVirtReg);
1019
1020  // Loop over all of the basic blocks, eliminating virtual register references
1021  for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1022       MBBi != MBBe; ++MBBi) {
1023    MBB = &*MBBi;
1024    AllocateBasicBlock();
1025  }
1026
1027  // Make sure the set of used physregs is closed under subreg operations.
1028  MRI->closePhysRegsUsed(*TRI);
1029
1030  // Add the clobber lists for all the instructions we skipped earlier.
1031  for (SmallPtrSet<const TargetInstrDesc*, 4>::const_iterator
1032       I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1033    if (const unsigned *Defs = (*I)->getImplicitDefs())
1034      while (*Defs)
1035        MRI->setPhysRegUsed(*Defs++);
1036
1037  SkippedInstrs.clear();
1038  StackSlotForVirtReg.clear();
1039  LiveDbgValueMap.clear();
1040  return true;
1041}
1042
1043FunctionPass *llvm::createFastRegisterAllocator() {
1044  return new RAFast();
1045}
1046