RegAllocGreedy.cpp revision 2c0cbce763a258ac58590a8ca3c28ff722093fef
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRangeEdit.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "RegisterCoalescer.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Function.h"
29#include "llvm/PassAnalysisSupport.h"
30#include "llvm/CodeGen/CalcSpillWeights.h"
31#include "llvm/CodeGen/EdgeBundles.h"
32#include "llvm/CodeGen/LiveIntervalAnalysis.h"
33#include "llvm/CodeGen/LiveStackAnalysis.h"
34#include "llvm/CodeGen/MachineDominators.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineLoopRanges.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
40#include "llvm/CodeGen/RegAllocRegistry.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Timer.h"
46
47#include <queue>
48
49using namespace llvm;
50
51STATISTIC(NumGlobalSplits, "Number of split global live ranges");
52STATISTIC(NumLocalSplits,  "Number of split local live ranges");
53STATISTIC(NumEvicted,      "Number of interferences evicted");
54
55static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
56                                       createGreedyRegisterAllocator);
57
58namespace {
59class RAGreedy : public MachineFunctionPass,
60                 public RegAllocBase,
61                 private LiveRangeEdit::Delegate {
62
63  // context
64  MachineFunction *MF;
65
66  // analyses
67  SlotIndexes *Indexes;
68  LiveStacks *LS;
69  MachineDominatorTree *DomTree;
70  MachineLoopInfo *Loops;
71  MachineLoopRanges *LoopRanges;
72  EdgeBundles *Bundles;
73  SpillPlacement *SpillPlacer;
74  LiveDebugVariables *DebugVars;
75
76  // state
77  std::auto_ptr<Spiller> SpillerInstance;
78  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
79
80  // Live ranges pass through a number of stages as we try to allocate them.
81  // Some of the stages may also create new live ranges:
82  //
83  // - Region splitting.
84  // - Per-block splitting.
85  // - Local splitting.
86  // - Spilling.
87  //
88  // Ranges produced by one of the stages skip the previous stages when they are
89  // dequeued. This improves performance because we can skip interference checks
90  // that are unlikely to give any results. It also guarantees that the live
91  // range splitting algorithm terminates, something that is otherwise hard to
92  // ensure.
93  enum LiveRangeStage {
94    RS_New,      ///< Never seen before.
95    RS_First,    ///< First time in the queue.
96    RS_Second,   ///< Second time in the queue.
97    RS_Global,   ///< Produced by global splitting.
98    RS_Local,    ///< Produced by local splitting.
99    RS_Spill     ///< Produced by spilling.
100  };
101
102  static const char *const StageName[];
103
104  IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
105
106  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
107    return LiveRangeStage(LRStage[VirtReg.reg]);
108  }
109
110  template<typename Iterator>
111  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
112    LRStage.resize(MRI->getNumVirtRegs());
113    for (;Begin != End; ++Begin) {
114      unsigned Reg = (*Begin)->reg;
115      if (LRStage[Reg] == RS_New)
116        LRStage[Reg] = NewStage;
117    }
118  }
119
120  // Eviction. Sometimes an assigned live range can be evicted without
121  // conditions, but other times it must be split after being evicted to avoid
122  // infinite loops.
123  enum CanEvict {
124    CE_Never,    ///< Can never evict.
125    CE_Always,   ///< Can always evict.
126    CE_WithSplit ///< Can evict only if range is also split or spilled.
127  };
128
129  // splitting state.
130  std::auto_ptr<SplitAnalysis> SA;
131  std::auto_ptr<SplitEditor> SE;
132
133  /// Cached per-block interference maps
134  InterferenceCache IntfCache;
135
136  /// All basic blocks where the current register has uses.
137  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
138
139  /// Global live range splitting candidate info.
140  struct GlobalSplitCandidate {
141    unsigned PhysReg;
142    BitVector LiveBundles;
143    SmallVector<unsigned, 8> ActiveBlocks;
144
145    void reset(unsigned Reg) {
146      PhysReg = Reg;
147      LiveBundles.clear();
148      ActiveBlocks.clear();
149    }
150  };
151
152  /// Candidate info for for each PhysReg in AllocationOrder.
153  /// This vector never shrinks, but grows to the size of the largest register
154  /// class.
155  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
156
157public:
158  RAGreedy();
159
160  /// Return the pass name.
161  virtual const char* getPassName() const {
162    return "Greedy Register Allocator";
163  }
164
165  /// RAGreedy analysis usage.
166  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
167  virtual void releaseMemory();
168  virtual Spiller &spiller() { return *SpillerInstance; }
169  virtual void enqueue(LiveInterval *LI);
170  virtual LiveInterval *dequeue();
171  virtual unsigned selectOrSplit(LiveInterval&,
172                                 SmallVectorImpl<LiveInterval*>&);
173
174  /// Perform register allocation.
175  virtual bool runOnMachineFunction(MachineFunction &mf);
176
177  static char ID;
178
179private:
180  void LRE_WillEraseInstruction(MachineInstr*);
181  bool LRE_CanEraseVirtReg(unsigned);
182  void LRE_WillShrinkVirtReg(unsigned);
183  void LRE_DidCloneVirtReg(unsigned, unsigned);
184
185  float calcSpillCost();
186  bool addSplitConstraints(InterferenceCache::Cursor, float&);
187  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
188  void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
189  float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
190  void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
191                         SmallVectorImpl<LiveInterval*>&);
192  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
193  CanEvict canEvict(LiveInterval &A, LiveInterval &B);
194  bool canEvictInterference(LiveInterval&, unsigned, float&);
195
196  unsigned tryAssign(LiveInterval&, AllocationOrder&,
197                     SmallVectorImpl<LiveInterval*>&);
198  unsigned tryEvict(LiveInterval&, AllocationOrder&,
199                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
200  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
201                          SmallVectorImpl<LiveInterval*>&);
202  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
203    SmallVectorImpl<LiveInterval*>&);
204  unsigned trySplit(LiveInterval&, AllocationOrder&,
205                    SmallVectorImpl<LiveInterval*>&);
206};
207} // end anonymous namespace
208
209char RAGreedy::ID = 0;
210
211#ifndef NDEBUG
212const char *const RAGreedy::StageName[] = {
213  "RS_New",
214  "RS_First",
215  "RS_Second",
216  "RS_Global",
217  "RS_Local",
218  "RS_Spill"
219};
220#endif
221
222// Hysteresis to use when comparing floats.
223// This helps stabilize decisions based on float comparisons.
224const float Hysteresis = 0.98f;
225
226
227FunctionPass* llvm::createGreedyRegisterAllocator() {
228  return new RAGreedy();
229}
230
231RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
232  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
233  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
234  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
235  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
236  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
237  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
238  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
239  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
240  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
241  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
242  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
243  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
244  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
245  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
246}
247
248void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
249  AU.setPreservesCFG();
250  AU.addRequired<AliasAnalysis>();
251  AU.addPreserved<AliasAnalysis>();
252  AU.addRequired<LiveIntervals>();
253  AU.addRequired<SlotIndexes>();
254  AU.addPreserved<SlotIndexes>();
255  AU.addRequired<LiveDebugVariables>();
256  AU.addPreserved<LiveDebugVariables>();
257  if (StrongPHIElim)
258    AU.addRequiredID(StrongPHIEliminationID);
259  AU.addRequiredTransitive<RegisterCoalescer>();
260  AU.addRequired<CalculateSpillWeights>();
261  AU.addRequired<LiveStacks>();
262  AU.addPreserved<LiveStacks>();
263  AU.addRequired<MachineDominatorTree>();
264  AU.addPreserved<MachineDominatorTree>();
265  AU.addRequired<MachineLoopInfo>();
266  AU.addPreserved<MachineLoopInfo>();
267  AU.addRequired<MachineLoopRanges>();
268  AU.addPreserved<MachineLoopRanges>();
269  AU.addRequired<VirtRegMap>();
270  AU.addPreserved<VirtRegMap>();
271  AU.addRequired<EdgeBundles>();
272  AU.addRequired<SpillPlacement>();
273  MachineFunctionPass::getAnalysisUsage(AU);
274}
275
276
277//===----------------------------------------------------------------------===//
278//                     LiveRangeEdit delegate methods
279//===----------------------------------------------------------------------===//
280
281void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
282  // LRE itself will remove from SlotIndexes and parent basic block.
283  VRM->RemoveMachineInstrFromMaps(MI);
284}
285
286bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
287  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
288    unassign(LIS->getInterval(VirtReg), PhysReg);
289    return true;
290  }
291  // Unassigned virtreg is probably in the priority queue.
292  // RegAllocBase will erase it after dequeueing.
293  return false;
294}
295
296void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
297  unsigned PhysReg = VRM->getPhys(VirtReg);
298  if (!PhysReg)
299    return;
300
301  // Register is assigned, put it back on the queue for reassignment.
302  LiveInterval &LI = LIS->getInterval(VirtReg);
303  unassign(LI, PhysReg);
304  enqueue(&LI);
305}
306
307void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
308  // LRE may clone a virtual register because dead code elimination causes it to
309  // be split into connected components. Ensure that the new register gets the
310  // same stage as the parent.
311  LRStage.grow(New);
312  LRStage[New] = LRStage[Old];
313}
314
315void RAGreedy::releaseMemory() {
316  SpillerInstance.reset(0);
317  LRStage.clear();
318  GlobalCand.clear();
319  RegAllocBase::releaseMemory();
320}
321
322void RAGreedy::enqueue(LiveInterval *LI) {
323  // Prioritize live ranges by size, assigning larger ranges first.
324  // The queue holds (size, reg) pairs.
325  const unsigned Size = LI->getSize();
326  const unsigned Reg = LI->reg;
327  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
328         "Can only enqueue virtual registers");
329  unsigned Prio;
330
331  LRStage.grow(Reg);
332  if (LRStage[Reg] == RS_New)
333    LRStage[Reg] = RS_First;
334
335  if (LRStage[Reg] == RS_Second)
336    // Unsplit ranges that couldn't be allocated immediately are deferred until
337    // everything else has been allocated. Long ranges are allocated last so
338    // they are split against realistic interference.
339    Prio = (1u << 31) - Size;
340  else {
341    // Everything else is allocated in long->short order. Long ranges that don't
342    // fit should be spilled ASAP so they don't create interference.
343    Prio = (1u << 31) + Size;
344
345    // Boost ranges that have a physical register hint.
346    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
347      Prio |= (1u << 30);
348  }
349
350  Queue.push(std::make_pair(Prio, Reg));
351}
352
353LiveInterval *RAGreedy::dequeue() {
354  if (Queue.empty())
355    return 0;
356  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
357  Queue.pop();
358  return LI;
359}
360
361
362//===----------------------------------------------------------------------===//
363//                            Direct Assignment
364//===----------------------------------------------------------------------===//
365
366/// tryAssign - Try to assign VirtReg to an available register.
367unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
368                             AllocationOrder &Order,
369                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
370  Order.rewind();
371  unsigned PhysReg;
372  while ((PhysReg = Order.next()))
373    if (!checkPhysRegInterference(VirtReg, PhysReg))
374      break;
375  if (!PhysReg || Order.isHint(PhysReg))
376    return PhysReg;
377
378  // PhysReg is available. Try to evict interference from a cheaper alternative.
379  unsigned Cost = TRI->getCostPerUse(PhysReg);
380
381  // Most registers have 0 additional cost.
382  if (!Cost)
383    return PhysReg;
384
385  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
386               << '\n');
387  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
388  return CheapReg ? CheapReg : PhysReg;
389}
390
391
392//===----------------------------------------------------------------------===//
393//                         Interference eviction
394//===----------------------------------------------------------------------===//
395
396/// canEvict - determine if A can evict the assigned live range B. The eviction
397/// policy defined by this function together with the allocation order defined
398/// by enqueue() decides which registers ultimately end up being split and
399/// spilled.
400///
401/// This function must define a non-circular relation when it returns CE_Always,
402/// otherwise infinite eviction loops are possible. When evicting a <= RS_Second
403/// range, it is possible to return CE_WithSplit which forces the evicted
404/// register to be split or spilled before it can evict anything again. That
405/// guarantees progress.
406RAGreedy::CanEvict RAGreedy::canEvict(LiveInterval &A, LiveInterval &B) {
407  return A.weight > B.weight ? CE_Always : CE_Never;
408}
409
410/// canEvict - Return true if all interferences between VirtReg and PhysReg can
411/// be evicted.
412/// Return false if any interference is heavier than MaxWeight.
413/// On return, set MaxWeight to the maximal spill weight of an interference.
414bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
415                                    float &MaxWeight) {
416  float Weight = 0;
417  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
418    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
419    // If there is 10 or more interferences, chances are one is heavier.
420    if (Q.collectInterferingVRegs(10, MaxWeight) >= 10)
421      return false;
422
423    // Check if any interfering live range is heavier than MaxWeight.
424    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
425      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
426      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
427        return false;
428      if (Intf->weight >= MaxWeight)
429        return false;
430      switch (canEvict(VirtReg, *Intf)) {
431      case CE_Always:
432        break;
433      case CE_Never:
434        return false;
435      case CE_WithSplit:
436        if (getStage(*Intf) > RS_Second)
437          return false;
438        break;
439      }
440      Weight = std::max(Weight, Intf->weight);
441    }
442  }
443  MaxWeight = Weight;
444  return true;
445}
446
447/// tryEvict - Try to evict all interferences for a physreg.
448/// @param  VirtReg Currently unassigned virtual register.
449/// @param  Order   Physregs to try.
450/// @return         Physreg to assign VirtReg, or 0.
451unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
452                            AllocationOrder &Order,
453                            SmallVectorImpl<LiveInterval*> &NewVRegs,
454                            unsigned CostPerUseLimit) {
455  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
456
457  // Keep track of the lightest single interference seen so far.
458  float BestWeight = HUGE_VALF;
459  unsigned BestPhys = 0;
460
461  Order.rewind();
462  while (unsigned PhysReg = Order.next()) {
463    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
464      continue;
465    // The first use of a register in a function has cost 1.
466    if (CostPerUseLimit == 1 && !MRI->isPhysRegUsed(PhysReg))
467      continue;
468
469    float Weight = BestWeight;
470    if (!canEvictInterference(VirtReg, PhysReg, Weight))
471      continue;
472
473    // This is an eviction candidate.
474    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " interference = "
475                 << Weight << '\n');
476    if (BestPhys && Weight >= BestWeight)
477      continue;
478
479    // Best so far.
480    BestPhys = PhysReg;
481    BestWeight = Weight;
482    // Stop if the hint can be used.
483    if (Order.isHint(PhysReg))
484      break;
485  }
486
487  if (!BestPhys)
488    return 0;
489
490  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
491  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
492    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
493    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
494    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
495      LiveInterval *Intf = Q.interferingVRegs()[i];
496      unassign(*Intf, VRM->getPhys(Intf->reg));
497      ++NumEvicted;
498      NewVRegs.push_back(Intf);
499      // Prevent looping by forcing the evicted ranges to be split before they
500      // can evict anything else.
501      if (getStage(*Intf) < RS_Second &&
502          canEvict(VirtReg, *Intf) == CE_WithSplit)
503        LRStage[Intf->reg] = RS_Second;
504    }
505  }
506  return BestPhys;
507}
508
509
510//===----------------------------------------------------------------------===//
511//                              Region Splitting
512//===----------------------------------------------------------------------===//
513
514/// addSplitConstraints - Fill out the SplitConstraints vector based on the
515/// interference pattern in Physreg and its aliases. Add the constraints to
516/// SpillPlacement and return the static cost of this split in Cost, assuming
517/// that all preferences in SplitConstraints are met.
518/// Return false if there are no bundles with positive bias.
519bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
520                                   float &Cost) {
521  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
522
523  // Reset interference dependent info.
524  SplitConstraints.resize(UseBlocks.size());
525  float StaticCost = 0;
526  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
527    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
528    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
529
530    BC.Number = BI.MBB->getNumber();
531    Intf.moveToBlock(BC.Number);
532    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
533    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
534
535    if (!Intf.hasInterference())
536      continue;
537
538    // Number of spill code instructions to insert.
539    unsigned Ins = 0;
540
541    // Interference for the live-in value.
542    if (BI.LiveIn) {
543      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
544        BC.Entry = SpillPlacement::MustSpill, ++Ins;
545      else if (Intf.first() < BI.FirstUse)
546        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
547      else if (Intf.first() < BI.LastUse)
548        ++Ins;
549    }
550
551    // Interference for the live-out value.
552    if (BI.LiveOut) {
553      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
554        BC.Exit = SpillPlacement::MustSpill, ++Ins;
555      else if (Intf.last() > BI.LastUse)
556        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
557      else if (Intf.last() > BI.FirstUse)
558        ++Ins;
559    }
560
561    // Accumulate the total frequency of inserted spill code.
562    if (Ins)
563      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
564  }
565  Cost = StaticCost;
566
567  // Add constraints for use-blocks. Note that these are the only constraints
568  // that may add a positive bias, it is downhill from here.
569  SpillPlacer->addConstraints(SplitConstraints);
570  return SpillPlacer->scanActiveBundles();
571}
572
573
574/// addThroughConstraints - Add constraints and links to SpillPlacer from the
575/// live-through blocks in Blocks.
576void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
577                                     ArrayRef<unsigned> Blocks) {
578  const unsigned GroupSize = 8;
579  SpillPlacement::BlockConstraint BCS[GroupSize];
580  unsigned TBS[GroupSize];
581  unsigned B = 0, T = 0;
582
583  for (unsigned i = 0; i != Blocks.size(); ++i) {
584    unsigned Number = Blocks[i];
585    Intf.moveToBlock(Number);
586
587    if (!Intf.hasInterference()) {
588      assert(T < GroupSize && "Array overflow");
589      TBS[T] = Number;
590      if (++T == GroupSize) {
591        SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
592        T = 0;
593      }
594      continue;
595    }
596
597    assert(B < GroupSize && "Array overflow");
598    BCS[B].Number = Number;
599
600    // Interference for the live-in value.
601    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
602      BCS[B].Entry = SpillPlacement::MustSpill;
603    else
604      BCS[B].Entry = SpillPlacement::PrefSpill;
605
606    // Interference for the live-out value.
607    if (Intf.last() >= SA->getLastSplitPoint(Number))
608      BCS[B].Exit = SpillPlacement::MustSpill;
609    else
610      BCS[B].Exit = SpillPlacement::PrefSpill;
611
612    if (++B == GroupSize) {
613      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
614      SpillPlacer->addConstraints(Array);
615      B = 0;
616    }
617  }
618
619  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
620  SpillPlacer->addConstraints(Array);
621  SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
622}
623
624void RAGreedy::growRegion(GlobalSplitCandidate &Cand,
625                          InterferenceCache::Cursor Intf) {
626  // Keep track of through blocks that have not been added to SpillPlacer.
627  BitVector Todo = SA->getThroughBlocks();
628  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
629  unsigned AddedTo = 0;
630#ifndef NDEBUG
631  unsigned Visited = 0;
632#endif
633
634  for (;;) {
635    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
636    if (NewBundles.empty())
637      break;
638    // Find new through blocks in the periphery of PrefRegBundles.
639    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
640      unsigned Bundle = NewBundles[i];
641      // Look at all blocks connected to Bundle in the full graph.
642      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
643      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
644           I != E; ++I) {
645        unsigned Block = *I;
646        if (!Todo.test(Block))
647          continue;
648        Todo.reset(Block);
649        // This is a new through block. Add it to SpillPlacer later.
650        ActiveBlocks.push_back(Block);
651#ifndef NDEBUG
652        ++Visited;
653#endif
654      }
655    }
656    // Any new blocks to add?
657    if (ActiveBlocks.size() > AddedTo) {
658      ArrayRef<unsigned> Add(&ActiveBlocks[AddedTo],
659                             ActiveBlocks.size() - AddedTo);
660      addThroughConstraints(Intf, Add);
661      AddedTo = ActiveBlocks.size();
662    }
663    // Perhaps iterating can enable more bundles?
664    SpillPlacer->iterate();
665  }
666  DEBUG(dbgs() << ", v=" << Visited);
667}
668
669/// calcSpillCost - Compute how expensive it would be to split the live range in
670/// SA around all use blocks instead of forming bundle regions.
671float RAGreedy::calcSpillCost() {
672  float Cost = 0;
673  const LiveInterval &LI = SA->getParent();
674  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
675  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
676    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
677    unsigned Number = BI.MBB->getNumber();
678    // We normally only need one spill instruction - a load or a store.
679    Cost += SpillPlacer->getBlockFrequency(Number);
680
681    // Unless the value is redefined in the block.
682    if (BI.LiveIn && BI.LiveOut) {
683      SlotIndex Start, Stop;
684      tie(Start, Stop) = Indexes->getMBBRange(Number);
685      LiveInterval::const_iterator I = LI.find(Start);
686      assert(I != LI.end() && "Expected live-in value");
687      // Is there a different live-out value? If so, we need an extra spill
688      // instruction.
689      if (I->end < Stop)
690        Cost += SpillPlacer->getBlockFrequency(Number);
691    }
692  }
693  return Cost;
694}
695
696/// calcGlobalSplitCost - Return the global split cost of following the split
697/// pattern in LiveBundles. This cost should be added to the local cost of the
698/// interference pattern in SplitConstraints.
699///
700float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
701                                    InterferenceCache::Cursor Intf) {
702  float GlobalCost = 0;
703  const BitVector &LiveBundles = Cand.LiveBundles;
704  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
705  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
706    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
707    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
708    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
709    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
710    unsigned Ins = 0;
711
712    if (BI.LiveIn)
713      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
714    if (BI.LiveOut)
715      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
716    if (Ins)
717      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
718  }
719
720  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
721    unsigned Number = Cand.ActiveBlocks[i];
722    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
723    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
724    if (!RegIn && !RegOut)
725      continue;
726    if (RegIn && RegOut) {
727      // We need double spill code if this block has interference.
728      Intf.moveToBlock(Number);
729      if (Intf.hasInterference())
730        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
731      continue;
732    }
733    // live-in / stack-out or stack-in live-out.
734    GlobalCost += SpillPlacer->getBlockFrequency(Number);
735  }
736  return GlobalCost;
737}
738
739/// splitAroundRegion - Split VirtReg around the region determined by
740/// LiveBundles. Make an effort to avoid interference from PhysReg.
741///
742/// The 'register' interval is going to contain as many uses as possible while
743/// avoiding interference. The 'stack' interval is the complement constructed by
744/// SplitEditor. It will contain the rest.
745///
746void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
747                                 GlobalSplitCandidate &Cand,
748                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
749  const BitVector &LiveBundles = Cand.LiveBundles;
750
751  DEBUG({
752    dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
753           << " with bundles";
754    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
755      dbgs() << " EB#" << i;
756    dbgs() << ".\n";
757  });
758
759  InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
760  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
761  SE->reset(LREdit);
762
763  // Create the main cross-block interval.
764  const unsigned MainIntv = SE->openIntv();
765
766  // First add all defs that are live out of a block.
767  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
768  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
769    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
770    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
771    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
772
773    // Create separate intervals for isolated blocks with multiple uses.
774    if (!RegIn && !RegOut && BI.FirstUse != BI.LastUse) {
775      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
776      SE->splitSingleBlock(BI);
777      SE->selectIntv(MainIntv);
778      continue;
779    }
780
781    // Should the register be live out?
782    if (!BI.LiveOut || !RegOut)
783      continue;
784
785    SlotIndex Start, Stop;
786    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
787    Intf.moveToBlock(BI.MBB->getNumber());
788    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
789                 << Bundles->getBundle(BI.MBB->getNumber(), 1)
790                 << " [" << Start << ';'
791                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
792                 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
793
794    // The interference interval should either be invalid or overlap MBB.
795    assert((!Intf.hasInterference() || Intf.first() < Stop)
796           && "Bad interference");
797    assert((!Intf.hasInterference() || Intf.last() > Start)
798           && "Bad interference");
799
800    // Check interference leaving the block.
801    if (!Intf.hasInterference()) {
802      // Block is interference-free.
803      DEBUG(dbgs() << ", no interference");
804      if (!BI.LiveThrough) {
805        DEBUG(dbgs() << ", not live-through.\n");
806        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
807        continue;
808      }
809      if (!RegIn) {
810        // Block is live-through, but entry bundle is on the stack.
811        // Reload just before the first use.
812        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
813        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
814        continue;
815      }
816      DEBUG(dbgs() << ", live-through.\n");
817      continue;
818    }
819
820    // Block has interference.
821    DEBUG(dbgs() << ", interference to " << Intf.last());
822
823    if (!BI.LiveThrough && Intf.last() <= BI.FirstUse) {
824      // The interference doesn't reach the outgoing segment.
825      DEBUG(dbgs() << " doesn't affect def from " << BI.FirstUse << '\n');
826      SE->useIntv(BI.FirstUse, Stop);
827      continue;
828    }
829
830    SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
831    if (Intf.last().getBoundaryIndex() < BI.LastUse) {
832      // There are interference-free uses at the end of the block.
833      // Find the first use that can get the live-out register.
834      SmallVectorImpl<SlotIndex>::const_iterator UI =
835        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
836                         Intf.last().getBoundaryIndex());
837      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
838      SlotIndex Use = *UI;
839      assert(Use <= BI.LastUse && "Couldn't find last use");
840      // Only attempt a split befroe the last split point.
841      if (Use.getBaseIndex() <= LastSplitPoint) {
842        DEBUG(dbgs() << ", free use at " << Use << ".\n");
843        SlotIndex SegStart = SE->enterIntvBefore(Use);
844        assert(SegStart >= Intf.last() && "Couldn't avoid interference");
845        assert(SegStart < LastSplitPoint && "Impossible split point");
846        SE->useIntv(SegStart, Stop);
847        continue;
848      }
849    }
850
851    // Interference is after the last use.
852    DEBUG(dbgs() << " after last use.\n");
853    SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
854    assert(SegStart >= Intf.last() && "Couldn't avoid interference");
855  }
856
857  // Now all defs leading to live bundles are handled, do everything else.
858  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
859    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
860    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
861    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
862
863    // Is the register live-in?
864    if (!BI.LiveIn || !RegIn)
865      continue;
866
867    // We have an incoming register. Check for interference.
868    SlotIndex Start, Stop;
869    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
870    Intf.moveToBlock(BI.MBB->getNumber());
871    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
872                 << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
873                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
874                 << ')');
875
876    // Check interference entering the block.
877    if (!Intf.hasInterference()) {
878      // Block is interference-free.
879      DEBUG(dbgs() << ", no interference");
880      if (!BI.LiveThrough) {
881        DEBUG(dbgs() << ", killed in block.\n");
882        SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
883        continue;
884      }
885      if (!RegOut) {
886        SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
887        // Block is live-through, but exit bundle is on the stack.
888        // Spill immediately after the last use.
889        if (BI.LastUse < LastSplitPoint) {
890          DEBUG(dbgs() << ", uses, stack-out.\n");
891          SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
892          continue;
893        }
894        // The last use is after the last split point, it is probably an
895        // indirect jump.
896        DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
897                     << LastSplitPoint << ", stack-out.\n");
898        SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
899        SE->useIntv(Start, SegEnd);
900        // Run a double interval from the split to the last use.
901        // This makes it possible to spill the complement without affecting the
902        // indirect branch.
903        SE->overlapIntv(SegEnd, BI.LastUse);
904        continue;
905      }
906      // Register is live-through.
907      DEBUG(dbgs() << ", uses, live-through.\n");
908      SE->useIntv(Start, Stop);
909      continue;
910    }
911
912    // Block has interference.
913    DEBUG(dbgs() << ", interference from " << Intf.first());
914
915    if (!BI.LiveThrough && Intf.first() >= BI.LastUse) {
916      // The interference doesn't reach the outgoing segment.
917      DEBUG(dbgs() << " doesn't affect kill at " << BI.LastUse << '\n');
918      SE->useIntv(Start, BI.LastUse);
919      continue;
920    }
921
922    if (Intf.first().getBaseIndex() > BI.FirstUse) {
923      // There are interference-free uses at the beginning of the block.
924      // Find the last use that can get the register.
925      SmallVectorImpl<SlotIndex>::const_iterator UI =
926        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
927                         Intf.first().getBaseIndex());
928      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
929      SlotIndex Use = (--UI)->getBoundaryIndex();
930      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
931      SlotIndex SegEnd = SE->leaveIntvAfter(Use);
932      assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
933      SE->useIntv(Start, SegEnd);
934      continue;
935    }
936
937    // Interference is before the first use.
938    DEBUG(dbgs() << " before first use.\n");
939    SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
940    assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
941  }
942
943  // Handle live-through blocks.
944  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
945    unsigned Number = Cand.ActiveBlocks[i];
946    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
947    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
948    DEBUG(dbgs() << "Live through BB#" << Number << '\n');
949    if (RegIn && RegOut) {
950      Intf.moveToBlock(Number);
951      if (!Intf.hasInterference()) {
952        SE->useIntv(Indexes->getMBBStartIdx(Number),
953                    Indexes->getMBBEndIdx(Number));
954        continue;
955      }
956    }
957    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
958    if (RegIn)
959      SE->leaveIntvAtTop(*MBB);
960    if (RegOut)
961      SE->enterIntvAtEnd(*MBB);
962  }
963
964  ++NumGlobalSplits;
965
966  SmallVector<unsigned, 8> IntvMap;
967  SE->finish(&IntvMap);
968  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
969
970  LRStage.resize(MRI->getNumVirtRegs());
971  unsigned OrigBlocks = SA->getNumLiveBlocks();
972
973  // Sort out the new intervals created by splitting. We get four kinds:
974  // - Remainder intervals should not be split again.
975  // - Candidate intervals can be assigned to Cand.PhysReg.
976  // - Block-local splits are candidates for local splitting.
977  // - DCE leftovers should go back on the queue.
978  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
979    unsigned Reg = LREdit.get(i)->reg;
980
981    // Ignore old intervals from DCE.
982    if (LRStage[Reg] != RS_New)
983      continue;
984
985    // Remainder interval. Don't try splitting again, spill if it doesn't
986    // allocate.
987    if (IntvMap[i] == 0) {
988      LRStage[Reg] = RS_Global;
989      continue;
990    }
991
992    // Main interval. Allow repeated splitting as long as the number of live
993    // blocks is strictly decreasing.
994    if (IntvMap[i] == MainIntv) {
995      if (SA->countLiveBlocks(LREdit.get(i)) >= OrigBlocks) {
996        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
997                     << " blocks as original.\n");
998        // Don't allow repeated splitting as a safe guard against looping.
999        LRStage[Reg] = RS_Global;
1000      }
1001      continue;
1002    }
1003
1004    // Other intervals are treated as new. This includes local intervals created
1005    // for blocks with multiple uses, and anything created by DCE.
1006  }
1007
1008  if (VerifyEnabled)
1009    MF->verify(this, "After splitting live range around region");
1010}
1011
1012unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1013                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1014  float BestCost = Hysteresis * calcSpillCost();
1015  DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1016  const unsigned NoCand = ~0u;
1017  unsigned BestCand = NoCand;
1018
1019  Order.rewind();
1020  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
1021    if (GlobalCand.size() <= Cand)
1022      GlobalCand.resize(Cand+1);
1023    GlobalCand[Cand].reset(PhysReg);
1024
1025    SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
1026    float Cost;
1027    InterferenceCache::Cursor Intf(IntfCache, PhysReg);
1028    if (!addSplitConstraints(Intf, Cost)) {
1029      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1030      continue;
1031    }
1032    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1033    if (Cost >= BestCost) {
1034      DEBUG({
1035        if (BestCand == NoCand)
1036          dbgs() << " worse than no bundles\n";
1037        else
1038          dbgs() << " worse than "
1039                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1040      });
1041      continue;
1042    }
1043    growRegion(GlobalCand[Cand], Intf);
1044
1045    SpillPlacer->finish();
1046
1047    // No live bundles, defer to splitSingleBlocks().
1048    if (!GlobalCand[Cand].LiveBundles.any()) {
1049      DEBUG(dbgs() << " no bundles.\n");
1050      continue;
1051    }
1052
1053    Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
1054    DEBUG({
1055      dbgs() << ", total = " << Cost << " with bundles";
1056      for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
1057           i = GlobalCand[Cand].LiveBundles.find_next(i))
1058        dbgs() << " EB#" << i;
1059      dbgs() << ".\n";
1060    });
1061    if (Cost < BestCost) {
1062      BestCand = Cand;
1063      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1064    }
1065  }
1066
1067  if (BestCand == NoCand)
1068    return 0;
1069
1070  splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
1071  return 0;
1072}
1073
1074
1075//===----------------------------------------------------------------------===//
1076//                             Local Splitting
1077//===----------------------------------------------------------------------===//
1078
1079
1080/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1081/// in order to use PhysReg between two entries in SA->UseSlots.
1082///
1083/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1084///
1085void RAGreedy::calcGapWeights(unsigned PhysReg,
1086                              SmallVectorImpl<float> &GapWeight) {
1087  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1088  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1089  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1090  const unsigned NumGaps = Uses.size()-1;
1091
1092  // Start and end points for the interference check.
1093  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1094  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1095
1096  GapWeight.assign(NumGaps, 0.0f);
1097
1098  // Add interference from each overlapping register.
1099  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1100    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1101           .checkInterference())
1102      continue;
1103
1104    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1105    // so we don't need InterferenceQuery.
1106    //
1107    // Interference that overlaps an instruction is counted in both gaps
1108    // surrounding the instruction. The exception is interference before
1109    // StartIdx and after StopIdx.
1110    //
1111    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1112    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1113      // Skip the gaps before IntI.
1114      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1115        if (++Gap == NumGaps)
1116          break;
1117      if (Gap == NumGaps)
1118        break;
1119
1120      // Update the gaps covered by IntI.
1121      const float weight = IntI.value()->weight;
1122      for (; Gap != NumGaps; ++Gap) {
1123        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1124        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1125          break;
1126      }
1127      if (Gap == NumGaps)
1128        break;
1129    }
1130  }
1131}
1132
1133/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1134/// basic block.
1135///
1136unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1137                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1138  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1139  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1140
1141  // Note that it is possible to have an interval that is live-in or live-out
1142  // while only covering a single block - A phi-def can use undef values from
1143  // predecessors, and the block could be a single-block loop.
1144  // We don't bother doing anything clever about such a case, we simply assume
1145  // that the interval is continuous from FirstUse to LastUse. We should make
1146  // sure that we don't do anything illegal to such an interval, though.
1147
1148  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1149  if (Uses.size() <= 2)
1150    return 0;
1151  const unsigned NumGaps = Uses.size()-1;
1152
1153  DEBUG({
1154    dbgs() << "tryLocalSplit: ";
1155    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1156      dbgs() << ' ' << SA->UseSlots[i];
1157    dbgs() << '\n';
1158  });
1159
1160  // Since we allow local split results to be split again, there is a risk of
1161  // creating infinite loops. It is tempting to require that the new live
1162  // ranges have less instructions than the original. That would guarantee
1163  // convergence, but it is too strict. A live range with 3 instructions can be
1164  // split 2+3 (including the COPY), and we want to allow that.
1165  //
1166  // Instead we use these rules:
1167  //
1168  // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
1169  //    noop split, of course).
1170  // 2. Require progress be made for ranges with getStage() >= RS_Local. All
1171  //    the new ranges must have fewer instructions than before the split.
1172  // 3. New ranges with the same number of instructions are marked RS_Local,
1173  //    smaller ranges are marked RS_New.
1174  //
1175  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1176  // excessive splitting and infinite loops.
1177  //
1178  bool ProgressRequired = getStage(VirtReg) >= RS_Local;
1179
1180  // Best split candidate.
1181  unsigned BestBefore = NumGaps;
1182  unsigned BestAfter = 0;
1183  float BestDiff = 0;
1184
1185  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1186  SmallVector<float, 8> GapWeight;
1187
1188  Order.rewind();
1189  while (unsigned PhysReg = Order.next()) {
1190    // Keep track of the largest spill weight that would need to be evicted in
1191    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1192    calcGapWeights(PhysReg, GapWeight);
1193
1194    // Try to find the best sequence of gaps to close.
1195    // The new spill weight must be larger than any gap interference.
1196
1197    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1198    unsigned SplitBefore = 0, SplitAfter = 1;
1199
1200    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1201    // It is the spill weight that needs to be evicted.
1202    float MaxGap = GapWeight[0];
1203
1204    for (;;) {
1205      // Live before/after split?
1206      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1207      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1208
1209      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1210                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1211                   << " i=" << MaxGap);
1212
1213      // Stop before the interval gets so big we wouldn't be making progress.
1214      if (!LiveBefore && !LiveAfter) {
1215        DEBUG(dbgs() << " all\n");
1216        break;
1217      }
1218      // Should the interval be extended or shrunk?
1219      bool Shrink = true;
1220
1221      // How many gaps would the new range have?
1222      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1223
1224      // Legally, without causing looping?
1225      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1226
1227      if (Legal && MaxGap < HUGE_VALF) {
1228        // Estimate the new spill weight. Each instruction reads or writes the
1229        // register. Conservatively assume there are no read-modify-write
1230        // instructions.
1231        //
1232        // Try to guess the size of the new interval.
1233        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1234                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1235                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1236        // Would this split be possible to allocate?
1237        // Never allocate all gaps, we wouldn't be making progress.
1238        DEBUG(dbgs() << " w=" << EstWeight);
1239        if (EstWeight * Hysteresis >= MaxGap) {
1240          Shrink = false;
1241          float Diff = EstWeight - MaxGap;
1242          if (Diff > BestDiff) {
1243            DEBUG(dbgs() << " (best)");
1244            BestDiff = Hysteresis * Diff;
1245            BestBefore = SplitBefore;
1246            BestAfter = SplitAfter;
1247          }
1248        }
1249      }
1250
1251      // Try to shrink.
1252      if (Shrink) {
1253        if (++SplitBefore < SplitAfter) {
1254          DEBUG(dbgs() << " shrink\n");
1255          // Recompute the max when necessary.
1256          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1257            MaxGap = GapWeight[SplitBefore];
1258            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1259              MaxGap = std::max(MaxGap, GapWeight[i]);
1260          }
1261          continue;
1262        }
1263        MaxGap = 0;
1264      }
1265
1266      // Try to extend the interval.
1267      if (SplitAfter >= NumGaps) {
1268        DEBUG(dbgs() << " end\n");
1269        break;
1270      }
1271
1272      DEBUG(dbgs() << " extend\n");
1273      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1274    }
1275  }
1276
1277  // Didn't find any candidates?
1278  if (BestBefore == NumGaps)
1279    return 0;
1280
1281  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1282               << '-' << Uses[BestAfter] << ", " << BestDiff
1283               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1284
1285  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1286  SE->reset(LREdit);
1287
1288  SE->openIntv();
1289  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1290  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1291  SE->useIntv(SegStart, SegStop);
1292  SmallVector<unsigned, 8> IntvMap;
1293  SE->finish(&IntvMap);
1294  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1295
1296  // If the new range has the same number of instructions as before, mark it as
1297  // RS_Local so the next split will be forced to make progress. Otherwise,
1298  // leave the new intervals as RS_New so they can compete.
1299  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1300  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1301  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1302  if (NewGaps >= NumGaps) {
1303    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1304    assert(!ProgressRequired && "Didn't make progress when it was required.");
1305    LRStage.resize(MRI->getNumVirtRegs());
1306    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1307      if (IntvMap[i] == 1) {
1308        LRStage[LREdit.get(i)->reg] = RS_Local;
1309        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1310      }
1311    DEBUG(dbgs() << '\n');
1312  }
1313  ++NumLocalSplits;
1314
1315  return 0;
1316}
1317
1318//===----------------------------------------------------------------------===//
1319//                          Live Range Splitting
1320//===----------------------------------------------------------------------===//
1321
1322/// trySplit - Try to split VirtReg or one of its interferences, making it
1323/// assignable.
1324/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1325unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1326                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1327  // Local intervals are handled separately.
1328  if (LIS->intervalIsInOneMBB(VirtReg)) {
1329    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1330    SA->analyze(&VirtReg);
1331    return tryLocalSplit(VirtReg, Order, NewVRegs);
1332  }
1333
1334  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1335
1336  // Don't iterate global splitting.
1337  // Move straight to spilling if this range was produced by a global split.
1338  if (getStage(VirtReg) >= RS_Global)
1339    return 0;
1340
1341  SA->analyze(&VirtReg);
1342
1343  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1344  // coalescer. That may cause the range to become allocatable which means that
1345  // tryRegionSplit won't be making progress. This check should be replaced with
1346  // an assertion when the coalescer is fixed.
1347  if (SA->didRepairRange()) {
1348    // VirtReg has changed, so all cached queries are invalid.
1349    invalidateVirtRegs();
1350    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1351      return PhysReg;
1352  }
1353
1354  // First try to split around a region spanning multiple blocks.
1355  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1356  if (PhysReg || !NewVRegs.empty())
1357    return PhysReg;
1358
1359  // Then isolate blocks with multiple uses.
1360  SplitAnalysis::BlockPtrSet Blocks;
1361  if (SA->getMultiUseBlocks(Blocks)) {
1362    LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1363    SE->reset(LREdit);
1364    SE->splitSingleBlocks(Blocks);
1365    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1366    if (VerifyEnabled)
1367      MF->verify(this, "After splitting live range around basic blocks");
1368  }
1369
1370  // Don't assign any physregs.
1371  return 0;
1372}
1373
1374
1375//===----------------------------------------------------------------------===//
1376//                            Main Entry Point
1377//===----------------------------------------------------------------------===//
1378
1379unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1380                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1381  // First try assigning a free register.
1382  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1383  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1384    return PhysReg;
1385
1386  LiveRangeStage Stage = getStage(VirtReg);
1387  DEBUG(dbgs() << StageName[Stage] << '\n');
1388
1389  // Try to evict a less worthy live range, but only for ranges from the primary
1390  // queue. The RS_Second ranges already failed to do this, and they should not
1391  // get a second chance until they have been split.
1392  if (Stage != RS_Second)
1393    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1394      return PhysReg;
1395
1396  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1397
1398  // The first time we see a live range, don't try to split or spill.
1399  // Wait until the second time, when all smaller ranges have been allocated.
1400  // This gives a better picture of the interference to split around.
1401  if (Stage == RS_First) {
1402    LRStage[VirtReg.reg] = RS_Second;
1403    DEBUG(dbgs() << "wait for second round\n");
1404    NewVRegs.push_back(&VirtReg);
1405    return 0;
1406  }
1407
1408  // If we couldn't allocate a register from spilling, there is probably some
1409  // invalid inline assembly. The base class wil report it.
1410  if (Stage >= RS_Spill)
1411    return ~0u;
1412
1413  // Try splitting VirtReg or interferences.
1414  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1415  if (PhysReg || !NewVRegs.empty())
1416    return PhysReg;
1417
1418  // Finally spill VirtReg itself.
1419  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1420  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1421  spiller().spill(LRE);
1422  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1423
1424  if (VerifyEnabled)
1425    MF->verify(this, "After spilling");
1426
1427  // The live virtual register requesting allocation was spilled, so tell
1428  // the caller not to allocate anything during this round.
1429  return 0;
1430}
1431
1432bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1433  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1434               << "********** Function: "
1435               << ((Value*)mf.getFunction())->getName() << '\n');
1436
1437  MF = &mf;
1438  if (VerifyEnabled)
1439    MF->verify(this, "Before greedy register allocator");
1440
1441  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1442  Indexes = &getAnalysis<SlotIndexes>();
1443  DomTree = &getAnalysis<MachineDominatorTree>();
1444  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1445  Loops = &getAnalysis<MachineLoopInfo>();
1446  LoopRanges = &getAnalysis<MachineLoopRanges>();
1447  Bundles = &getAnalysis<EdgeBundles>();
1448  SpillPlacer = &getAnalysis<SpillPlacement>();
1449  DebugVars = &getAnalysis<LiveDebugVariables>();
1450
1451  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1452  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1453  LRStage.clear();
1454  LRStage.resize(MRI->getNumVirtRegs());
1455  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1456
1457  allocatePhysRegs();
1458  addMBBLiveIns(MF);
1459  LIS->addKillFlags();
1460
1461  // Run rewriter
1462  {
1463    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1464    VRM->rewrite(Indexes);
1465  }
1466
1467  // Write out new DBG_VALUE instructions.
1468  DebugVars->emitDebugValues(VRM);
1469
1470  // The pass output is in VirtRegMap. Release all the transient data.
1471  releaseMemory();
1472
1473  return true;
1474}
1475