RegAllocFast.cpp revision a0ec3f9b7b826b9b40b80199923b664bad808cce
1//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This register allocator allocates registers to a basic block at a time,
11// attempting to keep values in registers and reusing registers as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/IndexedMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/SparseSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/RegAllocRegistry.h"
30#include "llvm/CodeGen/RegisterClassInfo.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NumStores, "Number of stores added");
42STATISTIC(NumLoads , "Number of loads added");
43STATISTIC(NumCopies, "Number of copies coalesced");
44
45static RegisterRegAlloc
46  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
47
48namespace {
49  class RAFast : public MachineFunctionPass {
50  public:
51    static char ID;
52    RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
53               isBulkSpilling(false) {}
54  private:
55    const TargetMachine *TM;
56    MachineFunction *MF;
57    MachineRegisterInfo *MRI;
58    const TargetRegisterInfo *TRI;
59    const TargetInstrInfo *TII;
60    RegisterClassInfo RegClassInfo;
61
62    // Basic block currently being allocated.
63    MachineBasicBlock *MBB;
64
65    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66    // values are spilled.
67    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
68
69    // Everything we know about a live virtual register.
70    struct LiveReg {
71      MachineInstr *LastUse;    // Last instr to use reg.
72      unsigned VirtReg;         // Virtual register number.
73      unsigned PhysReg;         // Currently held here.
74      unsigned short LastOpNum; // OpNum on LastUse.
75      bool Dirty;               // Register needs spill.
76
77      explicit LiveReg(unsigned v)
78        : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
79
80      unsigned getSparseSetIndex() const {
81        return TargetRegisterInfo::virtReg2Index(VirtReg);
82      }
83    };
84
85    typedef SparseSet<LiveReg> LiveRegMap;
86
87    // LiveVirtRegs - This map contains entries for each virtual register
88    // that is currently available in a physical register.
89    LiveRegMap LiveVirtRegs;
90
91    DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
92
93    // RegState - Track the state of a physical register.
94    enum RegState {
95      // A disabled register is not available for allocation, but an alias may
96      // be in use. A register can only be moved out of the disabled state if
97      // all aliases are disabled.
98      regDisabled,
99
100      // A free register is not currently in use and can be allocated
101      // immediately without checking aliases.
102      regFree,
103
104      // A reserved register has been assigned explicitly (e.g., setting up a
105      // call parameter), and it remains reserved until it is used.
106      regReserved
107
108      // A register state may also be a virtual register number, indication that
109      // the physical register is currently allocated to a virtual register. In
110      // that case, LiveVirtRegs contains the inverse mapping.
111    };
112
113    // PhysRegState - One of the RegState enums, or a virtreg.
114    std::vector<unsigned> PhysRegState;
115
116    // Set of register units.
117    typedef SparseSet<unsigned> UsedInInstrSet;
118
119    // Set of register units that are used in the current instruction, and so
120    // cannot be allocated.
121    UsedInInstrSet UsedInInstr;
122
123    // Mark a physreg as used in this instruction.
124    void markRegUsedInInstr(unsigned PhysReg) {
125      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
126        UsedInInstr.insert(*Units);
127    }
128
129    // Check if a physreg or any of its aliases are used in this instruction.
130    bool isRegUsedInInstr(unsigned PhysReg) const {
131      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
132        if (UsedInInstr.count(*Units))
133          return true;
134      return false;
135    }
136
137    // SkippedInstrs - Descriptors of instructions whose clobber list was
138    // ignored because all registers were spilled. It is still necessary to
139    // mark all the clobbered registers as used by the function.
140    SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
141
142    // isBulkSpilling - This flag is set when LiveRegMap will be cleared
143    // completely after spilling all live registers. LiveRegMap entries should
144    // not be erased.
145    bool isBulkSpilling;
146
147    enum {
148      spillClean = 1,
149      spillDirty = 100,
150      spillImpossible = ~0u
151    };
152  public:
153    virtual const char *getPassName() const {
154      return "Fast Register Allocator";
155    }
156
157    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
158      AU.setPreservesCFG();
159      MachineFunctionPass::getAnalysisUsage(AU);
160    }
161
162  private:
163    bool runOnMachineFunction(MachineFunction &Fn);
164    void AllocateBasicBlock();
165    void handleThroughOperands(MachineInstr *MI,
166                               SmallVectorImpl<unsigned> &VirtDead);
167    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
168    bool isLastUseOfLocalReg(MachineOperand&);
169
170    void addKillFlag(const LiveReg&);
171    void killVirtReg(LiveRegMap::iterator);
172    void killVirtReg(unsigned VirtReg);
173    void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
174    void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
175
176    void usePhysReg(MachineOperand&);
177    void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
178    unsigned calcSpillCost(unsigned PhysReg) const;
179    void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
180    LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
181      return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
182    }
183    LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
184      return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
185    }
186    LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
187    LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
188                                      unsigned Hint);
189    LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
190                                       unsigned VirtReg, unsigned Hint);
191    LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
192                                       unsigned VirtReg, unsigned Hint);
193    void spillAll(MachineBasicBlock::iterator MI);
194    bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
195  };
196  char RAFast::ID = 0;
197}
198
199/// getStackSpaceFor - This allocates space for the specified virtual register
200/// to be held on the stack.
201int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
202  // Find the location Reg would belong...
203  int SS = StackSlotForVirtReg[VirtReg];
204  if (SS != -1)
205    return SS;          // Already has space allocated?
206
207  // Allocate a new stack object for this spill location...
208  int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
209                                                            RC->getAlignment());
210
211  // Assign the slot.
212  StackSlotForVirtReg[VirtReg] = FrameIdx;
213  return FrameIdx;
214}
215
216/// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
217/// its virtual register, and it is guaranteed to be a block-local register.
218///
219bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
220  // If the register has ever been spilled or reloaded, we conservatively assume
221  // it is a global register used in multiple blocks.
222  if (StackSlotForVirtReg[MO.getReg()] != -1)
223    return false;
224
225  // Check that the use/def chain has exactly one operand - MO.
226  MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
227  if (&I.getOperand() != &MO)
228    return false;
229  return ++I == MRI->reg_nodbg_end();
230}
231
232/// addKillFlag - Set kill flags on last use of a virtual register.
233void RAFast::addKillFlag(const LiveReg &LR) {
234  if (!LR.LastUse) return;
235  MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
236  if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
237    if (MO.getReg() == LR.PhysReg)
238      MO.setIsKill();
239    else
240      LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
241  }
242}
243
244/// killVirtReg - Mark virtreg as no longer available.
245void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
246  addKillFlag(*LRI);
247  assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
248         "Broken RegState mapping");
249  PhysRegState[LRI->PhysReg] = regFree;
250  // Erase from LiveVirtRegs unless we're spilling in bulk.
251  if (!isBulkSpilling)
252    LiveVirtRegs.erase(LRI);
253}
254
255/// killVirtReg - Mark virtreg as no longer available.
256void RAFast::killVirtReg(unsigned VirtReg) {
257  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
258         "killVirtReg needs a virtual register");
259  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
260  if (LRI != LiveVirtRegs.end())
261    killVirtReg(LRI);
262}
263
264/// spillVirtReg - This method spills the value specified by VirtReg into the
265/// corresponding stack slot if needed.
266void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
267  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
268         "Spilling a physical register is illegal!");
269  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
270  assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
271  spillVirtReg(MI, LRI);
272}
273
274/// spillVirtReg - Do the actual work of spilling.
275void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
276                          LiveRegMap::iterator LRI) {
277  LiveReg &LR = *LRI;
278  assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
279
280  if (LR.Dirty) {
281    // If this physreg is used by the instruction, we want to kill it on the
282    // instruction, not on the spill.
283    bool SpillKill = LR.LastUse != MI;
284    LR.Dirty = false;
285    DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
286                 << " in " << PrintReg(LR.PhysReg, TRI));
287    const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
288    int FI = getStackSpaceFor(LRI->VirtReg, RC);
289    DEBUG(dbgs() << " to stack slot #" << FI << "\n");
290    TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
291    ++NumStores;   // Update statistics
292
293    // If this register is used by DBG_VALUE then insert new DBG_VALUE to
294    // identify spilled location as the place to find corresponding variable's
295    // value.
296    SmallVectorImpl<MachineInstr *> &LRIDbgValues =
297      LiveDbgValueMap[LRI->VirtReg];
298    for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
299      MachineInstr *DBG = LRIDbgValues[li];
300      const MDNode *MDPtr = DBG->getOperand(2).getMetadata();
301      bool IsIndirect = DBG->getOperand(1).isImm(); // Register-indirect value?
302      uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
303      DebugLoc DL;
304      if (MI == MBB->end()) {
305        // If MI is at basic block end then use last instruction's location.
306        MachineBasicBlock::iterator EI = MI;
307        DL = (--EI)->getDebugLoc();
308      } else
309        DL = MI->getDebugLoc();
310      MachineBasicBlock *MBB = DBG->getParent();
311      MachineInstr *NewDV =
312          BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
313              .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr);
314      (void)NewDV;
315      DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
316    }
317    // Now this register is spilled there is should not be any DBG_VALUE
318    // pointing to this register because they are all pointing to spilled value
319    // now.
320    LRIDbgValues.clear();
321    if (SpillKill)
322      LR.LastUse = 0; // Don't kill register again
323  }
324  killVirtReg(LRI);
325}
326
327/// spillAll - Spill all dirty virtregs without killing them.
328void RAFast::spillAll(MachineBasicBlock::iterator MI) {
329  if (LiveVirtRegs.empty()) return;
330  isBulkSpilling = true;
331  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
332  // of spilling here is deterministic, if arbitrary.
333  for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
334       i != e; ++i)
335    spillVirtReg(MI, i);
336  LiveVirtRegs.clear();
337  isBulkSpilling = false;
338}
339
340/// usePhysReg - Handle the direct use of a physical register.
341/// Check that the register is not used by a virtreg.
342/// Kill the physreg, marking it free.
343/// This may add implicit kills to MO->getParent() and invalidate MO.
344void RAFast::usePhysReg(MachineOperand &MO) {
345  unsigned PhysReg = MO.getReg();
346  assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
347         "Bad usePhysReg operand");
348  markRegUsedInInstr(PhysReg);
349  switch (PhysRegState[PhysReg]) {
350  case regDisabled:
351    break;
352  case regReserved:
353    PhysRegState[PhysReg] = regFree;
354    // Fall through
355  case regFree:
356    MO.setIsKill();
357    return;
358  default:
359    // The physreg was allocated to a virtual register. That means the value we
360    // wanted has been clobbered.
361    llvm_unreachable("Instruction uses an allocated register");
362  }
363
364  // Maybe a superregister is reserved?
365  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
366    unsigned Alias = *AI;
367    switch (PhysRegState[Alias]) {
368    case regDisabled:
369      break;
370    case regReserved:
371      assert(TRI->isSuperRegister(PhysReg, Alias) &&
372             "Instruction is not using a subregister of a reserved register");
373      // Leave the superregister in the working set.
374      PhysRegState[Alias] = regFree;
375      MO.getParent()->addRegisterKilled(Alias, TRI, true);
376      return;
377    case regFree:
378      if (TRI->isSuperRegister(PhysReg, Alias)) {
379        // Leave the superregister in the working set.
380        MO.getParent()->addRegisterKilled(Alias, TRI, true);
381        return;
382      }
383      // Some other alias was in the working set - clear it.
384      PhysRegState[Alias] = regDisabled;
385      break;
386    default:
387      llvm_unreachable("Instruction uses an alias of an allocated register");
388    }
389  }
390
391  // All aliases are disabled, bring register into working set.
392  PhysRegState[PhysReg] = regFree;
393  MO.setIsKill();
394}
395
396/// definePhysReg - Mark PhysReg as reserved or free after spilling any
397/// virtregs. This is very similar to defineVirtReg except the physreg is
398/// reserved instead of allocated.
399void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
400                           RegState NewState) {
401  markRegUsedInInstr(PhysReg);
402  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
403  case regDisabled:
404    break;
405  default:
406    spillVirtReg(MI, VirtReg);
407    // Fall through.
408  case regFree:
409  case regReserved:
410    PhysRegState[PhysReg] = NewState;
411    return;
412  }
413
414  // This is a disabled register, disable all aliases.
415  PhysRegState[PhysReg] = NewState;
416  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
417    unsigned Alias = *AI;
418    switch (unsigned VirtReg = PhysRegState[Alias]) {
419    case regDisabled:
420      break;
421    default:
422      spillVirtReg(MI, VirtReg);
423      // Fall through.
424    case regFree:
425    case regReserved:
426      PhysRegState[Alias] = regDisabled;
427      if (TRI->isSuperRegister(PhysReg, Alias))
428        return;
429      break;
430    }
431  }
432}
433
434
435// calcSpillCost - Return the cost of spilling clearing out PhysReg and
436// aliases so it is free for allocation.
437// Returns 0 when PhysReg is free or disabled with all aliases disabled - it
438// can be allocated directly.
439// Returns spillImpossible when PhysReg or an alias can't be spilled.
440unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
441  if (isRegUsedInInstr(PhysReg)) {
442    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
443    return spillImpossible;
444  }
445  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
446  case regDisabled:
447    break;
448  case regFree:
449    return 0;
450  case regReserved:
451    DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
452                 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
453    return spillImpossible;
454  default: {
455    LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
456    assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
457    return I->Dirty ? spillDirty : spillClean;
458  }
459  }
460
461  // This is a disabled register, add up cost of aliases.
462  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
463  unsigned Cost = 0;
464  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
465    unsigned Alias = *AI;
466    switch (unsigned VirtReg = PhysRegState[Alias]) {
467    case regDisabled:
468      break;
469    case regFree:
470      ++Cost;
471      break;
472    case regReserved:
473      return spillImpossible;
474    default: {
475      LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
476      assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
477      Cost += I->Dirty ? spillDirty : spillClean;
478      break;
479    }
480    }
481  }
482  return Cost;
483}
484
485
486/// assignVirtToPhysReg - This method updates local state so that we know
487/// that PhysReg is the proper container for VirtReg now.  The physical
488/// register must not be used for anything else when this is called.
489///
490void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
491  DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
492               << PrintReg(PhysReg, TRI) << "\n");
493  PhysRegState[PhysReg] = LR.VirtReg;
494  assert(!LR.PhysReg && "Already assigned a physreg");
495  LR.PhysReg = PhysReg;
496}
497
498RAFast::LiveRegMap::iterator
499RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
500  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
501  assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
502  assignVirtToPhysReg(*LRI, PhysReg);
503  return LRI;
504}
505
506/// allocVirtReg - Allocate a physical register for VirtReg.
507RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
508                                                  LiveRegMap::iterator LRI,
509                                                  unsigned Hint) {
510  const unsigned VirtReg = LRI->VirtReg;
511
512  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
513         "Can only allocate virtual registers");
514
515  const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
516
517  // Ignore invalid hints.
518  if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
519               !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
520    Hint = 0;
521
522  // Take hint when possible.
523  if (Hint) {
524    // Ignore the hint if we would have to spill a dirty register.
525    unsigned Cost = calcSpillCost(Hint);
526    if (Cost < spillDirty) {
527      if (Cost)
528        definePhysReg(MI, Hint, regFree);
529      // definePhysReg may kill virtual registers and modify LiveVirtRegs.
530      // That invalidates LRI, so run a new lookup for VirtReg.
531      return assignVirtToPhysReg(VirtReg, Hint);
532    }
533  }
534
535  ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
536
537  // First try to find a completely free register.
538  for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
539    unsigned PhysReg = *I;
540    if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
541      assignVirtToPhysReg(*LRI, PhysReg);
542      return LRI;
543    }
544  }
545
546  DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
547               << RC->getName() << "\n");
548
549  unsigned BestReg = 0, BestCost = spillImpossible;
550  for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
551    unsigned Cost = calcSpillCost(*I);
552    DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
553    DEBUG(dbgs() << "\tCost: " << Cost << "\n");
554    DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
555    // Cost is 0 when all aliases are already disabled.
556    if (Cost == 0) {
557      assignVirtToPhysReg(*LRI, *I);
558      return LRI;
559    }
560    if (Cost < BestCost)
561      BestReg = *I, BestCost = Cost;
562  }
563
564  if (BestReg) {
565    definePhysReg(MI, BestReg, regFree);
566    // definePhysReg may kill virtual registers and modify LiveVirtRegs.
567    // That invalidates LRI, so run a new lookup for VirtReg.
568    return assignVirtToPhysReg(VirtReg, BestReg);
569  }
570
571  // Nothing we can do. Report an error and keep going with a bad allocation.
572  MI->emitError("ran out of registers during register allocation");
573  definePhysReg(MI, *AO.begin(), regFree);
574  return assignVirtToPhysReg(VirtReg, *AO.begin());
575}
576
577/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
578RAFast::LiveRegMap::iterator
579RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
580                      unsigned VirtReg, unsigned Hint) {
581  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
582         "Not a virtual register");
583  LiveRegMap::iterator LRI;
584  bool New;
585  tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
586  if (New) {
587    // If there is no hint, peek at the only use of this register.
588    if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
589        MRI->hasOneNonDBGUse(VirtReg)) {
590      const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
591      // It's a copy, use the destination register as a hint.
592      if (UseMI.isCopyLike())
593        Hint = UseMI.getOperand(0).getReg();
594    }
595    LRI = allocVirtReg(MI, LRI, Hint);
596  } else if (LRI->LastUse) {
597    // Redefining a live register - kill at the last use, unless it is this
598    // instruction defining VirtReg multiple times.
599    if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
600      addKillFlag(*LRI);
601  }
602  assert(LRI->PhysReg && "Register not assigned");
603  LRI->LastUse = MI;
604  LRI->LastOpNum = OpNum;
605  LRI->Dirty = true;
606  markRegUsedInInstr(LRI->PhysReg);
607  return LRI;
608}
609
610/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
611RAFast::LiveRegMap::iterator
612RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
613                      unsigned VirtReg, unsigned Hint) {
614  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
615         "Not a virtual register");
616  LiveRegMap::iterator LRI;
617  bool New;
618  tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
619  MachineOperand &MO = MI->getOperand(OpNum);
620  if (New) {
621    LRI = allocVirtReg(MI, LRI, Hint);
622    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
623    int FrameIndex = getStackSpaceFor(VirtReg, RC);
624    DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
625                 << PrintReg(LRI->PhysReg, TRI) << "\n");
626    TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
627    ++NumLoads;
628  } else if (LRI->Dirty) {
629    if (isLastUseOfLocalReg(MO)) {
630      DEBUG(dbgs() << "Killing last use: " << MO << "\n");
631      if (MO.isUse())
632        MO.setIsKill();
633      else
634        MO.setIsDead();
635    } else if (MO.isKill()) {
636      DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
637      MO.setIsKill(false);
638    } else if (MO.isDead()) {
639      DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
640      MO.setIsDead(false);
641    }
642  } else if (MO.isKill()) {
643    // We must remove kill flags from uses of reloaded registers because the
644    // register would be killed immediately, and there might be a second use:
645    //   %foo = OR %x<kill>, %x
646    // This would cause a second reload of %x into a different register.
647    DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
648    MO.setIsKill(false);
649  } else if (MO.isDead()) {
650    DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
651    MO.setIsDead(false);
652  }
653  assert(LRI->PhysReg && "Register not assigned");
654  LRI->LastUse = MI;
655  LRI->LastOpNum = OpNum;
656  markRegUsedInInstr(LRI->PhysReg);
657  return LRI;
658}
659
660// setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
661// subregs. This may invalidate any operand pointers.
662// Return true if the operand kills its register.
663bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
664  MachineOperand &MO = MI->getOperand(OpNum);
665  bool Dead = MO.isDead();
666  if (!MO.getSubReg()) {
667    MO.setReg(PhysReg);
668    return MO.isKill() || Dead;
669  }
670
671  // Handle subregister index.
672  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
673  MO.setSubReg(0);
674
675  // A kill flag implies killing the full register. Add corresponding super
676  // register kill.
677  if (MO.isKill()) {
678    MI->addRegisterKilled(PhysReg, TRI, true);
679    return true;
680  }
681
682  // A <def,read-undef> of a sub-register requires an implicit def of the full
683  // register.
684  if (MO.isDef() && MO.isUndef())
685    MI->addRegisterDefined(PhysReg, TRI);
686
687  return Dead;
688}
689
690// Handle special instruction operand like early clobbers and tied ops when
691// there are additional physreg defines.
692void RAFast::handleThroughOperands(MachineInstr *MI,
693                                   SmallVectorImpl<unsigned> &VirtDead) {
694  DEBUG(dbgs() << "Scanning for through registers:");
695  SmallSet<unsigned, 8> ThroughRegs;
696  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
697    MachineOperand &MO = MI->getOperand(i);
698    if (!MO.isReg()) continue;
699    unsigned Reg = MO.getReg();
700    if (!TargetRegisterInfo::isVirtualRegister(Reg))
701      continue;
702    if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
703        (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
704      if (ThroughRegs.insert(Reg))
705        DEBUG(dbgs() << ' ' << PrintReg(Reg));
706    }
707  }
708
709  // If any physreg defines collide with preallocated through registers,
710  // we must spill and reallocate.
711  DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
712  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
713    MachineOperand &MO = MI->getOperand(i);
714    if (!MO.isReg() || !MO.isDef()) continue;
715    unsigned Reg = MO.getReg();
716    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
717    markRegUsedInInstr(Reg);
718    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
719      if (ThroughRegs.count(PhysRegState[*AI]))
720        definePhysReg(MI, *AI, regFree);
721    }
722  }
723
724  SmallVector<unsigned, 8> PartialDefs;
725  DEBUG(dbgs() << "Allocating tied uses.\n");
726  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
727    MachineOperand &MO = MI->getOperand(i);
728    if (!MO.isReg()) continue;
729    unsigned Reg = MO.getReg();
730    if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
731    if (MO.isUse()) {
732      unsigned DefIdx = 0;
733      if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
734      DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
735        << DefIdx << ".\n");
736      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
737      unsigned PhysReg = LRI->PhysReg;
738      setPhysReg(MI, i, PhysReg);
739      // Note: we don't update the def operand yet. That would cause the normal
740      // def-scan to attempt spilling.
741    } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
742      DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
743      // Reload the register, but don't assign to the operand just yet.
744      // That would confuse the later phys-def processing pass.
745      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
746      PartialDefs.push_back(LRI->PhysReg);
747    }
748  }
749
750  DEBUG(dbgs() << "Allocating early clobbers.\n");
751  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
752    MachineOperand &MO = MI->getOperand(i);
753    if (!MO.isReg()) continue;
754    unsigned Reg = MO.getReg();
755    if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
756    if (!MO.isEarlyClobber())
757      continue;
758    // Note: defineVirtReg may invalidate MO.
759    LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
760    unsigned PhysReg = LRI->PhysReg;
761    if (setPhysReg(MI, i, PhysReg))
762      VirtDead.push_back(Reg);
763  }
764
765  // Restore UsedInInstr to a state usable for allocating normal virtual uses.
766  UsedInInstr.clear();
767  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
768    MachineOperand &MO = MI->getOperand(i);
769    if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
770    unsigned Reg = MO.getReg();
771    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
772    DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
773                 << " as used in instr\n");
774    markRegUsedInInstr(Reg);
775  }
776
777  // Also mark PartialDefs as used to avoid reallocation.
778  for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
779    markRegUsedInInstr(PartialDefs[i]);
780}
781
782void RAFast::AllocateBasicBlock() {
783  DEBUG(dbgs() << "\nAllocating " << *MBB);
784
785  PhysRegState.assign(TRI->getNumRegs(), regDisabled);
786  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
787
788  MachineBasicBlock::iterator MII = MBB->begin();
789
790  // Add live-in registers as live.
791  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
792         E = MBB->livein_end(); I != E; ++I)
793    if (MRI->isAllocatable(*I))
794      definePhysReg(MII, *I, regReserved);
795
796  SmallVector<unsigned, 8> VirtDead;
797  SmallVector<MachineInstr*, 32> Coalesced;
798
799  // Otherwise, sequentially allocate each instruction in the MBB.
800  while (MII != MBB->end()) {
801    MachineInstr *MI = MII++;
802    const MCInstrDesc &MCID = MI->getDesc();
803    DEBUG({
804        dbgs() << "\n>> " << *MI << "Regs:";
805        for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
806          if (PhysRegState[Reg] == regDisabled) continue;
807          dbgs() << " " << TRI->getName(Reg);
808          switch(PhysRegState[Reg]) {
809          case regFree:
810            break;
811          case regReserved:
812            dbgs() << "*";
813            break;
814          default: {
815            dbgs() << '=' << PrintReg(PhysRegState[Reg]);
816            LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
817            assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
818            if (I->Dirty)
819              dbgs() << "*";
820            assert(I->PhysReg == Reg && "Bad inverse map");
821            break;
822          }
823          }
824        }
825        dbgs() << '\n';
826        // Check that LiveVirtRegs is the inverse.
827        for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
828             e = LiveVirtRegs.end(); i != e; ++i) {
829           assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
830                  "Bad map key");
831           assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
832                  "Bad map value");
833           assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
834        }
835      });
836
837    // Debug values are not allowed to change codegen in any way.
838    if (MI->isDebugValue()) {
839      bool ScanDbgValue = true;
840      while (ScanDbgValue) {
841        ScanDbgValue = false;
842        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
843          MachineOperand &MO = MI->getOperand(i);
844          if (!MO.isReg()) continue;
845          unsigned Reg = MO.getReg();
846          if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
847          LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
848          if (LRI != LiveVirtRegs.end())
849            setPhysReg(MI, i, LRI->PhysReg);
850          else {
851            int SS = StackSlotForVirtReg[Reg];
852            if (SS == -1) {
853              // We can't allocate a physreg for a DebugValue, sorry!
854              DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
855              MO.setReg(0);
856            }
857            else {
858              // Modify DBG_VALUE now that the value is in a spill slot.
859              bool IsIndirect = MI->getOperand(1).isImm();
860              uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
861              const MDNode *MDPtr =
862                MI->getOperand(MI->getNumOperands()-1).getMetadata();
863              DebugLoc DL = MI->getDebugLoc();
864              MachineBasicBlock *MBB = MI->getParent();
865              MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
866                                            TII->get(TargetOpcode::DBG_VALUE))
867                  .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr);
868              DEBUG(dbgs() << "Modifying debug info due to spill:"
869                           << "\t" << *NewDV);
870              // Scan NewDV operands from the beginning.
871              MI = NewDV;
872              ScanDbgValue = true;
873              break;
874            }
875          }
876          LiveDbgValueMap[Reg].push_back(MI);
877        }
878      }
879      // Next instruction.
880      continue;
881    }
882
883    // If this is a copy, we may be able to coalesce.
884    unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
885    if (MI->isCopy()) {
886      CopyDst = MI->getOperand(0).getReg();
887      CopySrc = MI->getOperand(1).getReg();
888      CopyDstSub = MI->getOperand(0).getSubReg();
889      CopySrcSub = MI->getOperand(1).getSubReg();
890    }
891
892    // Track registers used by instruction.
893    UsedInInstr.clear();
894
895    // First scan.
896    // Mark physreg uses and early clobbers as used.
897    // Find the end of the virtreg operands
898    unsigned VirtOpEnd = 0;
899    bool hasTiedOps = false;
900    bool hasEarlyClobbers = false;
901    bool hasPartialRedefs = false;
902    bool hasPhysDefs = false;
903    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
904      MachineOperand &MO = MI->getOperand(i);
905      // Make sure MRI knows about registers clobbered by regmasks.
906      if (MO.isRegMask()) {
907        MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
908        continue;
909      }
910      if (!MO.isReg()) continue;
911      unsigned Reg = MO.getReg();
912      if (!Reg) continue;
913      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
914        VirtOpEnd = i+1;
915        if (MO.isUse()) {
916          hasTiedOps = hasTiedOps ||
917                              MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
918        } else {
919          if (MO.isEarlyClobber())
920            hasEarlyClobbers = true;
921          if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
922            hasPartialRedefs = true;
923        }
924        continue;
925      }
926      if (!MRI->isAllocatable(Reg)) continue;
927      if (MO.isUse()) {
928        usePhysReg(MO);
929      } else if (MO.isEarlyClobber()) {
930        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
931                               regFree : regReserved);
932        hasEarlyClobbers = true;
933      } else
934        hasPhysDefs = true;
935    }
936
937    // The instruction may have virtual register operands that must be allocated
938    // the same register at use-time and def-time: early clobbers and tied
939    // operands. If there are also physical defs, these registers must avoid
940    // both physical defs and uses, making them more constrained than normal
941    // operands.
942    // Similarly, if there are multiple defs and tied operands, we must make
943    // sure the same register is allocated to uses and defs.
944    // We didn't detect inline asm tied operands above, so just make this extra
945    // pass for all inline asm.
946    if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
947        (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
948      handleThroughOperands(MI, VirtDead);
949      // Don't attempt coalescing when we have funny stuff going on.
950      CopyDst = 0;
951      // Pretend we have early clobbers so the use operands get marked below.
952      // This is not necessary for the common case of a single tied use.
953      hasEarlyClobbers = true;
954    }
955
956    // Second scan.
957    // Allocate virtreg uses.
958    for (unsigned i = 0; i != VirtOpEnd; ++i) {
959      MachineOperand &MO = MI->getOperand(i);
960      if (!MO.isReg()) continue;
961      unsigned Reg = MO.getReg();
962      if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
963      if (MO.isUse()) {
964        LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
965        unsigned PhysReg = LRI->PhysReg;
966        CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
967        if (setPhysReg(MI, i, PhysReg))
968          killVirtReg(LRI);
969      }
970    }
971
972    for (UsedInInstrSet::iterator
973         I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
974      MRI->setRegUnitUsed(*I);
975
976    // Track registers defined by instruction - early clobbers and tied uses at
977    // this point.
978    UsedInInstr.clear();
979    if (hasEarlyClobbers) {
980      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
981        MachineOperand &MO = MI->getOperand(i);
982        if (!MO.isReg()) continue;
983        unsigned Reg = MO.getReg();
984        if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
985        // Look for physreg defs and tied uses.
986        if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
987        markRegUsedInInstr(Reg);
988      }
989    }
990
991    unsigned DefOpEnd = MI->getNumOperands();
992    if (MI->isCall()) {
993      // Spill all virtregs before a call. This serves two purposes: 1. If an
994      // exception is thrown, the landing pad is going to expect to find
995      // registers in their spill slots, and 2. we don't have to wade through
996      // all the <imp-def> operands on the call instruction.
997      DefOpEnd = VirtOpEnd;
998      DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
999      spillAll(MI);
1000
1001      // The imp-defs are skipped below, but we still need to mark those
1002      // registers as used by the function.
1003      SkippedInstrs.insert(&MCID);
1004    }
1005
1006    // Third scan.
1007    // Allocate defs and collect dead defs.
1008    for (unsigned i = 0; i != DefOpEnd; ++i) {
1009      MachineOperand &MO = MI->getOperand(i);
1010      if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1011        continue;
1012      unsigned Reg = MO.getReg();
1013
1014      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1015        if (!MRI->isAllocatable(Reg)) continue;
1016        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
1017                               regFree : regReserved);
1018        continue;
1019      }
1020      LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1021      unsigned PhysReg = LRI->PhysReg;
1022      if (setPhysReg(MI, i, PhysReg)) {
1023        VirtDead.push_back(Reg);
1024        CopyDst = 0; // cancel coalescing;
1025      } else
1026        CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1027    }
1028
1029    // Kill dead defs after the scan to ensure that multiple defs of the same
1030    // register are allocated identically. We didn't need to do this for uses
1031    // because we are crerating our own kill flags, and they are always at the
1032    // last use.
1033    for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1034      killVirtReg(VirtDead[i]);
1035    VirtDead.clear();
1036
1037    for (UsedInInstrSet::iterator
1038         I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
1039      MRI->setRegUnitUsed(*I);
1040
1041    if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1042      DEBUG(dbgs() << "-- coalescing: " << *MI);
1043      Coalesced.push_back(MI);
1044    } else {
1045      DEBUG(dbgs() << "<< " << *MI);
1046    }
1047  }
1048
1049  // Spill all physical registers holding virtual registers now.
1050  DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1051  spillAll(MBB->getFirstTerminator());
1052
1053  // Erase all the coalesced copies. We are delaying it until now because
1054  // LiveVirtRegs might refer to the instrs.
1055  for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1056    MBB->erase(Coalesced[i]);
1057  NumCopies += Coalesced.size();
1058
1059  DEBUG(MBB->dump());
1060}
1061
1062/// runOnMachineFunction - Register allocate the whole function
1063///
1064bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1065  DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1066               << "********** Function: " << Fn.getName() << '\n');
1067  MF = &Fn;
1068  MRI = &MF->getRegInfo();
1069  TM = &Fn.getTarget();
1070  TRI = TM->getRegisterInfo();
1071  TII = TM->getInstrInfo();
1072  MRI->freezeReservedRegs(Fn);
1073  RegClassInfo.runOnMachineFunction(Fn);
1074  UsedInInstr.clear();
1075  UsedInInstr.setUniverse(TRI->getNumRegUnits());
1076
1077  assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1078
1079  // initialize the virtual->physical register map to have a 'null'
1080  // mapping for all virtual registers
1081  StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1082  LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1083
1084  // Loop over all of the basic blocks, eliminating virtual register references
1085  for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1086       MBBi != MBBe; ++MBBi) {
1087    MBB = &*MBBi;
1088    AllocateBasicBlock();
1089  }
1090
1091  // Add the clobber lists for all the instructions we skipped earlier.
1092  for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
1093       I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1094    if (const uint16_t *Defs = (*I)->getImplicitDefs())
1095      while (*Defs)
1096        MRI->setPhysRegUsed(*Defs++);
1097
1098  // All machine operands and other references to virtual registers have been
1099  // replaced. Remove the virtual registers.
1100  MRI->clearVirtRegs();
1101
1102  SkippedInstrs.clear();
1103  StackSlotForVirtReg.clear();
1104  LiveDbgValueMap.clear();
1105  return true;
1106}
1107
1108FunctionPass *llvm::createFastRegisterAllocator() {
1109  return new RAFast();
1110}
1111