RegAllocGreedy.cpp revision 1ead68d769f27f6d68d4aaeffe4199fa2cacbc95
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "RegAllocBase.h"
20#include "Spiller.h"
21#include "SpillPlacement.h"
22#include "SplitKit.h"
23#include "llvm/CodeGen/VirtRegMap.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/PassAnalysisSupport.h"
27#include "llvm/CodeGen/CalcSpillWeights.h"
28#include "llvm/CodeGen/EdgeBundles.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/CodeGen/LiveRangeEdit.h"
31#include "llvm/CodeGen/LiveRegMatrix.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineLoopInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/CodeGen/RegAllocRegistry.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/Timer.h"
45
46#include <queue>
47
48using namespace llvm;
49
50STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51STATISTIC(NumLocalSplits,  "Number of split local live ranges");
52STATISTIC(NumEvicted,      "Number of interferences evicted");
53
54static cl::opt<SplitEditor::ComplementSpillMode>
55SplitSpillMode("split-spill-mode", cl::Hidden,
56  cl::desc("Spill mode for splitting live ranges"),
57  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
58             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
59             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
60             clEnumValEnd),
61  cl::init(SplitEditor::SM_Partition));
62
63static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
64                                       createGreedyRegisterAllocator);
65
66namespace {
67class RAGreedy : public MachineFunctionPass,
68                 public RegAllocBase,
69                 private LiveRangeEdit::Delegate {
70
71  // context
72  MachineFunction *MF;
73
74  // analyses
75  SlotIndexes *Indexes;
76  MachineDominatorTree *DomTree;
77  MachineLoopInfo *Loops;
78  EdgeBundles *Bundles;
79  SpillPlacement *SpillPlacer;
80  LiveDebugVariables *DebugVars;
81
82  // state
83  std::auto_ptr<Spiller> SpillerInstance;
84  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
85  unsigned NextCascade;
86
87  // Live ranges pass through a number of stages as we try to allocate them.
88  // Some of the stages may also create new live ranges:
89  //
90  // - Region splitting.
91  // - Per-block splitting.
92  // - Local splitting.
93  // - Spilling.
94  //
95  // Ranges produced by one of the stages skip the previous stages when they are
96  // dequeued. This improves performance because we can skip interference checks
97  // that are unlikely to give any results. It also guarantees that the live
98  // range splitting algorithm terminates, something that is otherwise hard to
99  // ensure.
100  enum LiveRangeStage {
101    /// Newly created live range that has never been queued.
102    RS_New,
103
104    /// Only attempt assignment and eviction. Then requeue as RS_Split.
105    RS_Assign,
106
107    /// Attempt live range splitting if assignment is impossible.
108    RS_Split,
109
110    /// Attempt more aggressive live range splitting that is guaranteed to make
111    /// progress.  This is used for split products that may not be making
112    /// progress.
113    RS_Split2,
114
115    /// Live range will be spilled.  No more splitting will be attempted.
116    RS_Spill,
117
118    /// There is nothing more we can do to this live range.  Abort compilation
119    /// if it can't be assigned.
120    RS_Done
121  };
122
123  static const char *const StageName[];
124
125  // RegInfo - Keep additional information about each live range.
126  struct RegInfo {
127    LiveRangeStage Stage;
128
129    // Cascade - Eviction loop prevention. See canEvictInterference().
130    unsigned Cascade;
131
132    RegInfo() : Stage(RS_New), Cascade(0) {}
133  };
134
135  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
136
137  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
138    return ExtraRegInfo[VirtReg.reg].Stage;
139  }
140
141  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
142    ExtraRegInfo.resize(MRI->getNumVirtRegs());
143    ExtraRegInfo[VirtReg.reg].Stage = Stage;
144  }
145
146  template<typename Iterator>
147  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
148    ExtraRegInfo.resize(MRI->getNumVirtRegs());
149    for (;Begin != End; ++Begin) {
150      unsigned Reg = (*Begin)->reg;
151      if (ExtraRegInfo[Reg].Stage == RS_New)
152        ExtraRegInfo[Reg].Stage = NewStage;
153    }
154  }
155
156  /// Cost of evicting interference.
157  struct EvictionCost {
158    unsigned BrokenHints; ///< Total number of broken hints.
159    float MaxWeight;      ///< Maximum spill weight evicted.
160
161    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
162
163    bool operator<(const EvictionCost &O) const {
164      if (BrokenHints != O.BrokenHints)
165        return BrokenHints < O.BrokenHints;
166      return MaxWeight < O.MaxWeight;
167    }
168  };
169
170  // splitting state.
171  std::auto_ptr<SplitAnalysis> SA;
172  std::auto_ptr<SplitEditor> SE;
173
174  /// Cached per-block interference maps
175  InterferenceCache IntfCache;
176
177  /// All basic blocks where the current register has uses.
178  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
179
180  /// Global live range splitting candidate info.
181  struct GlobalSplitCandidate {
182    // Register intended for assignment, or 0.
183    unsigned PhysReg;
184
185    // SplitKit interval index for this candidate.
186    unsigned IntvIdx;
187
188    // Interference for PhysReg.
189    InterferenceCache::Cursor Intf;
190
191    // Bundles where this candidate should be live.
192    BitVector LiveBundles;
193    SmallVector<unsigned, 8> ActiveBlocks;
194
195    void reset(InterferenceCache &Cache, unsigned Reg) {
196      PhysReg = Reg;
197      IntvIdx = 0;
198      Intf.setPhysReg(Cache, Reg);
199      LiveBundles.clear();
200      ActiveBlocks.clear();
201    }
202
203    // Set B[i] = C for every live bundle where B[i] was NoCand.
204    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
205      unsigned Count = 0;
206      for (int i = LiveBundles.find_first(); i >= 0;
207           i = LiveBundles.find_next(i))
208        if (B[i] == NoCand) {
209          B[i] = C;
210          Count++;
211        }
212      return Count;
213    }
214  };
215
216  /// Candidate info for for each PhysReg in AllocationOrder.
217  /// This vector never shrinks, but grows to the size of the largest register
218  /// class.
219  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
220
221  enum { NoCand = ~0u };
222
223  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
224  /// NoCand which indicates the stack interval.
225  SmallVector<unsigned, 32> BundleCand;
226
227public:
228  RAGreedy();
229
230  /// Return the pass name.
231  virtual const char* getPassName() const {
232    return "Greedy Register Allocator";
233  }
234
235  /// RAGreedy analysis usage.
236  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
237  virtual void releaseMemory();
238  virtual Spiller &spiller() { return *SpillerInstance; }
239  virtual void enqueue(LiveInterval *LI);
240  virtual LiveInterval *dequeue();
241  virtual unsigned selectOrSplit(LiveInterval&,
242                                 SmallVectorImpl<LiveInterval*>&);
243
244  /// Perform register allocation.
245  virtual bool runOnMachineFunction(MachineFunction &mf);
246
247  static char ID;
248
249private:
250  bool LRE_CanEraseVirtReg(unsigned);
251  void LRE_WillShrinkVirtReg(unsigned);
252  void LRE_DidCloneVirtReg(unsigned, unsigned);
253
254  float calcSpillCost();
255  bool addSplitConstraints(InterferenceCache::Cursor, float&);
256  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
257  void growRegion(GlobalSplitCandidate &Cand);
258  float calcGlobalSplitCost(GlobalSplitCandidate&);
259  bool calcCompactRegion(GlobalSplitCandidate&);
260  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
261  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
262  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
263  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
264  void evictInterference(LiveInterval&, unsigned,
265                         SmallVectorImpl<LiveInterval*>&);
266
267  unsigned tryAssign(LiveInterval&, AllocationOrder&,
268                     SmallVectorImpl<LiveInterval*>&);
269  unsigned tryEvict(LiveInterval&, AllocationOrder&,
270                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
271  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
272                          SmallVectorImpl<LiveInterval*>&);
273  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
274                         SmallVectorImpl<LiveInterval*>&);
275  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
276                               SmallVectorImpl<LiveInterval*>&);
277  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
278    SmallVectorImpl<LiveInterval*>&);
279  unsigned trySplit(LiveInterval&, AllocationOrder&,
280                    SmallVectorImpl<LiveInterval*>&);
281};
282} // end anonymous namespace
283
284char RAGreedy::ID = 0;
285
286#ifndef NDEBUG
287const char *const RAGreedy::StageName[] = {
288    "RS_New",
289    "RS_Assign",
290    "RS_Split",
291    "RS_Split2",
292    "RS_Spill",
293    "RS_Done"
294};
295#endif
296
297// Hysteresis to use when comparing floats.
298// This helps stabilize decisions based on float comparisons.
299const float Hysteresis = 0.98f;
300
301
302FunctionPass* llvm::createGreedyRegisterAllocator() {
303  return new RAGreedy();
304}
305
306RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
307  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
308  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
309  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
310  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
311  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
312  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
313  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
314  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
315  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
316  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
317  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
318  initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
319  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
320  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
321}
322
323void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
324  AU.setPreservesCFG();
325  AU.addRequired<AliasAnalysis>();
326  AU.addPreserved<AliasAnalysis>();
327  AU.addRequired<LiveIntervals>();
328  AU.addPreserved<LiveIntervals>();
329  AU.addRequired<SlotIndexes>();
330  AU.addPreserved<SlotIndexes>();
331  AU.addRequired<LiveDebugVariables>();
332  AU.addPreserved<LiveDebugVariables>();
333  AU.addRequired<LiveStacks>();
334  AU.addPreserved<LiveStacks>();
335  AU.addRequired<CalculateSpillWeights>();
336  AU.addRequired<MachineDominatorTree>();
337  AU.addPreserved<MachineDominatorTree>();
338  AU.addRequired<MachineLoopInfo>();
339  AU.addPreserved<MachineLoopInfo>();
340  AU.addRequired<VirtRegMap>();
341  AU.addPreserved<VirtRegMap>();
342  AU.addRequired<LiveRegMatrix>();
343  AU.addPreserved<LiveRegMatrix>();
344  AU.addRequired<EdgeBundles>();
345  AU.addRequired<SpillPlacement>();
346  MachineFunctionPass::getAnalysisUsage(AU);
347}
348
349
350//===----------------------------------------------------------------------===//
351//                     LiveRangeEdit delegate methods
352//===----------------------------------------------------------------------===//
353
354bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
355  if (VRM->hasPhys(VirtReg)) {
356    Matrix->unassign(LIS->getInterval(VirtReg));
357    return true;
358  }
359  // Unassigned virtreg is probably in the priority queue.
360  // RegAllocBase will erase it after dequeueing.
361  return false;
362}
363
364void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
365  if (!VRM->hasPhys(VirtReg))
366    return;
367
368  // Register is assigned, put it back on the queue for reassignment.
369  LiveInterval &LI = LIS->getInterval(VirtReg);
370  Matrix->unassign(LI);
371  enqueue(&LI);
372}
373
374void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
375  // Cloning a register we haven't even heard about yet?  Just ignore it.
376  if (!ExtraRegInfo.inBounds(Old))
377    return;
378
379  // LRE may clone a virtual register because dead code elimination causes it to
380  // be split into connected components. The new components are much smaller
381  // than the original, so they should get a new chance at being assigned.
382  // same stage as the parent.
383  ExtraRegInfo[Old].Stage = RS_Assign;
384  ExtraRegInfo.grow(New);
385  ExtraRegInfo[New] = ExtraRegInfo[Old];
386}
387
388void RAGreedy::releaseMemory() {
389  SpillerInstance.reset(0);
390  ExtraRegInfo.clear();
391  GlobalCand.clear();
392}
393
394void RAGreedy::enqueue(LiveInterval *LI) {
395  // Prioritize live ranges by size, assigning larger ranges first.
396  // The queue holds (size, reg) pairs.
397  const unsigned Size = LI->getSize();
398  const unsigned Reg = LI->reg;
399  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
400         "Can only enqueue virtual registers");
401  unsigned Prio;
402
403  ExtraRegInfo.grow(Reg);
404  if (ExtraRegInfo[Reg].Stage == RS_New)
405    ExtraRegInfo[Reg].Stage = RS_Assign;
406
407  if (ExtraRegInfo[Reg].Stage == RS_Split) {
408    // Unsplit ranges that couldn't be allocated immediately are deferred until
409    // everything else has been allocated.
410    Prio = Size;
411  } else {
412    // Everything is allocated in long->short order. Long ranges that don't fit
413    // should be spilled (or split) ASAP so they don't create interference.
414    Prio = (1u << 31) + Size;
415
416    // Boost ranges that have a physical register hint.
417    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
418      Prio |= (1u << 30);
419  }
420
421  Queue.push(std::make_pair(Prio, ~Reg));
422}
423
424LiveInterval *RAGreedy::dequeue() {
425  if (Queue.empty())
426    return 0;
427  LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
428  Queue.pop();
429  return LI;
430}
431
432
433//===----------------------------------------------------------------------===//
434//                            Direct Assignment
435//===----------------------------------------------------------------------===//
436
437/// tryAssign - Try to assign VirtReg to an available register.
438unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
439                             AllocationOrder &Order,
440                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
441  Order.rewind();
442  unsigned PhysReg;
443  while ((PhysReg = Order.next()))
444    if (!Matrix->checkInterference(VirtReg, PhysReg))
445      break;
446  if (!PhysReg || Order.isHint(PhysReg))
447    return PhysReg;
448
449  // PhysReg is available, but there may be a better choice.
450
451  // If we missed a simple hint, try to cheaply evict interference from the
452  // preferred register.
453  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
454    if (Order.isHint(Hint)) {
455      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
456      EvictionCost MaxCost(1);
457      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
458        evictInterference(VirtReg, Hint, NewVRegs);
459        return Hint;
460      }
461    }
462
463  // Try to evict interference from a cheaper alternative.
464  unsigned Cost = TRI->getCostPerUse(PhysReg);
465
466  // Most registers have 0 additional cost.
467  if (!Cost)
468    return PhysReg;
469
470  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
471               << '\n');
472  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
473  return CheapReg ? CheapReg : PhysReg;
474}
475
476
477//===----------------------------------------------------------------------===//
478//                         Interference eviction
479//===----------------------------------------------------------------------===//
480
481/// shouldEvict - determine if A should evict the assigned live range B. The
482/// eviction policy defined by this function together with the allocation order
483/// defined by enqueue() decides which registers ultimately end up being split
484/// and spilled.
485///
486/// Cascade numbers are used to prevent infinite loops if this function is a
487/// cyclic relation.
488///
489/// @param A          The live range to be assigned.
490/// @param IsHint     True when A is about to be assigned to its preferred
491///                   register.
492/// @param B          The live range to be evicted.
493/// @param BreaksHint True when B is already assigned to its preferred register.
494bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
495                           LiveInterval &B, bool BreaksHint) {
496  bool CanSplit = getStage(B) < RS_Spill;
497
498  // Be fairly aggressive about following hints as long as the evictee can be
499  // split.
500  if (CanSplit && IsHint && !BreaksHint)
501    return true;
502
503  return A.weight > B.weight;
504}
505
506/// canEvictInterference - Return true if all interferences between VirtReg and
507/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
508///
509/// @param VirtReg Live range that is about to be assigned.
510/// @param PhysReg Desired register for assignment.
511/// @param IsHint  True when PhysReg is VirtReg's preferred register.
512/// @param MaxCost Only look for cheaper candidates and update with new cost
513///                when returning true.
514/// @returns True when interference can be evicted cheaper than MaxCost.
515bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
516                                    bool IsHint, EvictionCost &MaxCost) {
517  // It is only possible to evict virtual register interference.
518  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
519    return false;
520
521  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
522  // involved in an eviction before. If a cascade number was assigned, deny
523  // evicting anything with the same or a newer cascade number. This prevents
524  // infinite eviction loops.
525  //
526  // This works out so a register without a cascade number is allowed to evict
527  // anything, and it can be evicted by anything.
528  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
529  if (!Cascade)
530    Cascade = NextCascade;
531
532  EvictionCost Cost;
533  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
534    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
535    // If there is 10 or more interferences, chances are one is heavier.
536    if (Q.collectInterferingVRegs(10) >= 10)
537      return false;
538
539    // Check if any interfering live range is heavier than MaxWeight.
540    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
541      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
542      assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
543             "Only expecting virtual register interference from query");
544      // Never evict spill products. They cannot split or spill.
545      if (getStage(*Intf) == RS_Done)
546        return false;
547      // Once a live range becomes small enough, it is urgent that we find a
548      // register for it. This is indicated by an infinite spill weight. These
549      // urgent live ranges get to evict almost anything.
550      //
551      // Also allow urgent evictions of unspillable ranges from a strictly
552      // larger allocation order.
553      bool Urgent = !VirtReg.isSpillable() &&
554        (Intf->isSpillable() ||
555         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
556         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
557      // Only evict older cascades or live ranges without a cascade.
558      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
559      if (Cascade <= IntfCascade) {
560        if (!Urgent)
561          return false;
562        // We permit breaking cascades for urgent evictions. It should be the
563        // last resort, though, so make it really expensive.
564        Cost.BrokenHints += 10;
565      }
566      // Would this break a satisfied hint?
567      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
568      // Update eviction cost.
569      Cost.BrokenHints += BreaksHint;
570      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
571      // Abort if this would be too expensive.
572      if (!(Cost < MaxCost))
573        return false;
574      // Finally, apply the eviction policy for non-urgent evictions.
575      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
576        return false;
577    }
578  }
579  MaxCost = Cost;
580  return true;
581}
582
583/// evictInterference - Evict any interferring registers that prevent VirtReg
584/// from being assigned to Physreg. This assumes that canEvictInterference
585/// returned true.
586void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
587                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
588  // Make sure that VirtReg has a cascade number, and assign that cascade
589  // number to every evicted register. These live ranges than then only be
590  // evicted by a newer cascade, preventing infinite loops.
591  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
592  if (!Cascade)
593    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
594
595  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
596               << " interference: Cascade " << Cascade << '\n');
597
598  // Collect all interfering virtregs first.
599  SmallVector<LiveInterval*, 8> Intfs;
600  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
601    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
602    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
603    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
604    Intfs.append(IVR.begin(), IVR.end());
605  }
606
607  // Evict them second. This will invalidate the queries.
608  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
609    LiveInterval *Intf = Intfs[i];
610    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
611    if (!VRM->hasPhys(Intf->reg))
612      continue;
613    Matrix->unassign(*Intf);
614    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
615            VirtReg.isSpillable() < Intf->isSpillable()) &&
616           "Cannot decrease cascade number, illegal eviction");
617    ExtraRegInfo[Intf->reg].Cascade = Cascade;
618    ++NumEvicted;
619    NewVRegs.push_back(Intf);
620  }
621}
622
623/// tryEvict - Try to evict all interferences for a physreg.
624/// @param  VirtReg Currently unassigned virtual register.
625/// @param  Order   Physregs to try.
626/// @return         Physreg to assign VirtReg, or 0.
627unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
628                            AllocationOrder &Order,
629                            SmallVectorImpl<LiveInterval*> &NewVRegs,
630                            unsigned CostPerUseLimit) {
631  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
632
633  // Keep track of the cheapest interference seen so far.
634  EvictionCost BestCost(~0u);
635  unsigned BestPhys = 0;
636
637  // When we are just looking for a reduced cost per use, don't break any
638  // hints, and only evict smaller spill weights.
639  if (CostPerUseLimit < ~0u) {
640    BestCost.BrokenHints = 0;
641    BestCost.MaxWeight = VirtReg.weight;
642  }
643
644  Order.rewind();
645  while (unsigned PhysReg = Order.next()) {
646    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
647      continue;
648    // The first use of a callee-saved register in a function has cost 1.
649    // Don't start using a CSR when the CostPerUseLimit is low.
650    if (CostPerUseLimit == 1)
651     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
652       if (!MRI->isPhysRegUsed(CSR)) {
653         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
654                      << PrintReg(CSR, TRI) << '\n');
655         continue;
656       }
657
658    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
659      continue;
660
661    // Best so far.
662    BestPhys = PhysReg;
663
664    // Stop if the hint can be used.
665    if (Order.isHint(PhysReg))
666      break;
667  }
668
669  if (!BestPhys)
670    return 0;
671
672  evictInterference(VirtReg, BestPhys, NewVRegs);
673  return BestPhys;
674}
675
676
677//===----------------------------------------------------------------------===//
678//                              Region Splitting
679//===----------------------------------------------------------------------===//
680
681/// addSplitConstraints - Fill out the SplitConstraints vector based on the
682/// interference pattern in Physreg and its aliases. Add the constraints to
683/// SpillPlacement and return the static cost of this split in Cost, assuming
684/// that all preferences in SplitConstraints are met.
685/// Return false if there are no bundles with positive bias.
686bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
687                                   float &Cost) {
688  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
689
690  // Reset interference dependent info.
691  SplitConstraints.resize(UseBlocks.size());
692  float StaticCost = 0;
693  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
694    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
695    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
696
697    BC.Number = BI.MBB->getNumber();
698    Intf.moveToBlock(BC.Number);
699    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
700    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
701    BC.ChangesValue = BI.FirstDef;
702
703    if (!Intf.hasInterference())
704      continue;
705
706    // Number of spill code instructions to insert.
707    unsigned Ins = 0;
708
709    // Interference for the live-in value.
710    if (BI.LiveIn) {
711      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
712        BC.Entry = SpillPlacement::MustSpill, ++Ins;
713      else if (Intf.first() < BI.FirstInstr)
714        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
715      else if (Intf.first() < BI.LastInstr)
716        ++Ins;
717    }
718
719    // Interference for the live-out value.
720    if (BI.LiveOut) {
721      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
722        BC.Exit = SpillPlacement::MustSpill, ++Ins;
723      else if (Intf.last() > BI.LastInstr)
724        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
725      else if (Intf.last() > BI.FirstInstr)
726        ++Ins;
727    }
728
729    // Accumulate the total frequency of inserted spill code.
730    if (Ins)
731      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
732  }
733  Cost = StaticCost;
734
735  // Add constraints for use-blocks. Note that these are the only constraints
736  // that may add a positive bias, it is downhill from here.
737  SpillPlacer->addConstraints(SplitConstraints);
738  return SpillPlacer->scanActiveBundles();
739}
740
741
742/// addThroughConstraints - Add constraints and links to SpillPlacer from the
743/// live-through blocks in Blocks.
744void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
745                                     ArrayRef<unsigned> Blocks) {
746  const unsigned GroupSize = 8;
747  SpillPlacement::BlockConstraint BCS[GroupSize];
748  unsigned TBS[GroupSize];
749  unsigned B = 0, T = 0;
750
751  for (unsigned i = 0; i != Blocks.size(); ++i) {
752    unsigned Number = Blocks[i];
753    Intf.moveToBlock(Number);
754
755    if (!Intf.hasInterference()) {
756      assert(T < GroupSize && "Array overflow");
757      TBS[T] = Number;
758      if (++T == GroupSize) {
759        SpillPlacer->addLinks(makeArrayRef(TBS, T));
760        T = 0;
761      }
762      continue;
763    }
764
765    assert(B < GroupSize && "Array overflow");
766    BCS[B].Number = Number;
767
768    // Interference for the live-in value.
769    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
770      BCS[B].Entry = SpillPlacement::MustSpill;
771    else
772      BCS[B].Entry = SpillPlacement::PrefSpill;
773
774    // Interference for the live-out value.
775    if (Intf.last() >= SA->getLastSplitPoint(Number))
776      BCS[B].Exit = SpillPlacement::MustSpill;
777    else
778      BCS[B].Exit = SpillPlacement::PrefSpill;
779
780    if (++B == GroupSize) {
781      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
782      SpillPlacer->addConstraints(Array);
783      B = 0;
784    }
785  }
786
787  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
788  SpillPlacer->addConstraints(Array);
789  SpillPlacer->addLinks(makeArrayRef(TBS, T));
790}
791
792void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
793  // Keep track of through blocks that have not been added to SpillPlacer.
794  BitVector Todo = SA->getThroughBlocks();
795  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
796  unsigned AddedTo = 0;
797#ifndef NDEBUG
798  unsigned Visited = 0;
799#endif
800
801  for (;;) {
802    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
803    // Find new through blocks in the periphery of PrefRegBundles.
804    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
805      unsigned Bundle = NewBundles[i];
806      // Look at all blocks connected to Bundle in the full graph.
807      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
808      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
809           I != E; ++I) {
810        unsigned Block = *I;
811        if (!Todo.test(Block))
812          continue;
813        Todo.reset(Block);
814        // This is a new through block. Add it to SpillPlacer later.
815        ActiveBlocks.push_back(Block);
816#ifndef NDEBUG
817        ++Visited;
818#endif
819      }
820    }
821    // Any new blocks to add?
822    if (ActiveBlocks.size() == AddedTo)
823      break;
824
825    // Compute through constraints from the interference, or assume that all
826    // through blocks prefer spilling when forming compact regions.
827    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
828    if (Cand.PhysReg)
829      addThroughConstraints(Cand.Intf, NewBlocks);
830    else
831      // Provide a strong negative bias on through blocks to prevent unwanted
832      // liveness on loop backedges.
833      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
834    AddedTo = ActiveBlocks.size();
835
836    // Perhaps iterating can enable more bundles?
837    SpillPlacer->iterate();
838  }
839  DEBUG(dbgs() << ", v=" << Visited);
840}
841
842/// calcCompactRegion - Compute the set of edge bundles that should be live
843/// when splitting the current live range into compact regions.  Compact
844/// regions can be computed without looking at interference.  They are the
845/// regions formed by removing all the live-through blocks from the live range.
846///
847/// Returns false if the current live range is already compact, or if the
848/// compact regions would form single block regions anyway.
849bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
850  // Without any through blocks, the live range is already compact.
851  if (!SA->getNumThroughBlocks())
852    return false;
853
854  // Compact regions don't correspond to any physreg.
855  Cand.reset(IntfCache, 0);
856
857  DEBUG(dbgs() << "Compact region bundles");
858
859  // Use the spill placer to determine the live bundles. GrowRegion pretends
860  // that all the through blocks have interference when PhysReg is unset.
861  SpillPlacer->prepare(Cand.LiveBundles);
862
863  // The static split cost will be zero since Cand.Intf reports no interference.
864  float Cost;
865  if (!addSplitConstraints(Cand.Intf, Cost)) {
866    DEBUG(dbgs() << ", none.\n");
867    return false;
868  }
869
870  growRegion(Cand);
871  SpillPlacer->finish();
872
873  if (!Cand.LiveBundles.any()) {
874    DEBUG(dbgs() << ", none.\n");
875    return false;
876  }
877
878  DEBUG({
879    for (int i = Cand.LiveBundles.find_first(); i>=0;
880         i = Cand.LiveBundles.find_next(i))
881    dbgs() << " EB#" << i;
882    dbgs() << ".\n";
883  });
884  return true;
885}
886
887/// calcSpillCost - Compute how expensive it would be to split the live range in
888/// SA around all use blocks instead of forming bundle regions.
889float RAGreedy::calcSpillCost() {
890  float Cost = 0;
891  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
892  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
893    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
894    unsigned Number = BI.MBB->getNumber();
895    // We normally only need one spill instruction - a load or a store.
896    Cost += SpillPlacer->getBlockFrequency(Number);
897
898    // Unless the value is redefined in the block.
899    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
900      Cost += SpillPlacer->getBlockFrequency(Number);
901  }
902  return Cost;
903}
904
905/// calcGlobalSplitCost - Return the global split cost of following the split
906/// pattern in LiveBundles. This cost should be added to the local cost of the
907/// interference pattern in SplitConstraints.
908///
909float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
910  float GlobalCost = 0;
911  const BitVector &LiveBundles = Cand.LiveBundles;
912  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
913  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
914    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
915    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
916    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
917    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
918    unsigned Ins = 0;
919
920    if (BI.LiveIn)
921      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
922    if (BI.LiveOut)
923      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
924    if (Ins)
925      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
926  }
927
928  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
929    unsigned Number = Cand.ActiveBlocks[i];
930    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
931    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
932    if (!RegIn && !RegOut)
933      continue;
934    if (RegIn && RegOut) {
935      // We need double spill code if this block has interference.
936      Cand.Intf.moveToBlock(Number);
937      if (Cand.Intf.hasInterference())
938        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
939      continue;
940    }
941    // live-in / stack-out or stack-in live-out.
942    GlobalCost += SpillPlacer->getBlockFrequency(Number);
943  }
944  return GlobalCost;
945}
946
947/// splitAroundRegion - Split the current live range around the regions
948/// determined by BundleCand and GlobalCand.
949///
950/// Before calling this function, GlobalCand and BundleCand must be initialized
951/// so each bundle is assigned to a valid candidate, or NoCand for the
952/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
953/// objects must be initialized for the current live range, and intervals
954/// created for the used candidates.
955///
956/// @param LREdit    The LiveRangeEdit object handling the current split.
957/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
958///                  must appear in this list.
959void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
960                                 ArrayRef<unsigned> UsedCands) {
961  // These are the intervals created for new global ranges. We may create more
962  // intervals for local ranges.
963  const unsigned NumGlobalIntvs = LREdit.size();
964  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
965  assert(NumGlobalIntvs && "No global intervals configured");
966
967  // Isolate even single instructions when dealing with a proper sub-class.
968  // That guarantees register class inflation for the stack interval because it
969  // is all copies.
970  unsigned Reg = SA->getParent().reg;
971  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
972
973  // First handle all the blocks with uses.
974  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
975  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
976    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
977    unsigned Number = BI.MBB->getNumber();
978    unsigned IntvIn = 0, IntvOut = 0;
979    SlotIndex IntfIn, IntfOut;
980    if (BI.LiveIn) {
981      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
982      if (CandIn != NoCand) {
983        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
984        IntvIn = Cand.IntvIdx;
985        Cand.Intf.moveToBlock(Number);
986        IntfIn = Cand.Intf.first();
987      }
988    }
989    if (BI.LiveOut) {
990      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
991      if (CandOut != NoCand) {
992        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
993        IntvOut = Cand.IntvIdx;
994        Cand.Intf.moveToBlock(Number);
995        IntfOut = Cand.Intf.last();
996      }
997    }
998
999    // Create separate intervals for isolated blocks with multiple uses.
1000    if (!IntvIn && !IntvOut) {
1001      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1002      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1003        SE->splitSingleBlock(BI);
1004      continue;
1005    }
1006
1007    if (IntvIn && IntvOut)
1008      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1009    else if (IntvIn)
1010      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1011    else
1012      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1013  }
1014
1015  // Handle live-through blocks. The relevant live-through blocks are stored in
1016  // the ActiveBlocks list with each candidate. We need to filter out
1017  // duplicates.
1018  BitVector Todo = SA->getThroughBlocks();
1019  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1020    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1021    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1022      unsigned Number = Blocks[i];
1023      if (!Todo.test(Number))
1024        continue;
1025      Todo.reset(Number);
1026
1027      unsigned IntvIn = 0, IntvOut = 0;
1028      SlotIndex IntfIn, IntfOut;
1029
1030      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1031      if (CandIn != NoCand) {
1032        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1033        IntvIn = Cand.IntvIdx;
1034        Cand.Intf.moveToBlock(Number);
1035        IntfIn = Cand.Intf.first();
1036      }
1037
1038      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1039      if (CandOut != NoCand) {
1040        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1041        IntvOut = Cand.IntvIdx;
1042        Cand.Intf.moveToBlock(Number);
1043        IntfOut = Cand.Intf.last();
1044      }
1045      if (!IntvIn && !IntvOut)
1046        continue;
1047      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1048    }
1049  }
1050
1051  ++NumGlobalSplits;
1052
1053  SmallVector<unsigned, 8> IntvMap;
1054  SE->finish(&IntvMap);
1055  DebugVars->splitRegister(Reg, LREdit.regs());
1056
1057  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1058  unsigned OrigBlocks = SA->getNumLiveBlocks();
1059
1060  // Sort out the new intervals created by splitting. We get four kinds:
1061  // - Remainder intervals should not be split again.
1062  // - Candidate intervals can be assigned to Cand.PhysReg.
1063  // - Block-local splits are candidates for local splitting.
1064  // - DCE leftovers should go back on the queue.
1065  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1066    LiveInterval &Reg = *LREdit.get(i);
1067
1068    // Ignore old intervals from DCE.
1069    if (getStage(Reg) != RS_New)
1070      continue;
1071
1072    // Remainder interval. Don't try splitting again, spill if it doesn't
1073    // allocate.
1074    if (IntvMap[i] == 0) {
1075      setStage(Reg, RS_Spill);
1076      continue;
1077    }
1078
1079    // Global intervals. Allow repeated splitting as long as the number of live
1080    // blocks is strictly decreasing.
1081    if (IntvMap[i] < NumGlobalIntvs) {
1082      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1083        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1084                     << " blocks as original.\n");
1085        // Don't allow repeated splitting as a safe guard against looping.
1086        setStage(Reg, RS_Split2);
1087      }
1088      continue;
1089    }
1090
1091    // Other intervals are treated as new. This includes local intervals created
1092    // for blocks with multiple uses, and anything created by DCE.
1093  }
1094
1095  if (VerifyEnabled)
1096    MF->verify(this, "After splitting live range around region");
1097}
1098
1099unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1100                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1101  unsigned NumCands = 0;
1102  unsigned BestCand = NoCand;
1103  float BestCost;
1104  SmallVector<unsigned, 8> UsedCands;
1105
1106  // Check if we can split this live range around a compact region.
1107  bool HasCompact = calcCompactRegion(GlobalCand.front());
1108  if (HasCompact) {
1109    // Yes, keep GlobalCand[0] as the compact region candidate.
1110    NumCands = 1;
1111    BestCost = HUGE_VALF;
1112  } else {
1113    // No benefit from the compact region, our fallback will be per-block
1114    // splitting. Make sure we find a solution that is cheaper than spilling.
1115    BestCost = Hysteresis * calcSpillCost();
1116    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1117  }
1118
1119  Order.rewind();
1120  while (unsigned PhysReg = Order.next()) {
1121    // Discard bad candidates before we run out of interference cache cursors.
1122    // This will only affect register classes with a lot of registers (>32).
1123    if (NumCands == IntfCache.getMaxCursors()) {
1124      unsigned WorstCount = ~0u;
1125      unsigned Worst = 0;
1126      for (unsigned i = 0; i != NumCands; ++i) {
1127        if (i == BestCand || !GlobalCand[i].PhysReg)
1128          continue;
1129        unsigned Count = GlobalCand[i].LiveBundles.count();
1130        if (Count < WorstCount)
1131          Worst = i, WorstCount = Count;
1132      }
1133      --NumCands;
1134      GlobalCand[Worst] = GlobalCand[NumCands];
1135      if (BestCand == NumCands)
1136        BestCand = Worst;
1137    }
1138
1139    if (GlobalCand.size() <= NumCands)
1140      GlobalCand.resize(NumCands+1);
1141    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1142    Cand.reset(IntfCache, PhysReg);
1143
1144    SpillPlacer->prepare(Cand.LiveBundles);
1145    float Cost;
1146    if (!addSplitConstraints(Cand.Intf, Cost)) {
1147      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1148      continue;
1149    }
1150    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1151    if (Cost >= BestCost) {
1152      DEBUG({
1153        if (BestCand == NoCand)
1154          dbgs() << " worse than no bundles\n";
1155        else
1156          dbgs() << " worse than "
1157                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1158      });
1159      continue;
1160    }
1161    growRegion(Cand);
1162
1163    SpillPlacer->finish();
1164
1165    // No live bundles, defer to splitSingleBlocks().
1166    if (!Cand.LiveBundles.any()) {
1167      DEBUG(dbgs() << " no bundles.\n");
1168      continue;
1169    }
1170
1171    Cost += calcGlobalSplitCost(Cand);
1172    DEBUG({
1173      dbgs() << ", total = " << Cost << " with bundles";
1174      for (int i = Cand.LiveBundles.find_first(); i>=0;
1175           i = Cand.LiveBundles.find_next(i))
1176        dbgs() << " EB#" << i;
1177      dbgs() << ".\n";
1178    });
1179    if (Cost < BestCost) {
1180      BestCand = NumCands;
1181      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1182    }
1183    ++NumCands;
1184  }
1185
1186  // No solutions found, fall back to single block splitting.
1187  if (!HasCompact && BestCand == NoCand)
1188    return 0;
1189
1190  // Prepare split editor.
1191  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1192  SE->reset(LREdit, SplitSpillMode);
1193
1194  // Assign all edge bundles to the preferred candidate, or NoCand.
1195  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1196
1197  // Assign bundles for the best candidate region.
1198  if (BestCand != NoCand) {
1199    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1200    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1201      UsedCands.push_back(BestCand);
1202      Cand.IntvIdx = SE->openIntv();
1203      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1204                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1205      (void)B;
1206    }
1207  }
1208
1209  // Assign bundles for the compact region.
1210  if (HasCompact) {
1211    GlobalSplitCandidate &Cand = GlobalCand.front();
1212    assert(!Cand.PhysReg && "Compact region has no physreg");
1213    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1214      UsedCands.push_back(0);
1215      Cand.IntvIdx = SE->openIntv();
1216      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1217                   << Cand.IntvIdx << ".\n");
1218      (void)B;
1219    }
1220  }
1221
1222  splitAroundRegion(LREdit, UsedCands);
1223  return 0;
1224}
1225
1226
1227//===----------------------------------------------------------------------===//
1228//                            Per-Block Splitting
1229//===----------------------------------------------------------------------===//
1230
1231/// tryBlockSplit - Split a global live range around every block with uses. This
1232/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1233/// they don't allocate.
1234unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1235                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1236  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1237  unsigned Reg = VirtReg.reg;
1238  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1239  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1240  SE->reset(LREdit, SplitSpillMode);
1241  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1242  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1243    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1244    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1245      SE->splitSingleBlock(BI);
1246  }
1247  // No blocks were split.
1248  if (LREdit.empty())
1249    return 0;
1250
1251  // We did split for some blocks.
1252  SmallVector<unsigned, 8> IntvMap;
1253  SE->finish(&IntvMap);
1254
1255  // Tell LiveDebugVariables about the new ranges.
1256  DebugVars->splitRegister(Reg, LREdit.regs());
1257
1258  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1259
1260  // Sort out the new intervals created by splitting. The remainder interval
1261  // goes straight to spilling, the new local ranges get to stay RS_New.
1262  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1263    LiveInterval &LI = *LREdit.get(i);
1264    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1265      setStage(LI, RS_Spill);
1266  }
1267
1268  if (VerifyEnabled)
1269    MF->verify(this, "After splitting live range around basic blocks");
1270  return 0;
1271}
1272
1273
1274//===----------------------------------------------------------------------===//
1275//                         Per-Instruction Splitting
1276//===----------------------------------------------------------------------===//
1277
1278/// tryInstructionSplit - Split a live range around individual instructions.
1279/// This is normally not worthwhile since the spiller is doing essentially the
1280/// same thing. However, when the live range is in a constrained register
1281/// class, it may help to insert copies such that parts of the live range can
1282/// be moved to a larger register class.
1283///
1284/// This is similar to spilling to a larger register class.
1285unsigned
1286RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1287                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
1288  // There is no point to this if there are no larger sub-classes.
1289  if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
1290    return 0;
1291
1292  // Always enable split spill mode, since we're effectively spilling to a
1293  // register.
1294  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1295  SE->reset(LREdit, SplitEditor::SM_Size);
1296
1297  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1298  if (Uses.size() <= 1)
1299    return 0;
1300
1301  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1302
1303  // Split around every non-copy instruction.
1304  for (unsigned i = 0; i != Uses.size(); ++i) {
1305    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1306      if (MI->isFullCopy()) {
1307        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1308        continue;
1309      }
1310    SE->openIntv();
1311    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1312    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1313    SE->useIntv(SegStart, SegStop);
1314  }
1315
1316  if (LREdit.empty()) {
1317    DEBUG(dbgs() << "All uses were copies.\n");
1318    return 0;
1319  }
1320
1321  SmallVector<unsigned, 8> IntvMap;
1322  SE->finish(&IntvMap);
1323  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1324  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1325
1326  // Assign all new registers to RS_Spill. This was the last chance.
1327  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1328  return 0;
1329}
1330
1331
1332//===----------------------------------------------------------------------===//
1333//                             Local Splitting
1334//===----------------------------------------------------------------------===//
1335
1336
1337/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1338/// in order to use PhysReg between two entries in SA->UseSlots.
1339///
1340/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1341///
1342void RAGreedy::calcGapWeights(unsigned PhysReg,
1343                              SmallVectorImpl<float> &GapWeight) {
1344  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1345  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1346  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1347  const unsigned NumGaps = Uses.size()-1;
1348
1349  // Start and end points for the interference check.
1350  SlotIndex StartIdx =
1351    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1352  SlotIndex StopIdx =
1353    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1354
1355  GapWeight.assign(NumGaps, 0.0f);
1356
1357  // Add interference from each overlapping register.
1358  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1359    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1360          .checkInterference())
1361      continue;
1362
1363    // We know that VirtReg is a continuous interval from FirstInstr to
1364    // LastInstr, so we don't need InterferenceQuery.
1365    //
1366    // Interference that overlaps an instruction is counted in both gaps
1367    // surrounding the instruction. The exception is interference before
1368    // StartIdx and after StopIdx.
1369    //
1370    LiveIntervalUnion::SegmentIter IntI =
1371      Matrix->getLiveUnions()[*Units] .find(StartIdx);
1372    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1373      // Skip the gaps before IntI.
1374      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1375        if (++Gap == NumGaps)
1376          break;
1377      if (Gap == NumGaps)
1378        break;
1379
1380      // Update the gaps covered by IntI.
1381      const float weight = IntI.value()->weight;
1382      for (; Gap != NumGaps; ++Gap) {
1383        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1384        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1385          break;
1386      }
1387      if (Gap == NumGaps)
1388        break;
1389    }
1390  }
1391
1392  // Add fixed interference.
1393  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1394    const LiveInterval &LI = LIS->getRegUnit(*Units);
1395    LiveInterval::const_iterator I = LI.find(StartIdx);
1396    LiveInterval::const_iterator E = LI.end();
1397
1398    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1399    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1400      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1401        if (++Gap == NumGaps)
1402          break;
1403      if (Gap == NumGaps)
1404        break;
1405
1406      for (; Gap != NumGaps; ++Gap) {
1407        GapWeight[Gap] = HUGE_VALF;
1408        if (Uses[Gap+1].getBaseIndex() >= I->end)
1409          break;
1410      }
1411      if (Gap == NumGaps)
1412        break;
1413    }
1414  }
1415}
1416
1417/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1418/// basic block.
1419///
1420unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1421                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1422  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1423  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1424
1425  // Note that it is possible to have an interval that is live-in or live-out
1426  // while only covering a single block - A phi-def can use undef values from
1427  // predecessors, and the block could be a single-block loop.
1428  // We don't bother doing anything clever about such a case, we simply assume
1429  // that the interval is continuous from FirstInstr to LastInstr. We should
1430  // make sure that we don't do anything illegal to such an interval, though.
1431
1432  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1433  if (Uses.size() <= 2)
1434    return 0;
1435  const unsigned NumGaps = Uses.size()-1;
1436
1437  DEBUG({
1438    dbgs() << "tryLocalSplit: ";
1439    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1440      dbgs() << ' ' << Uses[i];
1441    dbgs() << '\n';
1442  });
1443
1444  // If VirtReg is live across any register mask operands, compute a list of
1445  // gaps with register masks.
1446  SmallVector<unsigned, 8> RegMaskGaps;
1447  if (Matrix->checkRegMaskInterference(VirtReg)) {
1448    // Get regmask slots for the whole block.
1449    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1450    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1451    // Constrain to VirtReg's live range.
1452    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1453                                   Uses.front().getRegSlot()) - RMS.begin();
1454    unsigned re = RMS.size();
1455    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1456      // Look for Uses[i] <= RMS <= Uses[i+1].
1457      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1458      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1459        continue;
1460      // Skip a regmask on the same instruction as the last use. It doesn't
1461      // overlap the live range.
1462      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1463        break;
1464      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1465      RegMaskGaps.push_back(i);
1466      // Advance ri to the next gap. A regmask on one of the uses counts in
1467      // both gaps.
1468      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1469        ++ri;
1470    }
1471    DEBUG(dbgs() << '\n');
1472  }
1473
1474  // Since we allow local split results to be split again, there is a risk of
1475  // creating infinite loops. It is tempting to require that the new live
1476  // ranges have less instructions than the original. That would guarantee
1477  // convergence, but it is too strict. A live range with 3 instructions can be
1478  // split 2+3 (including the COPY), and we want to allow that.
1479  //
1480  // Instead we use these rules:
1481  //
1482  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1483  //    noop split, of course).
1484  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1485  //    the new ranges must have fewer instructions than before the split.
1486  // 3. New ranges with the same number of instructions are marked RS_Split2,
1487  //    smaller ranges are marked RS_New.
1488  //
1489  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1490  // excessive splitting and infinite loops.
1491  //
1492  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1493
1494  // Best split candidate.
1495  unsigned BestBefore = NumGaps;
1496  unsigned BestAfter = 0;
1497  float BestDiff = 0;
1498
1499  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1500  SmallVector<float, 8> GapWeight;
1501
1502  Order.rewind();
1503  while (unsigned PhysReg = Order.next()) {
1504    // Keep track of the largest spill weight that would need to be evicted in
1505    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1506    calcGapWeights(PhysReg, GapWeight);
1507
1508    // Remove any gaps with regmask clobbers.
1509    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1510      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1511        GapWeight[RegMaskGaps[i]] = HUGE_VALF;
1512
1513    // Try to find the best sequence of gaps to close.
1514    // The new spill weight must be larger than any gap interference.
1515
1516    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1517    unsigned SplitBefore = 0, SplitAfter = 1;
1518
1519    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1520    // It is the spill weight that needs to be evicted.
1521    float MaxGap = GapWeight[0];
1522
1523    for (;;) {
1524      // Live before/after split?
1525      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1526      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1527
1528      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1529                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1530                   << " i=" << MaxGap);
1531
1532      // Stop before the interval gets so big we wouldn't be making progress.
1533      if (!LiveBefore && !LiveAfter) {
1534        DEBUG(dbgs() << " all\n");
1535        break;
1536      }
1537      // Should the interval be extended or shrunk?
1538      bool Shrink = true;
1539
1540      // How many gaps would the new range have?
1541      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1542
1543      // Legally, without causing looping?
1544      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1545
1546      if (Legal && MaxGap < HUGE_VALF) {
1547        // Estimate the new spill weight. Each instruction reads or writes the
1548        // register. Conservatively assume there are no read-modify-write
1549        // instructions.
1550        //
1551        // Try to guess the size of the new interval.
1552        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1553                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1554                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1555        // Would this split be possible to allocate?
1556        // Never allocate all gaps, we wouldn't be making progress.
1557        DEBUG(dbgs() << " w=" << EstWeight);
1558        if (EstWeight * Hysteresis >= MaxGap) {
1559          Shrink = false;
1560          float Diff = EstWeight - MaxGap;
1561          if (Diff > BestDiff) {
1562            DEBUG(dbgs() << " (best)");
1563            BestDiff = Hysteresis * Diff;
1564            BestBefore = SplitBefore;
1565            BestAfter = SplitAfter;
1566          }
1567        }
1568      }
1569
1570      // Try to shrink.
1571      if (Shrink) {
1572        if (++SplitBefore < SplitAfter) {
1573          DEBUG(dbgs() << " shrink\n");
1574          // Recompute the max when necessary.
1575          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1576            MaxGap = GapWeight[SplitBefore];
1577            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1578              MaxGap = std::max(MaxGap, GapWeight[i]);
1579          }
1580          continue;
1581        }
1582        MaxGap = 0;
1583      }
1584
1585      // Try to extend the interval.
1586      if (SplitAfter >= NumGaps) {
1587        DEBUG(dbgs() << " end\n");
1588        break;
1589      }
1590
1591      DEBUG(dbgs() << " extend\n");
1592      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1593    }
1594  }
1595
1596  // Didn't find any candidates?
1597  if (BestBefore == NumGaps)
1598    return 0;
1599
1600  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1601               << '-' << Uses[BestAfter] << ", " << BestDiff
1602               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1603
1604  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1605  SE->reset(LREdit);
1606
1607  SE->openIntv();
1608  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1609  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1610  SE->useIntv(SegStart, SegStop);
1611  SmallVector<unsigned, 8> IntvMap;
1612  SE->finish(&IntvMap);
1613  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1614
1615  // If the new range has the same number of instructions as before, mark it as
1616  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1617  // leave the new intervals as RS_New so they can compete.
1618  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1619  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1620  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1621  if (NewGaps >= NumGaps) {
1622    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1623    assert(!ProgressRequired && "Didn't make progress when it was required.");
1624    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1625      if (IntvMap[i] == 1) {
1626        setStage(*LREdit.get(i), RS_Split2);
1627        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1628      }
1629    DEBUG(dbgs() << '\n');
1630  }
1631  ++NumLocalSplits;
1632
1633  return 0;
1634}
1635
1636//===----------------------------------------------------------------------===//
1637//                          Live Range Splitting
1638//===----------------------------------------------------------------------===//
1639
1640/// trySplit - Try to split VirtReg or one of its interferences, making it
1641/// assignable.
1642/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1643unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1644                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1645  // Ranges must be Split2 or less.
1646  if (getStage(VirtReg) >= RS_Spill)
1647    return 0;
1648
1649  // Local intervals are handled separately.
1650  if (LIS->intervalIsInOneMBB(VirtReg)) {
1651    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1652    SA->analyze(&VirtReg);
1653    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1654    if (PhysReg || !NewVRegs.empty())
1655      return PhysReg;
1656    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1657  }
1658
1659  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1660
1661  SA->analyze(&VirtReg);
1662
1663  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1664  // coalescer. That may cause the range to become allocatable which means that
1665  // tryRegionSplit won't be making progress. This check should be replaced with
1666  // an assertion when the coalescer is fixed.
1667  if (SA->didRepairRange()) {
1668    // VirtReg has changed, so all cached queries are invalid.
1669    Matrix->invalidateVirtRegs();
1670    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1671      return PhysReg;
1672  }
1673
1674  // First try to split around a region spanning multiple blocks. RS_Split2
1675  // ranges already made dubious progress with region splitting, so they go
1676  // straight to single block splitting.
1677  if (getStage(VirtReg) < RS_Split2) {
1678    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1679    if (PhysReg || !NewVRegs.empty())
1680      return PhysReg;
1681  }
1682
1683  // Then isolate blocks.
1684  return tryBlockSplit(VirtReg, Order, NewVRegs);
1685}
1686
1687
1688//===----------------------------------------------------------------------===//
1689//                            Main Entry Point
1690//===----------------------------------------------------------------------===//
1691
1692unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1693                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1694  // First try assigning a free register.
1695  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1696  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1697    return PhysReg;
1698
1699  LiveRangeStage Stage = getStage(VirtReg);
1700  DEBUG(dbgs() << StageName[Stage]
1701               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1702
1703  // Try to evict a less worthy live range, but only for ranges from the primary
1704  // queue. The RS_Split ranges already failed to do this, and they should not
1705  // get a second chance until they have been split.
1706  if (Stage != RS_Split)
1707    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1708      return PhysReg;
1709
1710  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1711
1712  // The first time we see a live range, don't try to split or spill.
1713  // Wait until the second time, when all smaller ranges have been allocated.
1714  // This gives a better picture of the interference to split around.
1715  if (Stage < RS_Split) {
1716    setStage(VirtReg, RS_Split);
1717    DEBUG(dbgs() << "wait for second round\n");
1718    NewVRegs.push_back(&VirtReg);
1719    return 0;
1720  }
1721
1722  // If we couldn't allocate a register from spilling, there is probably some
1723  // invalid inline assembly. The base class wil report it.
1724  if (Stage >= RS_Done || !VirtReg.isSpillable())
1725    return ~0u;
1726
1727  // Try splitting VirtReg or interferences.
1728  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1729  if (PhysReg || !NewVRegs.empty())
1730    return PhysReg;
1731
1732  // Finally spill VirtReg itself.
1733  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1734  LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1735  spiller().spill(LRE);
1736  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1737
1738  if (VerifyEnabled)
1739    MF->verify(this, "After spilling");
1740
1741  // The live virtual register requesting allocation was spilled, so tell
1742  // the caller not to allocate anything during this round.
1743  return 0;
1744}
1745
1746bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1747  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1748               << "********** Function: " << mf.getName() << '\n');
1749
1750  MF = &mf;
1751  if (VerifyEnabled)
1752    MF->verify(this, "Before greedy register allocator");
1753
1754  RegAllocBase::init(getAnalysis<VirtRegMap>(),
1755                     getAnalysis<LiveIntervals>(),
1756                     getAnalysis<LiveRegMatrix>());
1757  Indexes = &getAnalysis<SlotIndexes>();
1758  DomTree = &getAnalysis<MachineDominatorTree>();
1759  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1760  Loops = &getAnalysis<MachineLoopInfo>();
1761  Bundles = &getAnalysis<EdgeBundles>();
1762  SpillPlacer = &getAnalysis<SpillPlacement>();
1763  DebugVars = &getAnalysis<LiveDebugVariables>();
1764
1765  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1766  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1767  ExtraRegInfo.clear();
1768  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1769  NextCascade = 1;
1770  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
1771  GlobalCand.resize(32);  // This will grow as needed.
1772
1773  allocatePhysRegs();
1774  releaseMemory();
1775  return true;
1776}
1777