RegAllocGreedy.cpp revision 4f3b5e8c9232e43d1291aab8db5f5698d7ee0ea4
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "llvm/CodeGen/Passes.h"
17#include "AllocationOrder.h"
18#include "InterferenceCache.h"
19#include "LiveDebugVariables.h"
20#include "RegAllocBase.h"
21#include "SpillPlacement.h"
22#include "Spiller.h"
23#include "SplitKit.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/CodeGen/CalcSpillWeights.h"
27#include "llvm/CodeGen/EdgeBundles.h"
28#include "llvm/CodeGen/LiveIntervalAnalysis.h"
29#include "llvm/CodeGen/LiveRangeEdit.h"
30#include "llvm/CodeGen/LiveRegMatrix.h"
31#include "llvm/CodeGen/LiveStackAnalysis.h"
32#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineLoopInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/RegAllocRegistry.h"
38#include "llvm/CodeGen/VirtRegMap.h"
39#include "llvm/PassAnalysisSupport.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Support/raw_ostream.h"
45#include <queue>
46
47using namespace llvm;
48
49STATISTIC(NumGlobalSplits, "Number of split global live ranges");
50STATISTIC(NumLocalSplits,  "Number of split local live ranges");
51STATISTIC(NumEvicted,      "Number of interferences evicted");
52
53static cl::opt<SplitEditor::ComplementSpillMode>
54SplitSpillMode("split-spill-mode", cl::Hidden,
55  cl::desc("Spill mode for splitting live ranges"),
56  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
57             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
58             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
59             clEnumValEnd),
60  cl::init(SplitEditor::SM_Partition));
61
62static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
63                                       createGreedyRegisterAllocator);
64
65namespace {
66class RAGreedy : public MachineFunctionPass,
67                 public RegAllocBase,
68                 private LiveRangeEdit::Delegate {
69
70  // context
71  MachineFunction *MF;
72
73  // analyses
74  SlotIndexes *Indexes;
75  MachineBlockFrequencyInfo *MBFI;
76  MachineDominatorTree *DomTree;
77  MachineLoopInfo *Loops;
78  EdgeBundles *Bundles;
79  SpillPlacement *SpillPlacer;
80  LiveDebugVariables *DebugVars;
81
82  // state
83  OwningPtr<Spiller> SpillerInstance;
84  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
85  unsigned NextCascade;
86
87  // Live ranges pass through a number of stages as we try to allocate them.
88  // Some of the stages may also create new live ranges:
89  //
90  // - Region splitting.
91  // - Per-block splitting.
92  // - Local splitting.
93  // - Spilling.
94  //
95  // Ranges produced by one of the stages skip the previous stages when they are
96  // dequeued. This improves performance because we can skip interference checks
97  // that are unlikely to give any results. It also guarantees that the live
98  // range splitting algorithm terminates, something that is otherwise hard to
99  // ensure.
100  enum LiveRangeStage {
101    /// Newly created live range that has never been queued.
102    RS_New,
103
104    /// Only attempt assignment and eviction. Then requeue as RS_Split.
105    RS_Assign,
106
107    /// Attempt live range splitting if assignment is impossible.
108    RS_Split,
109
110    /// Attempt more aggressive live range splitting that is guaranteed to make
111    /// progress.  This is used for split products that may not be making
112    /// progress.
113    RS_Split2,
114
115    /// Live range will be spilled.  No more splitting will be attempted.
116    RS_Spill,
117
118    /// There is nothing more we can do to this live range.  Abort compilation
119    /// if it can't be assigned.
120    RS_Done
121  };
122
123#ifndef NDEBUG
124  static const char *const StageName[];
125#endif
126
127  // RegInfo - Keep additional information about each live range.
128  struct RegInfo {
129    LiveRangeStage Stage;
130
131    // Cascade - Eviction loop prevention. See canEvictInterference().
132    unsigned Cascade;
133
134    RegInfo() : Stage(RS_New), Cascade(0) {}
135  };
136
137  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
138
139  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
140    return ExtraRegInfo[VirtReg.reg].Stage;
141  }
142
143  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
144    ExtraRegInfo.resize(MRI->getNumVirtRegs());
145    ExtraRegInfo[VirtReg.reg].Stage = Stage;
146  }
147
148  template<typename Iterator>
149  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
150    ExtraRegInfo.resize(MRI->getNumVirtRegs());
151    for (;Begin != End; ++Begin) {
152      unsigned Reg = *Begin;
153      if (ExtraRegInfo[Reg].Stage == RS_New)
154        ExtraRegInfo[Reg].Stage = NewStage;
155    }
156  }
157
158  /// Cost of evicting interference.
159  struct EvictionCost {
160    unsigned BrokenHints; ///< Total number of broken hints.
161    float MaxWeight;      ///< Maximum spill weight evicted.
162
163    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
164
165    bool isMax() const { return BrokenHints == ~0u; }
166
167    bool operator<(const EvictionCost &O) const {
168      if (BrokenHints != O.BrokenHints)
169        return BrokenHints < O.BrokenHints;
170      return MaxWeight < O.MaxWeight;
171    }
172  };
173
174  // splitting state.
175  OwningPtr<SplitAnalysis> SA;
176  OwningPtr<SplitEditor> SE;
177
178  /// Cached per-block interference maps
179  InterferenceCache IntfCache;
180
181  /// All basic blocks where the current register has uses.
182  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
183
184  /// Global live range splitting candidate info.
185  struct GlobalSplitCandidate {
186    // Register intended for assignment, or 0.
187    unsigned PhysReg;
188
189    // SplitKit interval index for this candidate.
190    unsigned IntvIdx;
191
192    // Interference for PhysReg.
193    InterferenceCache::Cursor Intf;
194
195    // Bundles where this candidate should be live.
196    BitVector LiveBundles;
197    SmallVector<unsigned, 8> ActiveBlocks;
198
199    void reset(InterferenceCache &Cache, unsigned Reg) {
200      PhysReg = Reg;
201      IntvIdx = 0;
202      Intf.setPhysReg(Cache, Reg);
203      LiveBundles.clear();
204      ActiveBlocks.clear();
205    }
206
207    // Set B[i] = C for every live bundle where B[i] was NoCand.
208    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
209      unsigned Count = 0;
210      for (int i = LiveBundles.find_first(); i >= 0;
211           i = LiveBundles.find_next(i))
212        if (B[i] == NoCand) {
213          B[i] = C;
214          Count++;
215        }
216      return Count;
217    }
218  };
219
220  /// Candidate info for for each PhysReg in AllocationOrder.
221  /// This vector never shrinks, but grows to the size of the largest register
222  /// class.
223  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
224
225  enum LLVM_ENUM_INT_TYPE(unsigned) { NoCand = ~0u };
226
227  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
228  /// NoCand which indicates the stack interval.
229  SmallVector<unsigned, 32> BundleCand;
230
231public:
232  RAGreedy();
233
234  /// Return the pass name.
235  virtual const char* getPassName() const {
236    return "Greedy Register Allocator";
237  }
238
239  /// RAGreedy analysis usage.
240  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
241  virtual void releaseMemory();
242  virtual Spiller &spiller() { return *SpillerInstance; }
243  virtual void enqueue(LiveInterval *LI);
244  virtual LiveInterval *dequeue();
245  virtual unsigned selectOrSplit(LiveInterval&,
246                                 SmallVectorImpl<unsigned>&);
247
248  /// Perform register allocation.
249  virtual bool runOnMachineFunction(MachineFunction &mf);
250
251  static char ID;
252
253private:
254  bool LRE_CanEraseVirtReg(unsigned);
255  void LRE_WillShrinkVirtReg(unsigned);
256  void LRE_DidCloneVirtReg(unsigned, unsigned);
257
258  BlockFrequency calcSpillCost();
259  bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
260  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
261  void growRegion(GlobalSplitCandidate &Cand);
262  BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
263  bool calcCompactRegion(GlobalSplitCandidate&);
264  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
265  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
266  unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
267  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
268  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
269  void evictInterference(LiveInterval&, unsigned,
270                         SmallVectorImpl<unsigned>&);
271
272  unsigned tryAssign(LiveInterval&, AllocationOrder&,
273                     SmallVectorImpl<unsigned>&);
274  unsigned tryEvict(LiveInterval&, AllocationOrder&,
275                    SmallVectorImpl<unsigned>&, unsigned = ~0u);
276  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
277                          SmallVectorImpl<unsigned>&);
278  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
279                         SmallVectorImpl<unsigned>&);
280  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
281                               SmallVectorImpl<unsigned>&);
282  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
283    SmallVectorImpl<unsigned>&);
284  unsigned trySplit(LiveInterval&, AllocationOrder&,
285                    SmallVectorImpl<unsigned>&);
286};
287} // end anonymous namespace
288
289char RAGreedy::ID = 0;
290
291#ifndef NDEBUG
292const char *const RAGreedy::StageName[] = {
293    "RS_New",
294    "RS_Assign",
295    "RS_Split",
296    "RS_Split2",
297    "RS_Spill",
298    "RS_Done"
299};
300#endif
301
302// Hysteresis to use when comparing floats.
303// This helps stabilize decisions based on float comparisons.
304const float Hysteresis = 0.98f;
305
306
307FunctionPass* llvm::createGreedyRegisterAllocator() {
308  return new RAGreedy();
309}
310
311RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
312  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
313  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
314  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
315  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
316  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
317  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
318  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
319  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
320  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
321  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
322  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
323  initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
324  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
325  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
326}
327
328void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
329  AU.setPreservesCFG();
330  AU.addRequired<MachineBlockFrequencyInfo>();
331  AU.addPreserved<MachineBlockFrequencyInfo>();
332  AU.addRequired<AliasAnalysis>();
333  AU.addPreserved<AliasAnalysis>();
334  AU.addRequired<LiveIntervals>();
335  AU.addPreserved<LiveIntervals>();
336  AU.addRequired<SlotIndexes>();
337  AU.addPreserved<SlotIndexes>();
338  AU.addRequired<LiveDebugVariables>();
339  AU.addPreserved<LiveDebugVariables>();
340  AU.addRequired<LiveStacks>();
341  AU.addPreserved<LiveStacks>();
342  AU.addRequired<CalculateSpillWeights>();
343  AU.addRequired<MachineDominatorTree>();
344  AU.addPreserved<MachineDominatorTree>();
345  AU.addRequired<MachineLoopInfo>();
346  AU.addPreserved<MachineLoopInfo>();
347  AU.addRequired<VirtRegMap>();
348  AU.addPreserved<VirtRegMap>();
349  AU.addRequired<LiveRegMatrix>();
350  AU.addPreserved<LiveRegMatrix>();
351  AU.addRequired<EdgeBundles>();
352  AU.addRequired<SpillPlacement>();
353  MachineFunctionPass::getAnalysisUsage(AU);
354}
355
356
357//===----------------------------------------------------------------------===//
358//                     LiveRangeEdit delegate methods
359//===----------------------------------------------------------------------===//
360
361bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
362  if (VRM->hasPhys(VirtReg)) {
363    Matrix->unassign(LIS->getInterval(VirtReg));
364    return true;
365  }
366  // Unassigned virtreg is probably in the priority queue.
367  // RegAllocBase will erase it after dequeueing.
368  return false;
369}
370
371void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
372  if (!VRM->hasPhys(VirtReg))
373    return;
374
375  // Register is assigned, put it back on the queue for reassignment.
376  LiveInterval &LI = LIS->getInterval(VirtReg);
377  Matrix->unassign(LI);
378  enqueue(&LI);
379}
380
381void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
382  // Cloning a register we haven't even heard about yet?  Just ignore it.
383  if (!ExtraRegInfo.inBounds(Old))
384    return;
385
386  // LRE may clone a virtual register because dead code elimination causes it to
387  // be split into connected components. The new components are much smaller
388  // than the original, so they should get a new chance at being assigned.
389  // same stage as the parent.
390  ExtraRegInfo[Old].Stage = RS_Assign;
391  ExtraRegInfo.grow(New);
392  ExtraRegInfo[New] = ExtraRegInfo[Old];
393}
394
395void RAGreedy::releaseMemory() {
396  SpillerInstance.reset(0);
397  ExtraRegInfo.clear();
398  GlobalCand.clear();
399}
400
401void RAGreedy::enqueue(LiveInterval *LI) {
402  // Prioritize live ranges by size, assigning larger ranges first.
403  // The queue holds (size, reg) pairs.
404  const unsigned Size = LI->getSize();
405  const unsigned Reg = LI->reg;
406  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
407         "Can only enqueue virtual registers");
408  unsigned Prio;
409
410  ExtraRegInfo.grow(Reg);
411  if (ExtraRegInfo[Reg].Stage == RS_New)
412    ExtraRegInfo[Reg].Stage = RS_Assign;
413
414  if (ExtraRegInfo[Reg].Stage == RS_Split) {
415    // Unsplit ranges that couldn't be allocated immediately are deferred until
416    // everything else has been allocated.
417    Prio = Size;
418  } else {
419    if (ExtraRegInfo[Reg].Stage == RS_Assign && !LI->empty() &&
420        LIS->intervalIsInOneMBB(*LI)) {
421      // Allocate original local ranges in linear instruction order. Since they
422      // are singly defined, this produces optimal coloring in the absence of
423      // global interference and other constraints.
424      Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
425    }
426    else {
427      // Allocate global and split ranges in long->short order. Long ranges that
428      // don't fit should be spilled (or split) ASAP so they don't create
429      // interference.  Mark a bit to prioritize global above local ranges.
430      Prio = (1u << 29) + Size;
431    }
432    // Mark a higher bit to prioritize global and local above RS_Split.
433    Prio |= (1u << 31);
434
435    // Boost ranges that have a physical register hint.
436    if (VRM->hasKnownPreference(Reg))
437      Prio |= (1u << 30);
438  }
439  // The virtual register number is a tie breaker for same-sized ranges.
440  // Give lower vreg numbers higher priority to assign them first.
441  Queue.push(std::make_pair(Prio, ~Reg));
442}
443
444LiveInterval *RAGreedy::dequeue() {
445  if (Queue.empty())
446    return 0;
447  LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
448  Queue.pop();
449  return LI;
450}
451
452
453//===----------------------------------------------------------------------===//
454//                            Direct Assignment
455//===----------------------------------------------------------------------===//
456
457/// tryAssign - Try to assign VirtReg to an available register.
458unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
459                             AllocationOrder &Order,
460                             SmallVectorImpl<unsigned> &NewVRegs) {
461  Order.rewind();
462  unsigned PhysReg;
463  while ((PhysReg = Order.next()))
464    if (!Matrix->checkInterference(VirtReg, PhysReg))
465      break;
466  if (!PhysReg || Order.isHint())
467    return PhysReg;
468
469  // PhysReg is available, but there may be a better choice.
470
471  // If we missed a simple hint, try to cheaply evict interference from the
472  // preferred register.
473  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
474    if (Order.isHint(Hint)) {
475      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
476      EvictionCost MaxCost(1);
477      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
478        evictInterference(VirtReg, Hint, NewVRegs);
479        return Hint;
480      }
481    }
482
483  // Try to evict interference from a cheaper alternative.
484  unsigned Cost = TRI->getCostPerUse(PhysReg);
485
486  // Most registers have 0 additional cost.
487  if (!Cost)
488    return PhysReg;
489
490  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
491               << '\n');
492  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
493  return CheapReg ? CheapReg : PhysReg;
494}
495
496
497//===----------------------------------------------------------------------===//
498//                         Interference eviction
499//===----------------------------------------------------------------------===//
500
501unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
502  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
503  unsigned PhysReg;
504  while ((PhysReg = Order.next())) {
505    if (PhysReg == PrevReg)
506      continue;
507
508    MCRegUnitIterator Units(PhysReg, TRI);
509    for (; Units.isValid(); ++Units) {
510      // Instantiate a "subquery", not to be confused with the Queries array.
511      LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
512      if (subQ.checkInterference())
513        break;
514    }
515    // If no units have interference, break out with the current PhysReg.
516    if (!Units.isValid())
517      break;
518  }
519  if (PhysReg)
520    DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
521          << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
522          << '\n');
523  return PhysReg;
524}
525
526/// shouldEvict - determine if A should evict the assigned live range B. The
527/// eviction policy defined by this function together with the allocation order
528/// defined by enqueue() decides which registers ultimately end up being split
529/// and spilled.
530///
531/// Cascade numbers are used to prevent infinite loops if this function is a
532/// cyclic relation.
533///
534/// @param A          The live range to be assigned.
535/// @param IsHint     True when A is about to be assigned to its preferred
536///                   register.
537/// @param B          The live range to be evicted.
538/// @param BreaksHint True when B is already assigned to its preferred register.
539bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
540                           LiveInterval &B, bool BreaksHint) {
541  bool CanSplit = getStage(B) < RS_Spill;
542
543  // Be fairly aggressive about following hints as long as the evictee can be
544  // split.
545  if (CanSplit && IsHint && !BreaksHint)
546    return true;
547
548  return A.weight > B.weight;
549}
550
551/// canEvictInterference - Return true if all interferences between VirtReg and
552/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
553///
554/// @param VirtReg Live range that is about to be assigned.
555/// @param PhysReg Desired register for assignment.
556/// @param IsHint  True when PhysReg is VirtReg's preferred register.
557/// @param MaxCost Only look for cheaper candidates and update with new cost
558///                when returning true.
559/// @returns True when interference can be evicted cheaper than MaxCost.
560bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
561                                    bool IsHint, EvictionCost &MaxCost) {
562  // It is only possible to evict virtual register interference.
563  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
564    return false;
565
566  bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
567
568  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
569  // involved in an eviction before. If a cascade number was assigned, deny
570  // evicting anything with the same or a newer cascade number. This prevents
571  // infinite eviction loops.
572  //
573  // This works out so a register without a cascade number is allowed to evict
574  // anything, and it can be evicted by anything.
575  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
576  if (!Cascade)
577    Cascade = NextCascade;
578
579  EvictionCost Cost;
580  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
581    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
582    // If there is 10 or more interferences, chances are one is heavier.
583    if (Q.collectInterferingVRegs(10) >= 10)
584      return false;
585
586    // Check if any interfering live range is heavier than MaxWeight.
587    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
588      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
589      assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
590             "Only expecting virtual register interference from query");
591      // Never evict spill products. They cannot split or spill.
592      if (getStage(*Intf) == RS_Done)
593        return false;
594      // Once a live range becomes small enough, it is urgent that we find a
595      // register for it. This is indicated by an infinite spill weight. These
596      // urgent live ranges get to evict almost anything.
597      //
598      // Also allow urgent evictions of unspillable ranges from a strictly
599      // larger allocation order.
600      bool Urgent = !VirtReg.isSpillable() &&
601        (Intf->isSpillable() ||
602         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
603         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
604      // Only evict older cascades or live ranges without a cascade.
605      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
606      if (Cascade <= IntfCascade) {
607        if (!Urgent)
608          return false;
609        // We permit breaking cascades for urgent evictions. It should be the
610        // last resort, though, so make it really expensive.
611        Cost.BrokenHints += 10;
612      }
613      // Would this break a satisfied hint?
614      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
615      // Update eviction cost.
616      Cost.BrokenHints += BreaksHint;
617      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
618      // Abort if this would be too expensive.
619      if (!(Cost < MaxCost))
620        return false;
621      if (Urgent)
622        continue;
623      // If !MaxCost.isMax(), then we're just looking for a cheap register.
624      // Evicting another local live range in this case could lead to suboptimal
625      // coloring.
626      if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
627          !canReassign(*Intf, PhysReg)) {
628        return false;
629      }
630      // Finally, apply the eviction policy for non-urgent evictions.
631      if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
632        return false;
633    }
634  }
635  MaxCost = Cost;
636  return true;
637}
638
639/// evictInterference - Evict any interferring registers that prevent VirtReg
640/// from being assigned to Physreg. This assumes that canEvictInterference
641/// returned true.
642void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
643                                 SmallVectorImpl<unsigned> &NewVRegs) {
644  // Make sure that VirtReg has a cascade number, and assign that cascade
645  // number to every evicted register. These live ranges than then only be
646  // evicted by a newer cascade, preventing infinite loops.
647  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
648  if (!Cascade)
649    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
650
651  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
652               << " interference: Cascade " << Cascade << '\n');
653
654  // Collect all interfering virtregs first.
655  SmallVector<LiveInterval*, 8> Intfs;
656  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
657    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
658    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
659    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
660    Intfs.append(IVR.begin(), IVR.end());
661  }
662
663  // Evict them second. This will invalidate the queries.
664  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
665    LiveInterval *Intf = Intfs[i];
666    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
667    if (!VRM->hasPhys(Intf->reg))
668      continue;
669    Matrix->unassign(*Intf);
670    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
671            VirtReg.isSpillable() < Intf->isSpillable()) &&
672           "Cannot decrease cascade number, illegal eviction");
673    ExtraRegInfo[Intf->reg].Cascade = Cascade;
674    ++NumEvicted;
675    NewVRegs.push_back(Intf->reg);
676  }
677}
678
679/// tryEvict - Try to evict all interferences for a physreg.
680/// @param  VirtReg Currently unassigned virtual register.
681/// @param  Order   Physregs to try.
682/// @return         Physreg to assign VirtReg, or 0.
683unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
684                            AllocationOrder &Order,
685                            SmallVectorImpl<unsigned> &NewVRegs,
686                            unsigned CostPerUseLimit) {
687  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
688
689  // Keep track of the cheapest interference seen so far.
690  EvictionCost BestCost(~0u);
691  unsigned BestPhys = 0;
692  unsigned OrderLimit = Order.getOrder().size();
693
694  // When we are just looking for a reduced cost per use, don't break any
695  // hints, and only evict smaller spill weights.
696  if (CostPerUseLimit < ~0u) {
697    BestCost.BrokenHints = 0;
698    BestCost.MaxWeight = VirtReg.weight;
699
700    // Check of any registers in RC are below CostPerUseLimit.
701    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
702    unsigned MinCost = RegClassInfo.getMinCost(RC);
703    if (MinCost >= CostPerUseLimit) {
704      DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
705                   << ", no cheaper registers to be found.\n");
706      return 0;
707    }
708
709    // It is normal for register classes to have a long tail of registers with
710    // the same cost. We don't need to look at them if they're too expensive.
711    if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
712      OrderLimit = RegClassInfo.getLastCostChange(RC);
713      DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
714    }
715  }
716
717  Order.rewind();
718  while (unsigned PhysReg = Order.nextWithDups(OrderLimit)) {
719    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
720      continue;
721    // The first use of a callee-saved register in a function has cost 1.
722    // Don't start using a CSR when the CostPerUseLimit is low.
723    if (CostPerUseLimit == 1)
724     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
725       if (!MRI->isPhysRegUsed(CSR)) {
726         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
727                      << PrintReg(CSR, TRI) << '\n');
728         continue;
729       }
730
731    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
732      continue;
733
734    // Best so far.
735    BestPhys = PhysReg;
736
737    // Stop if the hint can be used.
738    if (Order.isHint())
739      break;
740  }
741
742  if (!BestPhys)
743    return 0;
744
745  evictInterference(VirtReg, BestPhys, NewVRegs);
746  return BestPhys;
747}
748
749
750//===----------------------------------------------------------------------===//
751//                              Region Splitting
752//===----------------------------------------------------------------------===//
753
754/// addSplitConstraints - Fill out the SplitConstraints vector based on the
755/// interference pattern in Physreg and its aliases. Add the constraints to
756/// SpillPlacement and return the static cost of this split in Cost, assuming
757/// that all preferences in SplitConstraints are met.
758/// Return false if there are no bundles with positive bias.
759bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
760                                   BlockFrequency &Cost) {
761  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
762
763  // Reset interference dependent info.
764  SplitConstraints.resize(UseBlocks.size());
765  BlockFrequency StaticCost = 0;
766  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
767    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
768    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
769
770    BC.Number = BI.MBB->getNumber();
771    Intf.moveToBlock(BC.Number);
772    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
773    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
774    BC.ChangesValue = BI.FirstDef.isValid();
775
776    if (!Intf.hasInterference())
777      continue;
778
779    // Number of spill code instructions to insert.
780    unsigned Ins = 0;
781
782    // Interference for the live-in value.
783    if (BI.LiveIn) {
784      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
785        BC.Entry = SpillPlacement::MustSpill, ++Ins;
786      else if (Intf.first() < BI.FirstInstr)
787        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
788      else if (Intf.first() < BI.LastInstr)
789        ++Ins;
790    }
791
792    // Interference for the live-out value.
793    if (BI.LiveOut) {
794      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
795        BC.Exit = SpillPlacement::MustSpill, ++Ins;
796      else if (Intf.last() > BI.LastInstr)
797        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
798      else if (Intf.last() > BI.FirstInstr)
799        ++Ins;
800    }
801
802    // Accumulate the total frequency of inserted spill code.
803    while (Ins--)
804      StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
805  }
806  Cost = StaticCost;
807
808  // Add constraints for use-blocks. Note that these are the only constraints
809  // that may add a positive bias, it is downhill from here.
810  SpillPlacer->addConstraints(SplitConstraints);
811  return SpillPlacer->scanActiveBundles();
812}
813
814
815/// addThroughConstraints - Add constraints and links to SpillPlacer from the
816/// live-through blocks in Blocks.
817void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
818                                     ArrayRef<unsigned> Blocks) {
819  const unsigned GroupSize = 8;
820  SpillPlacement::BlockConstraint BCS[GroupSize];
821  unsigned TBS[GroupSize];
822  unsigned B = 0, T = 0;
823
824  for (unsigned i = 0; i != Blocks.size(); ++i) {
825    unsigned Number = Blocks[i];
826    Intf.moveToBlock(Number);
827
828    if (!Intf.hasInterference()) {
829      assert(T < GroupSize && "Array overflow");
830      TBS[T] = Number;
831      if (++T == GroupSize) {
832        SpillPlacer->addLinks(makeArrayRef(TBS, T));
833        T = 0;
834      }
835      continue;
836    }
837
838    assert(B < GroupSize && "Array overflow");
839    BCS[B].Number = Number;
840
841    // Interference for the live-in value.
842    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
843      BCS[B].Entry = SpillPlacement::MustSpill;
844    else
845      BCS[B].Entry = SpillPlacement::PrefSpill;
846
847    // Interference for the live-out value.
848    if (Intf.last() >= SA->getLastSplitPoint(Number))
849      BCS[B].Exit = SpillPlacement::MustSpill;
850    else
851      BCS[B].Exit = SpillPlacement::PrefSpill;
852
853    if (++B == GroupSize) {
854      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
855      SpillPlacer->addConstraints(Array);
856      B = 0;
857    }
858  }
859
860  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
861  SpillPlacer->addConstraints(Array);
862  SpillPlacer->addLinks(makeArrayRef(TBS, T));
863}
864
865void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
866  // Keep track of through blocks that have not been added to SpillPlacer.
867  BitVector Todo = SA->getThroughBlocks();
868  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
869  unsigned AddedTo = 0;
870#ifndef NDEBUG
871  unsigned Visited = 0;
872#endif
873
874  for (;;) {
875    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
876    // Find new through blocks in the periphery of PrefRegBundles.
877    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
878      unsigned Bundle = NewBundles[i];
879      // Look at all blocks connected to Bundle in the full graph.
880      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
881      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
882           I != E; ++I) {
883        unsigned Block = *I;
884        if (!Todo.test(Block))
885          continue;
886        Todo.reset(Block);
887        // This is a new through block. Add it to SpillPlacer later.
888        ActiveBlocks.push_back(Block);
889#ifndef NDEBUG
890        ++Visited;
891#endif
892      }
893    }
894    // Any new blocks to add?
895    if (ActiveBlocks.size() == AddedTo)
896      break;
897
898    // Compute through constraints from the interference, or assume that all
899    // through blocks prefer spilling when forming compact regions.
900    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
901    if (Cand.PhysReg)
902      addThroughConstraints(Cand.Intf, NewBlocks);
903    else
904      // Provide a strong negative bias on through blocks to prevent unwanted
905      // liveness on loop backedges.
906      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
907    AddedTo = ActiveBlocks.size();
908
909    // Perhaps iterating can enable more bundles?
910    SpillPlacer->iterate();
911  }
912  DEBUG(dbgs() << ", v=" << Visited);
913}
914
915/// calcCompactRegion - Compute the set of edge bundles that should be live
916/// when splitting the current live range into compact regions.  Compact
917/// regions can be computed without looking at interference.  They are the
918/// regions formed by removing all the live-through blocks from the live range.
919///
920/// Returns false if the current live range is already compact, or if the
921/// compact regions would form single block regions anyway.
922bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
923  // Without any through blocks, the live range is already compact.
924  if (!SA->getNumThroughBlocks())
925    return false;
926
927  // Compact regions don't correspond to any physreg.
928  Cand.reset(IntfCache, 0);
929
930  DEBUG(dbgs() << "Compact region bundles");
931
932  // Use the spill placer to determine the live bundles. GrowRegion pretends
933  // that all the through blocks have interference when PhysReg is unset.
934  SpillPlacer->prepare(Cand.LiveBundles);
935
936  // The static split cost will be zero since Cand.Intf reports no interference.
937  BlockFrequency Cost;
938  if (!addSplitConstraints(Cand.Intf, Cost)) {
939    DEBUG(dbgs() << ", none.\n");
940    return false;
941  }
942
943  growRegion(Cand);
944  SpillPlacer->finish();
945
946  if (!Cand.LiveBundles.any()) {
947    DEBUG(dbgs() << ", none.\n");
948    return false;
949  }
950
951  DEBUG({
952    for (int i = Cand.LiveBundles.find_first(); i>=0;
953         i = Cand.LiveBundles.find_next(i))
954    dbgs() << " EB#" << i;
955    dbgs() << ".\n";
956  });
957  return true;
958}
959
960/// calcSpillCost - Compute how expensive it would be to split the live range in
961/// SA around all use blocks instead of forming bundle regions.
962BlockFrequency RAGreedy::calcSpillCost() {
963  BlockFrequency Cost = 0;
964  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
965  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
966    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
967    unsigned Number = BI.MBB->getNumber();
968    // We normally only need one spill instruction - a load or a store.
969    Cost += SpillPlacer->getBlockFrequency(Number);
970
971    // Unless the value is redefined in the block.
972    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
973      Cost += SpillPlacer->getBlockFrequency(Number);
974  }
975  return Cost;
976}
977
978/// calcGlobalSplitCost - Return the global split cost of following the split
979/// pattern in LiveBundles. This cost should be added to the local cost of the
980/// interference pattern in SplitConstraints.
981///
982BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
983  BlockFrequency GlobalCost = 0;
984  const BitVector &LiveBundles = Cand.LiveBundles;
985  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
986  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
987    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
988    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
989    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
990    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
991    unsigned Ins = 0;
992
993    if (BI.LiveIn)
994      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
995    if (BI.LiveOut)
996      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
997    while (Ins--)
998      GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
999  }
1000
1001  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1002    unsigned Number = Cand.ActiveBlocks[i];
1003    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
1004    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1005    if (!RegIn && !RegOut)
1006      continue;
1007    if (RegIn && RegOut) {
1008      // We need double spill code if this block has interference.
1009      Cand.Intf.moveToBlock(Number);
1010      if (Cand.Intf.hasInterference()) {
1011        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1012        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1013      }
1014      continue;
1015    }
1016    // live-in / stack-out or stack-in live-out.
1017    GlobalCost += SpillPlacer->getBlockFrequency(Number);
1018  }
1019  return GlobalCost;
1020}
1021
1022/// splitAroundRegion - Split the current live range around the regions
1023/// determined by BundleCand and GlobalCand.
1024///
1025/// Before calling this function, GlobalCand and BundleCand must be initialized
1026/// so each bundle is assigned to a valid candidate, or NoCand for the
1027/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1028/// objects must be initialized for the current live range, and intervals
1029/// created for the used candidates.
1030///
1031/// @param LREdit    The LiveRangeEdit object handling the current split.
1032/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1033///                  must appear in this list.
1034void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1035                                 ArrayRef<unsigned> UsedCands) {
1036  // These are the intervals created for new global ranges. We may create more
1037  // intervals for local ranges.
1038  const unsigned NumGlobalIntvs = LREdit.size();
1039  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1040  assert(NumGlobalIntvs && "No global intervals configured");
1041
1042  // Isolate even single instructions when dealing with a proper sub-class.
1043  // That guarantees register class inflation for the stack interval because it
1044  // is all copies.
1045  unsigned Reg = SA->getParent().reg;
1046  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1047
1048  // First handle all the blocks with uses.
1049  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1050  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1051    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1052    unsigned Number = BI.MBB->getNumber();
1053    unsigned IntvIn = 0, IntvOut = 0;
1054    SlotIndex IntfIn, IntfOut;
1055    if (BI.LiveIn) {
1056      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1057      if (CandIn != NoCand) {
1058        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1059        IntvIn = Cand.IntvIdx;
1060        Cand.Intf.moveToBlock(Number);
1061        IntfIn = Cand.Intf.first();
1062      }
1063    }
1064    if (BI.LiveOut) {
1065      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1066      if (CandOut != NoCand) {
1067        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1068        IntvOut = Cand.IntvIdx;
1069        Cand.Intf.moveToBlock(Number);
1070        IntfOut = Cand.Intf.last();
1071      }
1072    }
1073
1074    // Create separate intervals for isolated blocks with multiple uses.
1075    if (!IntvIn && !IntvOut) {
1076      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1077      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1078        SE->splitSingleBlock(BI);
1079      continue;
1080    }
1081
1082    if (IntvIn && IntvOut)
1083      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1084    else if (IntvIn)
1085      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1086    else
1087      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1088  }
1089
1090  // Handle live-through blocks. The relevant live-through blocks are stored in
1091  // the ActiveBlocks list with each candidate. We need to filter out
1092  // duplicates.
1093  BitVector Todo = SA->getThroughBlocks();
1094  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1095    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1096    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1097      unsigned Number = Blocks[i];
1098      if (!Todo.test(Number))
1099        continue;
1100      Todo.reset(Number);
1101
1102      unsigned IntvIn = 0, IntvOut = 0;
1103      SlotIndex IntfIn, IntfOut;
1104
1105      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1106      if (CandIn != NoCand) {
1107        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1108        IntvIn = Cand.IntvIdx;
1109        Cand.Intf.moveToBlock(Number);
1110        IntfIn = Cand.Intf.first();
1111      }
1112
1113      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1114      if (CandOut != NoCand) {
1115        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1116        IntvOut = Cand.IntvIdx;
1117        Cand.Intf.moveToBlock(Number);
1118        IntfOut = Cand.Intf.last();
1119      }
1120      if (!IntvIn && !IntvOut)
1121        continue;
1122      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1123    }
1124  }
1125
1126  ++NumGlobalSplits;
1127
1128  SmallVector<unsigned, 8> IntvMap;
1129  SE->finish(&IntvMap);
1130  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1131
1132  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1133  unsigned OrigBlocks = SA->getNumLiveBlocks();
1134
1135  // Sort out the new intervals created by splitting. We get four kinds:
1136  // - Remainder intervals should not be split again.
1137  // - Candidate intervals can be assigned to Cand.PhysReg.
1138  // - Block-local splits are candidates for local splitting.
1139  // - DCE leftovers should go back on the queue.
1140  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1141    LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1142
1143    // Ignore old intervals from DCE.
1144    if (getStage(Reg) != RS_New)
1145      continue;
1146
1147    // Remainder interval. Don't try splitting again, spill if it doesn't
1148    // allocate.
1149    if (IntvMap[i] == 0) {
1150      setStage(Reg, RS_Spill);
1151      continue;
1152    }
1153
1154    // Global intervals. Allow repeated splitting as long as the number of live
1155    // blocks is strictly decreasing.
1156    if (IntvMap[i] < NumGlobalIntvs) {
1157      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1158        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1159                     << " blocks as original.\n");
1160        // Don't allow repeated splitting as a safe guard against looping.
1161        setStage(Reg, RS_Split2);
1162      }
1163      continue;
1164    }
1165
1166    // Other intervals are treated as new. This includes local intervals created
1167    // for blocks with multiple uses, and anything created by DCE.
1168  }
1169
1170  if (VerifyEnabled)
1171    MF->verify(this, "After splitting live range around region");
1172}
1173
1174unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1175                                  SmallVectorImpl<unsigned> &NewVRegs) {
1176  unsigned NumCands = 0;
1177  unsigned BestCand = NoCand;
1178  BlockFrequency BestCost;
1179  SmallVector<unsigned, 8> UsedCands;
1180
1181  // Check if we can split this live range around a compact region.
1182  bool HasCompact = calcCompactRegion(GlobalCand.front());
1183  if (HasCompact) {
1184    // Yes, keep GlobalCand[0] as the compact region candidate.
1185    NumCands = 1;
1186    BestCost = BlockFrequency::getMaxFrequency();
1187  } else {
1188    // No benefit from the compact region, our fallback will be per-block
1189    // splitting. Make sure we find a solution that is cheaper than spilling.
1190    BestCost = calcSpillCost();
1191    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1192  }
1193
1194  Order.rewind();
1195  while (unsigned PhysReg = Order.next()) {
1196    // Discard bad candidates before we run out of interference cache cursors.
1197    // This will only affect register classes with a lot of registers (>32).
1198    if (NumCands == IntfCache.getMaxCursors()) {
1199      unsigned WorstCount = ~0u;
1200      unsigned Worst = 0;
1201      for (unsigned i = 0; i != NumCands; ++i) {
1202        if (i == BestCand || !GlobalCand[i].PhysReg)
1203          continue;
1204        unsigned Count = GlobalCand[i].LiveBundles.count();
1205        if (Count < WorstCount)
1206          Worst = i, WorstCount = Count;
1207      }
1208      --NumCands;
1209      GlobalCand[Worst] = GlobalCand[NumCands];
1210      if (BestCand == NumCands)
1211        BestCand = Worst;
1212    }
1213
1214    if (GlobalCand.size() <= NumCands)
1215      GlobalCand.resize(NumCands+1);
1216    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1217    Cand.reset(IntfCache, PhysReg);
1218
1219    SpillPlacer->prepare(Cand.LiveBundles);
1220    BlockFrequency Cost;
1221    if (!addSplitConstraints(Cand.Intf, Cost)) {
1222      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1223      continue;
1224    }
1225    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1226    if (Cost >= BestCost) {
1227      DEBUG({
1228        if (BestCand == NoCand)
1229          dbgs() << " worse than no bundles\n";
1230        else
1231          dbgs() << " worse than "
1232                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1233      });
1234      continue;
1235    }
1236    growRegion(Cand);
1237
1238    SpillPlacer->finish();
1239
1240    // No live bundles, defer to splitSingleBlocks().
1241    if (!Cand.LiveBundles.any()) {
1242      DEBUG(dbgs() << " no bundles.\n");
1243      continue;
1244    }
1245
1246    Cost += calcGlobalSplitCost(Cand);
1247    DEBUG({
1248      dbgs() << ", total = " << Cost << " with bundles";
1249      for (int i = Cand.LiveBundles.find_first(); i>=0;
1250           i = Cand.LiveBundles.find_next(i))
1251        dbgs() << " EB#" << i;
1252      dbgs() << ".\n";
1253    });
1254    if (Cost < BestCost) {
1255      BestCand = NumCands;
1256      BestCost = Cost;
1257    }
1258    ++NumCands;
1259  }
1260
1261  // No solutions found, fall back to single block splitting.
1262  if (!HasCompact && BestCand == NoCand)
1263    return 0;
1264
1265  // Prepare split editor.
1266  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1267  SE->reset(LREdit, SplitSpillMode);
1268
1269  // Assign all edge bundles to the preferred candidate, or NoCand.
1270  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1271
1272  // Assign bundles for the best candidate region.
1273  if (BestCand != NoCand) {
1274    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1275    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1276      UsedCands.push_back(BestCand);
1277      Cand.IntvIdx = SE->openIntv();
1278      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1279                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1280      (void)B;
1281    }
1282  }
1283
1284  // Assign bundles for the compact region.
1285  if (HasCompact) {
1286    GlobalSplitCandidate &Cand = GlobalCand.front();
1287    assert(!Cand.PhysReg && "Compact region has no physreg");
1288    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1289      UsedCands.push_back(0);
1290      Cand.IntvIdx = SE->openIntv();
1291      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1292                   << Cand.IntvIdx << ".\n");
1293      (void)B;
1294    }
1295  }
1296
1297  splitAroundRegion(LREdit, UsedCands);
1298  return 0;
1299}
1300
1301
1302//===----------------------------------------------------------------------===//
1303//                            Per-Block Splitting
1304//===----------------------------------------------------------------------===//
1305
1306/// tryBlockSplit - Split a global live range around every block with uses. This
1307/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1308/// they don't allocate.
1309unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1310                                 SmallVectorImpl<unsigned> &NewVRegs) {
1311  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1312  unsigned Reg = VirtReg.reg;
1313  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1314  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1315  SE->reset(LREdit, SplitSpillMode);
1316  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1317  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1318    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1319    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1320      SE->splitSingleBlock(BI);
1321  }
1322  // No blocks were split.
1323  if (LREdit.empty())
1324    return 0;
1325
1326  // We did split for some blocks.
1327  SmallVector<unsigned, 8> IntvMap;
1328  SE->finish(&IntvMap);
1329
1330  // Tell LiveDebugVariables about the new ranges.
1331  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1332
1333  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1334
1335  // Sort out the new intervals created by splitting. The remainder interval
1336  // goes straight to spilling, the new local ranges get to stay RS_New.
1337  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1338    LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1339    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1340      setStage(LI, RS_Spill);
1341  }
1342
1343  if (VerifyEnabled)
1344    MF->verify(this, "After splitting live range around basic blocks");
1345  return 0;
1346}
1347
1348
1349//===----------------------------------------------------------------------===//
1350//                         Per-Instruction Splitting
1351//===----------------------------------------------------------------------===//
1352
1353/// tryInstructionSplit - Split a live range around individual instructions.
1354/// This is normally not worthwhile since the spiller is doing essentially the
1355/// same thing. However, when the live range is in a constrained register
1356/// class, it may help to insert copies such that parts of the live range can
1357/// be moved to a larger register class.
1358///
1359/// This is similar to spilling to a larger register class.
1360unsigned
1361RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1362                              SmallVectorImpl<unsigned> &NewVRegs) {
1363  // There is no point to this if there are no larger sub-classes.
1364  if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
1365    return 0;
1366
1367  // Always enable split spill mode, since we're effectively spilling to a
1368  // register.
1369  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1370  SE->reset(LREdit, SplitEditor::SM_Size);
1371
1372  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1373  if (Uses.size() <= 1)
1374    return 0;
1375
1376  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1377
1378  // Split around every non-copy instruction.
1379  for (unsigned i = 0; i != Uses.size(); ++i) {
1380    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1381      if (MI->isFullCopy()) {
1382        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1383        continue;
1384      }
1385    SE->openIntv();
1386    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1387    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1388    SE->useIntv(SegStart, SegStop);
1389  }
1390
1391  if (LREdit.empty()) {
1392    DEBUG(dbgs() << "All uses were copies.\n");
1393    return 0;
1394  }
1395
1396  SmallVector<unsigned, 8> IntvMap;
1397  SE->finish(&IntvMap);
1398  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1399  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1400
1401  // Assign all new registers to RS_Spill. This was the last chance.
1402  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1403  return 0;
1404}
1405
1406
1407//===----------------------------------------------------------------------===//
1408//                             Local Splitting
1409//===----------------------------------------------------------------------===//
1410
1411
1412/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1413/// in order to use PhysReg between two entries in SA->UseSlots.
1414///
1415/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1416///
1417void RAGreedy::calcGapWeights(unsigned PhysReg,
1418                              SmallVectorImpl<float> &GapWeight) {
1419  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1420  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1421  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1422  const unsigned NumGaps = Uses.size()-1;
1423
1424  // Start and end points for the interference check.
1425  SlotIndex StartIdx =
1426    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1427  SlotIndex StopIdx =
1428    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1429
1430  GapWeight.assign(NumGaps, 0.0f);
1431
1432  // Add interference from each overlapping register.
1433  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1434    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1435          .checkInterference())
1436      continue;
1437
1438    // We know that VirtReg is a continuous interval from FirstInstr to
1439    // LastInstr, so we don't need InterferenceQuery.
1440    //
1441    // Interference that overlaps an instruction is counted in both gaps
1442    // surrounding the instruction. The exception is interference before
1443    // StartIdx and after StopIdx.
1444    //
1445    LiveIntervalUnion::SegmentIter IntI =
1446      Matrix->getLiveUnions()[*Units] .find(StartIdx);
1447    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1448      // Skip the gaps before IntI.
1449      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1450        if (++Gap == NumGaps)
1451          break;
1452      if (Gap == NumGaps)
1453        break;
1454
1455      // Update the gaps covered by IntI.
1456      const float weight = IntI.value()->weight;
1457      for (; Gap != NumGaps; ++Gap) {
1458        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1459        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1460          break;
1461      }
1462      if (Gap == NumGaps)
1463        break;
1464    }
1465  }
1466
1467  // Add fixed interference.
1468  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1469    const LiveRange &LR = LIS->getRegUnit(*Units);
1470    LiveRange::const_iterator I = LR.find(StartIdx);
1471    LiveRange::const_iterator E = LR.end();
1472
1473    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1474    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1475      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1476        if (++Gap == NumGaps)
1477          break;
1478      if (Gap == NumGaps)
1479        break;
1480
1481      for (; Gap != NumGaps; ++Gap) {
1482        GapWeight[Gap] = HUGE_VALF;
1483        if (Uses[Gap+1].getBaseIndex() >= I->end)
1484          break;
1485      }
1486      if (Gap == NumGaps)
1487        break;
1488    }
1489  }
1490}
1491
1492/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1493/// basic block.
1494///
1495unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1496                                 SmallVectorImpl<unsigned> &NewVRegs) {
1497  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1498  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1499
1500  // Note that it is possible to have an interval that is live-in or live-out
1501  // while only covering a single block - A phi-def can use undef values from
1502  // predecessors, and the block could be a single-block loop.
1503  // We don't bother doing anything clever about such a case, we simply assume
1504  // that the interval is continuous from FirstInstr to LastInstr. We should
1505  // make sure that we don't do anything illegal to such an interval, though.
1506
1507  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1508  if (Uses.size() <= 2)
1509    return 0;
1510  const unsigned NumGaps = Uses.size()-1;
1511
1512  DEBUG({
1513    dbgs() << "tryLocalSplit: ";
1514    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1515      dbgs() << ' ' << Uses[i];
1516    dbgs() << '\n';
1517  });
1518
1519  // If VirtReg is live across any register mask operands, compute a list of
1520  // gaps with register masks.
1521  SmallVector<unsigned, 8> RegMaskGaps;
1522  if (Matrix->checkRegMaskInterference(VirtReg)) {
1523    // Get regmask slots for the whole block.
1524    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1525    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1526    // Constrain to VirtReg's live range.
1527    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1528                                   Uses.front().getRegSlot()) - RMS.begin();
1529    unsigned re = RMS.size();
1530    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1531      // Look for Uses[i] <= RMS <= Uses[i+1].
1532      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1533      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1534        continue;
1535      // Skip a regmask on the same instruction as the last use. It doesn't
1536      // overlap the live range.
1537      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1538        break;
1539      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1540      RegMaskGaps.push_back(i);
1541      // Advance ri to the next gap. A regmask on one of the uses counts in
1542      // both gaps.
1543      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1544        ++ri;
1545    }
1546    DEBUG(dbgs() << '\n');
1547  }
1548
1549  // Since we allow local split results to be split again, there is a risk of
1550  // creating infinite loops. It is tempting to require that the new live
1551  // ranges have less instructions than the original. That would guarantee
1552  // convergence, but it is too strict. A live range with 3 instructions can be
1553  // split 2+3 (including the COPY), and we want to allow that.
1554  //
1555  // Instead we use these rules:
1556  //
1557  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1558  //    noop split, of course).
1559  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1560  //    the new ranges must have fewer instructions than before the split.
1561  // 3. New ranges with the same number of instructions are marked RS_Split2,
1562  //    smaller ranges are marked RS_New.
1563  //
1564  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1565  // excessive splitting and infinite loops.
1566  //
1567  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1568
1569  // Best split candidate.
1570  unsigned BestBefore = NumGaps;
1571  unsigned BestAfter = 0;
1572  float BestDiff = 0;
1573
1574  const float blockFreq =
1575    SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1576    (1.0f / BlockFrequency::getEntryFrequency());
1577  SmallVector<float, 8> GapWeight;
1578
1579  Order.rewind();
1580  while (unsigned PhysReg = Order.next()) {
1581    // Keep track of the largest spill weight that would need to be evicted in
1582    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1583    calcGapWeights(PhysReg, GapWeight);
1584
1585    // Remove any gaps with regmask clobbers.
1586    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1587      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1588        GapWeight[RegMaskGaps[i]] = HUGE_VALF;
1589
1590    // Try to find the best sequence of gaps to close.
1591    // The new spill weight must be larger than any gap interference.
1592
1593    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1594    unsigned SplitBefore = 0, SplitAfter = 1;
1595
1596    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1597    // It is the spill weight that needs to be evicted.
1598    float MaxGap = GapWeight[0];
1599
1600    for (;;) {
1601      // Live before/after split?
1602      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1603      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1604
1605      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1606                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1607                   << " i=" << MaxGap);
1608
1609      // Stop before the interval gets so big we wouldn't be making progress.
1610      if (!LiveBefore && !LiveAfter) {
1611        DEBUG(dbgs() << " all\n");
1612        break;
1613      }
1614      // Should the interval be extended or shrunk?
1615      bool Shrink = true;
1616
1617      // How many gaps would the new range have?
1618      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1619
1620      // Legally, without causing looping?
1621      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1622
1623      if (Legal && MaxGap < HUGE_VALF) {
1624        // Estimate the new spill weight. Each instruction reads or writes the
1625        // register. Conservatively assume there are no read-modify-write
1626        // instructions.
1627        //
1628        // Try to guess the size of the new interval.
1629        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1630                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1631                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1632        // Would this split be possible to allocate?
1633        // Never allocate all gaps, we wouldn't be making progress.
1634        DEBUG(dbgs() << " w=" << EstWeight);
1635        if (EstWeight * Hysteresis >= MaxGap) {
1636          Shrink = false;
1637          float Diff = EstWeight - MaxGap;
1638          if (Diff > BestDiff) {
1639            DEBUG(dbgs() << " (best)");
1640            BestDiff = Hysteresis * Diff;
1641            BestBefore = SplitBefore;
1642            BestAfter = SplitAfter;
1643          }
1644        }
1645      }
1646
1647      // Try to shrink.
1648      if (Shrink) {
1649        if (++SplitBefore < SplitAfter) {
1650          DEBUG(dbgs() << " shrink\n");
1651          // Recompute the max when necessary.
1652          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1653            MaxGap = GapWeight[SplitBefore];
1654            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1655              MaxGap = std::max(MaxGap, GapWeight[i]);
1656          }
1657          continue;
1658        }
1659        MaxGap = 0;
1660      }
1661
1662      // Try to extend the interval.
1663      if (SplitAfter >= NumGaps) {
1664        DEBUG(dbgs() << " end\n");
1665        break;
1666      }
1667
1668      DEBUG(dbgs() << " extend\n");
1669      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1670    }
1671  }
1672
1673  // Didn't find any candidates?
1674  if (BestBefore == NumGaps)
1675    return 0;
1676
1677  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1678               << '-' << Uses[BestAfter] << ", " << BestDiff
1679               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1680
1681  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1682  SE->reset(LREdit);
1683
1684  SE->openIntv();
1685  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1686  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1687  SE->useIntv(SegStart, SegStop);
1688  SmallVector<unsigned, 8> IntvMap;
1689  SE->finish(&IntvMap);
1690  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1691
1692  // If the new range has the same number of instructions as before, mark it as
1693  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1694  // leave the new intervals as RS_New so they can compete.
1695  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1696  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1697  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1698  if (NewGaps >= NumGaps) {
1699    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1700    assert(!ProgressRequired && "Didn't make progress when it was required.");
1701    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1702      if (IntvMap[i] == 1) {
1703        setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1704        DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1705      }
1706    DEBUG(dbgs() << '\n');
1707  }
1708  ++NumLocalSplits;
1709
1710  return 0;
1711}
1712
1713//===----------------------------------------------------------------------===//
1714//                          Live Range Splitting
1715//===----------------------------------------------------------------------===//
1716
1717/// trySplit - Try to split VirtReg or one of its interferences, making it
1718/// assignable.
1719/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1720unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1721                            SmallVectorImpl<unsigned>&NewVRegs) {
1722  // Ranges must be Split2 or less.
1723  if (getStage(VirtReg) >= RS_Spill)
1724    return 0;
1725
1726  // Local intervals are handled separately.
1727  if (LIS->intervalIsInOneMBB(VirtReg)) {
1728    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1729    SA->analyze(&VirtReg);
1730    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1731    if (PhysReg || !NewVRegs.empty())
1732      return PhysReg;
1733    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1734  }
1735
1736  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1737
1738  SA->analyze(&VirtReg);
1739
1740  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1741  // coalescer. That may cause the range to become allocatable which means that
1742  // tryRegionSplit won't be making progress. This check should be replaced with
1743  // an assertion when the coalescer is fixed.
1744  if (SA->didRepairRange()) {
1745    // VirtReg has changed, so all cached queries are invalid.
1746    Matrix->invalidateVirtRegs();
1747    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1748      return PhysReg;
1749  }
1750
1751  // First try to split around a region spanning multiple blocks. RS_Split2
1752  // ranges already made dubious progress with region splitting, so they go
1753  // straight to single block splitting.
1754  if (getStage(VirtReg) < RS_Split2) {
1755    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1756    if (PhysReg || !NewVRegs.empty())
1757      return PhysReg;
1758  }
1759
1760  // Then isolate blocks.
1761  return tryBlockSplit(VirtReg, Order, NewVRegs);
1762}
1763
1764
1765//===----------------------------------------------------------------------===//
1766//                            Main Entry Point
1767//===----------------------------------------------------------------------===//
1768
1769unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1770                                 SmallVectorImpl<unsigned> &NewVRegs) {
1771  // First try assigning a free register.
1772  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1773  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1774    return PhysReg;
1775
1776  LiveRangeStage Stage = getStage(VirtReg);
1777  DEBUG(dbgs() << StageName[Stage]
1778               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1779
1780  // Try to evict a less worthy live range, but only for ranges from the primary
1781  // queue. The RS_Split ranges already failed to do this, and they should not
1782  // get a second chance until they have been split.
1783  if (Stage != RS_Split)
1784    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1785      return PhysReg;
1786
1787  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1788
1789  // The first time we see a live range, don't try to split or spill.
1790  // Wait until the second time, when all smaller ranges have been allocated.
1791  // This gives a better picture of the interference to split around.
1792  if (Stage < RS_Split) {
1793    setStage(VirtReg, RS_Split);
1794    DEBUG(dbgs() << "wait for second round\n");
1795    NewVRegs.push_back(VirtReg.reg);
1796    return 0;
1797  }
1798
1799  // If we couldn't allocate a register from spilling, there is probably some
1800  // invalid inline assembly. The base class wil report it.
1801  if (Stage >= RS_Done || !VirtReg.isSpillable())
1802    return ~0u;
1803
1804  // Try splitting VirtReg or interferences.
1805  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1806  if (PhysReg || !NewVRegs.empty())
1807    return PhysReg;
1808
1809  // Finally spill VirtReg itself.
1810  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1811  LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1812  spiller().spill(LRE);
1813  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1814
1815  if (VerifyEnabled)
1816    MF->verify(this, "After spilling");
1817
1818  // The live virtual register requesting allocation was spilled, so tell
1819  // the caller not to allocate anything during this round.
1820  return 0;
1821}
1822
1823bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1824  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1825               << "********** Function: " << mf.getName() << '\n');
1826
1827  MF = &mf;
1828  if (VerifyEnabled)
1829    MF->verify(this, "Before greedy register allocator");
1830
1831  RegAllocBase::init(getAnalysis<VirtRegMap>(),
1832                     getAnalysis<LiveIntervals>(),
1833                     getAnalysis<LiveRegMatrix>());
1834  Indexes = &getAnalysis<SlotIndexes>();
1835  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1836  DomTree = &getAnalysis<MachineDominatorTree>();
1837  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1838  Loops = &getAnalysis<MachineLoopInfo>();
1839  Bundles = &getAnalysis<EdgeBundles>();
1840  SpillPlacer = &getAnalysis<SpillPlacement>();
1841  DebugVars = &getAnalysis<LiveDebugVariables>();
1842
1843  DEBUG(LIS->dump());
1844
1845  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1846  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
1847  ExtraRegInfo.clear();
1848  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1849  NextCascade = 1;
1850  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
1851  GlobalCand.resize(32);  // This will grow as needed.
1852
1853  allocatePhysRegs();
1854  releaseMemory();
1855  return true;
1856}
1857