RegAllocGreedy.cpp revision 549019792a8b14500cab093ac8f3c5f7331e86d7
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRangeEdit.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "RegisterCoalescer.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Function.h"
29#include "llvm/PassAnalysisSupport.h"
30#include "llvm/CodeGen/CalcSpillWeights.h"
31#include "llvm/CodeGen/EdgeBundles.h"
32#include "llvm/CodeGen/LiveIntervalAnalysis.h"
33#include "llvm/CodeGen/LiveStackAnalysis.h"
34#include "llvm/CodeGen/MachineDominators.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineLoopRanges.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
40#include "llvm/CodeGen/RegAllocRegistry.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Timer.h"
46
47#include <queue>
48
49using namespace llvm;
50
51STATISTIC(NumGlobalSplits, "Number of split global live ranges");
52STATISTIC(NumLocalSplits,  "Number of split local live ranges");
53STATISTIC(NumEvicted,      "Number of interferences evicted");
54
55static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
56                                       createGreedyRegisterAllocator);
57
58namespace {
59class RAGreedy : public MachineFunctionPass,
60                 public RegAllocBase,
61                 private LiveRangeEdit::Delegate {
62
63  // context
64  MachineFunction *MF;
65
66  // analyses
67  SlotIndexes *Indexes;
68  LiveStacks *LS;
69  MachineDominatorTree *DomTree;
70  MachineLoopInfo *Loops;
71  MachineLoopRanges *LoopRanges;
72  EdgeBundles *Bundles;
73  SpillPlacement *SpillPlacer;
74  LiveDebugVariables *DebugVars;
75
76  // state
77  std::auto_ptr<Spiller> SpillerInstance;
78  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
79  unsigned NextCascade;
80
81  // Live ranges pass through a number of stages as we try to allocate them.
82  // Some of the stages may also create new live ranges:
83  //
84  // - Region splitting.
85  // - Per-block splitting.
86  // - Local splitting.
87  // - Spilling.
88  //
89  // Ranges produced by one of the stages skip the previous stages when they are
90  // dequeued. This improves performance because we can skip interference checks
91  // that are unlikely to give any results. It also guarantees that the live
92  // range splitting algorithm terminates, something that is otherwise hard to
93  // ensure.
94  enum LiveRangeStage {
95    RS_New,      ///< Never seen before.
96    RS_First,    ///< First time in the queue.
97    RS_Second,   ///< Second time in the queue.
98    RS_Global,   ///< Produced by global splitting.
99    RS_Local,    ///< Produced by local splitting.
100    RS_Spill     ///< Produced by spilling.
101  };
102
103  static const char *const StageName[];
104
105  // RegInfo - Keep additional information about each live range.
106  struct RegInfo {
107    LiveRangeStage Stage;
108
109    // Cascade - Eviction loop prevention. See canEvictInterference().
110    unsigned Cascade;
111
112    RegInfo() : Stage(RS_New), Cascade(0) {}
113  };
114
115  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
116
117  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
118    return ExtraRegInfo[VirtReg.reg].Stage;
119  }
120
121  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
122    ExtraRegInfo.resize(MRI->getNumVirtRegs());
123    ExtraRegInfo[VirtReg.reg].Stage = Stage;
124  }
125
126  template<typename Iterator>
127  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
128    ExtraRegInfo.resize(MRI->getNumVirtRegs());
129    for (;Begin != End; ++Begin) {
130      unsigned Reg = (*Begin)->reg;
131      if (ExtraRegInfo[Reg].Stage == RS_New)
132        ExtraRegInfo[Reg].Stage = NewStage;
133    }
134  }
135
136  // splitting state.
137  std::auto_ptr<SplitAnalysis> SA;
138  std::auto_ptr<SplitEditor> SE;
139
140  /// Cached per-block interference maps
141  InterferenceCache IntfCache;
142
143  /// All basic blocks where the current register has uses.
144  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
145
146  /// Global live range splitting candidate info.
147  struct GlobalSplitCandidate {
148    unsigned PhysReg;
149    BitVector LiveBundles;
150    SmallVector<unsigned, 8> ActiveBlocks;
151
152    void reset(unsigned Reg) {
153      PhysReg = Reg;
154      LiveBundles.clear();
155      ActiveBlocks.clear();
156    }
157  };
158
159  /// Candidate info for for each PhysReg in AllocationOrder.
160  /// This vector never shrinks, but grows to the size of the largest register
161  /// class.
162  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
163
164public:
165  RAGreedy();
166
167  /// Return the pass name.
168  virtual const char* getPassName() const {
169    return "Greedy Register Allocator";
170  }
171
172  /// RAGreedy analysis usage.
173  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
174  virtual void releaseMemory();
175  virtual Spiller &spiller() { return *SpillerInstance; }
176  virtual void enqueue(LiveInterval *LI);
177  virtual LiveInterval *dequeue();
178  virtual unsigned selectOrSplit(LiveInterval&,
179                                 SmallVectorImpl<LiveInterval*>&);
180
181  /// Perform register allocation.
182  virtual bool runOnMachineFunction(MachineFunction &mf);
183
184  static char ID;
185
186private:
187  void LRE_WillEraseInstruction(MachineInstr*);
188  bool LRE_CanEraseVirtReg(unsigned);
189  void LRE_WillShrinkVirtReg(unsigned);
190  void LRE_DidCloneVirtReg(unsigned, unsigned);
191
192  float calcSpillCost();
193  bool addSplitConstraints(InterferenceCache::Cursor, float&);
194  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
195  void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
196  float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
197  void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
198                         SmallVectorImpl<LiveInterval*>&);
199  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
200  bool canEvict(LiveInterval &A, LiveInterval &B);
201  bool canEvictInterference(LiveInterval&, unsigned, float&);
202
203  unsigned tryAssign(LiveInterval&, AllocationOrder&,
204                     SmallVectorImpl<LiveInterval*>&);
205  unsigned tryEvict(LiveInterval&, AllocationOrder&,
206                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
207  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
208                          SmallVectorImpl<LiveInterval*>&);
209  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
210    SmallVectorImpl<LiveInterval*>&);
211  unsigned trySplit(LiveInterval&, AllocationOrder&,
212                    SmallVectorImpl<LiveInterval*>&);
213};
214} // end anonymous namespace
215
216char RAGreedy::ID = 0;
217
218#ifndef NDEBUG
219const char *const RAGreedy::StageName[] = {
220  "RS_New",
221  "RS_First",
222  "RS_Second",
223  "RS_Global",
224  "RS_Local",
225  "RS_Spill"
226};
227#endif
228
229// Hysteresis to use when comparing floats.
230// This helps stabilize decisions based on float comparisons.
231const float Hysteresis = 0.98f;
232
233
234FunctionPass* llvm::createGreedyRegisterAllocator() {
235  return new RAGreedy();
236}
237
238RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
239  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
240  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
241  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
242  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
243  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
244  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
245  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
246  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
247  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
248  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
249  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
250  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
251  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
252  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
253}
254
255void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
256  AU.setPreservesCFG();
257  AU.addRequired<AliasAnalysis>();
258  AU.addPreserved<AliasAnalysis>();
259  AU.addRequired<LiveIntervals>();
260  AU.addRequired<SlotIndexes>();
261  AU.addPreserved<SlotIndexes>();
262  AU.addRequired<LiveDebugVariables>();
263  AU.addPreserved<LiveDebugVariables>();
264  if (StrongPHIElim)
265    AU.addRequiredID(StrongPHIEliminationID);
266  AU.addRequiredTransitive<RegisterCoalescer>();
267  AU.addRequired<CalculateSpillWeights>();
268  AU.addRequired<LiveStacks>();
269  AU.addPreserved<LiveStacks>();
270  AU.addRequired<MachineDominatorTree>();
271  AU.addPreserved<MachineDominatorTree>();
272  AU.addRequired<MachineLoopInfo>();
273  AU.addPreserved<MachineLoopInfo>();
274  AU.addRequired<MachineLoopRanges>();
275  AU.addPreserved<MachineLoopRanges>();
276  AU.addRequired<VirtRegMap>();
277  AU.addPreserved<VirtRegMap>();
278  AU.addRequired<EdgeBundles>();
279  AU.addRequired<SpillPlacement>();
280  MachineFunctionPass::getAnalysisUsage(AU);
281}
282
283
284//===----------------------------------------------------------------------===//
285//                     LiveRangeEdit delegate methods
286//===----------------------------------------------------------------------===//
287
288void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
289  // LRE itself will remove from SlotIndexes and parent basic block.
290  VRM->RemoveMachineInstrFromMaps(MI);
291}
292
293bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
294  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
295    unassign(LIS->getInterval(VirtReg), PhysReg);
296    return true;
297  }
298  // Unassigned virtreg is probably in the priority queue.
299  // RegAllocBase will erase it after dequeueing.
300  return false;
301}
302
303void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
304  unsigned PhysReg = VRM->getPhys(VirtReg);
305  if (!PhysReg)
306    return;
307
308  // Register is assigned, put it back on the queue for reassignment.
309  LiveInterval &LI = LIS->getInterval(VirtReg);
310  unassign(LI, PhysReg);
311  enqueue(&LI);
312}
313
314void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
315  // LRE may clone a virtual register because dead code elimination causes it to
316  // be split into connected components. Ensure that the new register gets the
317  // same stage as the parent.
318  ExtraRegInfo.grow(New);
319  ExtraRegInfo[New] = ExtraRegInfo[Old];
320}
321
322void RAGreedy::releaseMemory() {
323  SpillerInstance.reset(0);
324  ExtraRegInfo.clear();
325  GlobalCand.clear();
326  RegAllocBase::releaseMemory();
327}
328
329void RAGreedy::enqueue(LiveInterval *LI) {
330  // Prioritize live ranges by size, assigning larger ranges first.
331  // The queue holds (size, reg) pairs.
332  const unsigned Size = LI->getSize();
333  const unsigned Reg = LI->reg;
334  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
335         "Can only enqueue virtual registers");
336  unsigned Prio;
337
338  ExtraRegInfo.grow(Reg);
339  if (ExtraRegInfo[Reg].Stage == RS_New)
340    ExtraRegInfo[Reg].Stage = RS_First;
341
342  if (ExtraRegInfo[Reg].Stage == RS_Second)
343    // Unsplit ranges that couldn't be allocated immediately are deferred until
344    // everything else has been allocated. Long ranges are allocated last so
345    // they are split against realistic interference.
346    Prio = (1u << 31) - Size;
347  else {
348    // Everything else is allocated in long->short order. Long ranges that don't
349    // fit should be spilled ASAP so they don't create interference.
350    Prio = (1u << 31) + Size;
351
352    // Boost ranges that have a physical register hint.
353    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
354      Prio |= (1u << 30);
355  }
356
357  Queue.push(std::make_pair(Prio, Reg));
358}
359
360LiveInterval *RAGreedy::dequeue() {
361  if (Queue.empty())
362    return 0;
363  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
364  Queue.pop();
365  return LI;
366}
367
368
369//===----------------------------------------------------------------------===//
370//                            Direct Assignment
371//===----------------------------------------------------------------------===//
372
373/// tryAssign - Try to assign VirtReg to an available register.
374unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
375                             AllocationOrder &Order,
376                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
377  Order.rewind();
378  unsigned PhysReg;
379  while ((PhysReg = Order.next()))
380    if (!checkPhysRegInterference(VirtReg, PhysReg))
381      break;
382  if (!PhysReg || Order.isHint(PhysReg))
383    return PhysReg;
384
385  // PhysReg is available. Try to evict interference from a cheaper alternative.
386  unsigned Cost = TRI->getCostPerUse(PhysReg);
387
388  // Most registers have 0 additional cost.
389  if (!Cost)
390    return PhysReg;
391
392  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
393               << '\n');
394  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
395  return CheapReg ? CheapReg : PhysReg;
396}
397
398
399//===----------------------------------------------------------------------===//
400//                         Interference eviction
401//===----------------------------------------------------------------------===//
402
403/// canEvict - determine if A can evict the assigned live range B. The eviction
404/// policy defined by this function together with the allocation order defined
405/// by enqueue() decides which registers ultimately end up being split and
406/// spilled.
407///
408/// Cascade numbers are used to prevent infinite loops if this function is a
409/// cyclic relation.
410bool RAGreedy::canEvict(LiveInterval &A, LiveInterval &B) {
411  return A.weight > B.weight;
412}
413
414/// canEvict - Return true if all interferences between VirtReg and PhysReg can
415/// be evicted.
416/// Return false if any interference is heavier than MaxWeight.
417/// On return, set MaxWeight to the maximal spill weight of an interference.
418bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
419                                    float &MaxWeight) {
420  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
421  // involved in an eviction before. If a cascade number was assigned, deny
422  // evicting anything with the same or a newer cascade number. This prevents
423  // infinite eviction loops.
424  //
425  // This works out so a register without a cascade number is allowed to evict
426  // anything, and it can be evicted by anything.
427  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
428  if (!Cascade)
429    Cascade = NextCascade;
430
431  float Weight = 0;
432  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
433    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
434    // If there is 10 or more interferences, chances are one is heavier.
435    if (Q.collectInterferingVRegs(10, MaxWeight) >= 10)
436      return false;
437
438    // Check if any interfering live range is heavier than MaxWeight.
439    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
440      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
441      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
442        return false;
443      if (Cascade <= ExtraRegInfo[Intf->reg].Cascade)
444        return false;
445      if (Intf->weight >= MaxWeight)
446        return false;
447      if (!canEvict(VirtReg, *Intf))
448        return false;
449      Weight = std::max(Weight, Intf->weight);
450    }
451  }
452  MaxWeight = Weight;
453  return true;
454}
455
456/// tryEvict - Try to evict all interferences for a physreg.
457/// @param  VirtReg Currently unassigned virtual register.
458/// @param  Order   Physregs to try.
459/// @return         Physreg to assign VirtReg, or 0.
460unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
461                            AllocationOrder &Order,
462                            SmallVectorImpl<LiveInterval*> &NewVRegs,
463                            unsigned CostPerUseLimit) {
464  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
465
466  // Keep track of the lightest single interference seen so far.
467  float BestWeight = HUGE_VALF;
468  unsigned BestPhys = 0;
469
470  Order.rewind();
471  while (unsigned PhysReg = Order.next()) {
472    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
473      continue;
474    // The first use of a register in a function has cost 1.
475    if (CostPerUseLimit == 1 && !MRI->isPhysRegUsed(PhysReg))
476      continue;
477
478    float Weight = BestWeight;
479    if (!canEvictInterference(VirtReg, PhysReg, Weight))
480      continue;
481
482    // This is an eviction candidate.
483    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " interference = "
484                 << Weight << '\n');
485    if (BestPhys && Weight >= BestWeight)
486      continue;
487
488    // Best so far.
489    BestPhys = PhysReg;
490    BestWeight = Weight;
491    // Stop if the hint can be used.
492    if (Order.isHint(PhysReg))
493      break;
494  }
495
496  if (!BestPhys)
497    return 0;
498
499  // We will evict interference. Make sure that VirtReg has a cascade number,
500  // and assign that cascade number to every evicted register. These live
501  // ranges than then only be evicted by a newer cascade, preventing infinite
502  // loops.
503  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
504  if (!Cascade)
505    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
506
507  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI)
508               << " interference: Cascade " << Cascade << '\n');
509  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
510    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
511    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
512    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
513      LiveInterval *Intf = Q.interferingVRegs()[i];
514      unassign(*Intf, VRM->getPhys(Intf->reg));
515      assert(ExtraRegInfo[Intf->reg].Cascade < Cascade &&
516             "Cannot decrease cascade number, illegal eviction");
517      ExtraRegInfo[Intf->reg].Cascade = Cascade;
518      ++NumEvicted;
519      NewVRegs.push_back(Intf);
520    }
521  }
522  return BestPhys;
523}
524
525
526//===----------------------------------------------------------------------===//
527//                              Region Splitting
528//===----------------------------------------------------------------------===//
529
530/// addSplitConstraints - Fill out the SplitConstraints vector based on the
531/// interference pattern in Physreg and its aliases. Add the constraints to
532/// SpillPlacement and return the static cost of this split in Cost, assuming
533/// that all preferences in SplitConstraints are met.
534/// Return false if there are no bundles with positive bias.
535bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
536                                   float &Cost) {
537  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
538
539  // Reset interference dependent info.
540  SplitConstraints.resize(UseBlocks.size());
541  float StaticCost = 0;
542  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
543    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
544    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
545
546    BC.Number = BI.MBB->getNumber();
547    Intf.moveToBlock(BC.Number);
548    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
549    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
550
551    if (!Intf.hasInterference())
552      continue;
553
554    // Number of spill code instructions to insert.
555    unsigned Ins = 0;
556
557    // Interference for the live-in value.
558    if (BI.LiveIn) {
559      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
560        BC.Entry = SpillPlacement::MustSpill, ++Ins;
561      else if (Intf.first() < BI.FirstUse)
562        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
563      else if (Intf.first() < BI.LastUse)
564        ++Ins;
565    }
566
567    // Interference for the live-out value.
568    if (BI.LiveOut) {
569      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
570        BC.Exit = SpillPlacement::MustSpill, ++Ins;
571      else if (Intf.last() > BI.LastUse)
572        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
573      else if (Intf.last() > BI.FirstUse)
574        ++Ins;
575    }
576
577    // Accumulate the total frequency of inserted spill code.
578    if (Ins)
579      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
580  }
581  Cost = StaticCost;
582
583  // Add constraints for use-blocks. Note that these are the only constraints
584  // that may add a positive bias, it is downhill from here.
585  SpillPlacer->addConstraints(SplitConstraints);
586  return SpillPlacer->scanActiveBundles();
587}
588
589
590/// addThroughConstraints - Add constraints and links to SpillPlacer from the
591/// live-through blocks in Blocks.
592void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
593                                     ArrayRef<unsigned> Blocks) {
594  const unsigned GroupSize = 8;
595  SpillPlacement::BlockConstraint BCS[GroupSize];
596  unsigned TBS[GroupSize];
597  unsigned B = 0, T = 0;
598
599  for (unsigned i = 0; i != Blocks.size(); ++i) {
600    unsigned Number = Blocks[i];
601    Intf.moveToBlock(Number);
602
603    if (!Intf.hasInterference()) {
604      assert(T < GroupSize && "Array overflow");
605      TBS[T] = Number;
606      if (++T == GroupSize) {
607        SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
608        T = 0;
609      }
610      continue;
611    }
612
613    assert(B < GroupSize && "Array overflow");
614    BCS[B].Number = Number;
615
616    // Interference for the live-in value.
617    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
618      BCS[B].Entry = SpillPlacement::MustSpill;
619    else
620      BCS[B].Entry = SpillPlacement::PrefSpill;
621
622    // Interference for the live-out value.
623    if (Intf.last() >= SA->getLastSplitPoint(Number))
624      BCS[B].Exit = SpillPlacement::MustSpill;
625    else
626      BCS[B].Exit = SpillPlacement::PrefSpill;
627
628    if (++B == GroupSize) {
629      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
630      SpillPlacer->addConstraints(Array);
631      B = 0;
632    }
633  }
634
635  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
636  SpillPlacer->addConstraints(Array);
637  SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
638}
639
640void RAGreedy::growRegion(GlobalSplitCandidate &Cand,
641                          InterferenceCache::Cursor Intf) {
642  // Keep track of through blocks that have not been added to SpillPlacer.
643  BitVector Todo = SA->getThroughBlocks();
644  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
645  unsigned AddedTo = 0;
646#ifndef NDEBUG
647  unsigned Visited = 0;
648#endif
649
650  for (;;) {
651    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
652    // Find new through blocks in the periphery of PrefRegBundles.
653    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
654      unsigned Bundle = NewBundles[i];
655      // Look at all blocks connected to Bundle in the full graph.
656      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
657      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
658           I != E; ++I) {
659        unsigned Block = *I;
660        if (!Todo.test(Block))
661          continue;
662        Todo.reset(Block);
663        // This is a new through block. Add it to SpillPlacer later.
664        ActiveBlocks.push_back(Block);
665#ifndef NDEBUG
666        ++Visited;
667#endif
668      }
669    }
670    // Any new blocks to add?
671    if (ActiveBlocks.size() == AddedTo)
672      break;
673    addThroughConstraints(Intf,
674                          ArrayRef<unsigned>(ActiveBlocks).slice(AddedTo));
675    AddedTo = ActiveBlocks.size();
676
677    // Perhaps iterating can enable more bundles?
678    SpillPlacer->iterate();
679  }
680  DEBUG(dbgs() << ", v=" << Visited);
681}
682
683/// calcSpillCost - Compute how expensive it would be to split the live range in
684/// SA around all use blocks instead of forming bundle regions.
685float RAGreedy::calcSpillCost() {
686  float Cost = 0;
687  const LiveInterval &LI = SA->getParent();
688  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
689  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
690    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
691    unsigned Number = BI.MBB->getNumber();
692    // We normally only need one spill instruction - a load or a store.
693    Cost += SpillPlacer->getBlockFrequency(Number);
694
695    // Unless the value is redefined in the block.
696    if (BI.LiveIn && BI.LiveOut) {
697      SlotIndex Start, Stop;
698      tie(Start, Stop) = Indexes->getMBBRange(Number);
699      LiveInterval::const_iterator I = LI.find(Start);
700      assert(I != LI.end() && "Expected live-in value");
701      // Is there a different live-out value? If so, we need an extra spill
702      // instruction.
703      if (I->end < Stop)
704        Cost += SpillPlacer->getBlockFrequency(Number);
705    }
706  }
707  return Cost;
708}
709
710/// calcGlobalSplitCost - Return the global split cost of following the split
711/// pattern in LiveBundles. This cost should be added to the local cost of the
712/// interference pattern in SplitConstraints.
713///
714float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
715                                    InterferenceCache::Cursor Intf) {
716  float GlobalCost = 0;
717  const BitVector &LiveBundles = Cand.LiveBundles;
718  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
719  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
720    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
721    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
722    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
723    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
724    unsigned Ins = 0;
725
726    if (BI.LiveIn)
727      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
728    if (BI.LiveOut)
729      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
730    if (Ins)
731      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
732  }
733
734  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
735    unsigned Number = Cand.ActiveBlocks[i];
736    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
737    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
738    if (!RegIn && !RegOut)
739      continue;
740    if (RegIn && RegOut) {
741      // We need double spill code if this block has interference.
742      Intf.moveToBlock(Number);
743      if (Intf.hasInterference())
744        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
745      continue;
746    }
747    // live-in / stack-out or stack-in live-out.
748    GlobalCost += SpillPlacer->getBlockFrequency(Number);
749  }
750  return GlobalCost;
751}
752
753/// splitAroundRegion - Split VirtReg around the region determined by
754/// LiveBundles. Make an effort to avoid interference from PhysReg.
755///
756/// The 'register' interval is going to contain as many uses as possible while
757/// avoiding interference. The 'stack' interval is the complement constructed by
758/// SplitEditor. It will contain the rest.
759///
760void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
761                                 GlobalSplitCandidate &Cand,
762                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
763  const BitVector &LiveBundles = Cand.LiveBundles;
764
765  DEBUG({
766    dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
767           << " with bundles";
768    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
769      dbgs() << " EB#" << i;
770    dbgs() << ".\n";
771  });
772
773  InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
774  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
775  SE->reset(LREdit);
776
777  // Create the main cross-block interval.
778  const unsigned MainIntv = SE->openIntv();
779
780  // First handle all the blocks with uses.
781  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
782  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
783    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
784    bool RegIn  = BI.LiveIn &&
785                  LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
786    bool RegOut = BI.LiveOut &&
787                  LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
788
789    // Create separate intervals for isolated blocks with multiple uses.
790    //
791    //     |---o---o---|    Enter and leave on the stack.
792    //     ____-----____    Create local interval for uses.
793    //
794    //     |   o---o---|    Defined in block, leave on stack.
795    //         -----____    Create local interval for uses.
796    //
797    //     |---o---x   |    Enter on stack, killed in block.
798    //     ____-----        Create local interval for uses.
799    //
800    if (!RegIn && !RegOut) {
801      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
802      if (!BI.isOneInstr()) {
803        SE->splitSingleBlock(BI);
804        SE->selectIntv(MainIntv);
805      }
806      continue;
807    }
808
809    SlotIndex Start, Stop;
810    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
811    Intf.moveToBlock(BI.MBB->getNumber());
812    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
813                 << (BI.LiveIn ? (RegIn ? " => " : " -> ") : "    ")
814                 << "BB#" << BI.MBB->getNumber()
815                 << (BI.LiveOut ? (RegOut ? " => " : " -> ") : "    ")
816                 << " EB#" << Bundles->getBundle(BI.MBB->getNumber(), 1)
817                 << " [" << Start << ';'
818                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
819                 << ") uses [" << BI.FirstUse << ';' << BI.LastUse
820                 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
821
822    // The interference interval should either be invalid or overlap MBB.
823    assert((!Intf.hasInterference() || Intf.first() < Stop)
824           && "Bad interference");
825    assert((!Intf.hasInterference() || Intf.last() > Start)
826           && "Bad interference");
827
828    // We are now ready to decide where to split in the current block.  There
829    // are many variables guiding the decision:
830    //
831    // - RegIn / RegOut: The global splitting algorithm's decisions for our
832    //   ingoing and outgoing bundles.
833    //
834    // - BI.BlockIn / BI.BlockOut: Is the live range live-in and/or live-out
835    //   from this block.
836    //
837    // - Intf.hasInterference(): Is there interference in this block.
838    //
839    // - Intf.first() / Inft.last(): The range of interference.
840    //
841    // The live range should be split such that MainIntv is live-in when RegIn
842    // is set, and live-out when RegOut is set.  MainIntv should never overlap
843    // the interference, and the stack interval should never have more than one
844    // use per block.
845
846    // No splits can be inserted after LastSplitPoint, overlap instead.
847    SlotIndex LastSplitPoint = Stop;
848    if (BI.LiveOut)
849      LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
850
851    // At this point, we know that either RegIn or RegOut is set. We dealt with
852    // the all-stack case above.
853
854    // Blocks without interference are relatively easy.
855    if (!Intf.hasInterference()) {
856      DEBUG(dbgs() << ", no interference.\n");
857      SE->selectIntv(MainIntv);
858      // The easiest case has MainIntv live through.
859      //
860      //     |---o---o---|    Live-in, live-out.
861      //     =============    Use MainIntv everywhere.
862      //
863      SlotIndex From = Start, To = Stop;
864
865      // Block entry. Reload before the first use if MainIntv is not live-in.
866      //
867      //     |---o--    Enter on stack.
868      //     ____===    Reload before first use.
869      //
870      //     |   o--    Defined in block.
871      //         ===    Use MainIntv from def.
872      //
873      if (!RegIn)
874        From = SE->enterIntvBefore(BI.FirstUse);
875
876      // Block exit. Handle cases where MainIntv is not live-out.
877      if (!BI.LiveOut)
878        //
879        //     --x   |    Killed in block.
880        //     ===        Use MainIntv up to kill.
881        //
882        To = SE->leaveIntvAfter(BI.LastUse);
883      else if (!RegOut) {
884        //
885        //     --o---|    Live-out on stack.
886        //     ===____    Use MainIntv up to last use, switch to stack.
887        //
888        //     -----o|    Live-out on stack, last use after last split point.
889        //     ======     Extend MainIntv to last use, overlapping.
890        //       \____    Copy to stack interval before last split point.
891        //
892        if (BI.LastUse < LastSplitPoint)
893          To = SE->leaveIntvAfter(BI.LastUse);
894        else {
895          // The last use is after the last split point, it is probably an
896          // indirect branch.
897          To = SE->leaveIntvBefore(LastSplitPoint);
898          // Run a double interval from the split to the last use.  This makes
899          // it possible to spill the complement without affecting the indirect
900          // branch.
901          SE->overlapIntv(To, BI.LastUse);
902        }
903      }
904
905      // Paint in MainIntv liveness for this block.
906      SE->useIntv(From, To);
907      continue;
908    }
909
910    // We are now looking at a block with interference, and we know that either
911    // RegIn or RegOut is set.
912    assert(Intf.hasInterference() && (RegIn || RegOut) && "Bad invariant");
913
914    // If the live range is not live through the block, it is possible that the
915    // interference doesn't even overlap.  Deal with those cases first.  Since
916    // no copy instructions are required, we can tolerate interference starting
917    // or ending at the same instruction that kills or defines our live range.
918
919    // Live-in, killed before interference.
920    //
921    //               ~~~    Interference after kill.
922    //     |---o---x   |    Killed in block.
923    //     =========        Use MainIntv everywhere.
924    //
925    if (RegIn && !BI.LiveOut && BI.LastUse <= Intf.first()) {
926      DEBUG(dbgs() << ", live-in, killed before interference.\n");
927      SE->selectIntv(MainIntv);
928      SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
929      SE->useIntv(Start, To);
930      continue;
931    }
932
933    // Live-out, defined after interference.
934    //
935    //     ~~~              Interference before def.
936    //     |   o---o---|    Defined in block.
937    //         =========    Use MainIntv everywhere.
938    //
939    if (RegOut && !BI.LiveIn && BI.FirstUse >= Intf.last()) {
940      DEBUG(dbgs() << ", live-out, defined after interference.\n");
941      SE->selectIntv(MainIntv);
942      SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
943      SE->useIntv(From, Stop);
944      continue;
945    }
946
947    // The interference is now known to overlap the live range, but it may
948    // still be easy to avoid if all the interference is on one side of the
949    // uses, and we enter or leave on the stack.
950
951    // Live-out on stack, interference after last use.
952    //
953    //               ~~~    Interference after last use.
954    //     |---o---o---|    Live-out on stack.
955    //     =========____    Leave MainIntv after last use.
956    //
957    //                 ~    Interference after last use.
958    //     |---o---o--o|    Live-out on stack, late last use.
959    //     ============     Copy to stack after LSP, overlap MainIntv.
960    //            \_____    Stack interval is live-out.
961    //
962    if (!RegOut && Intf.first() > BI.LastUse.getBoundaryIndex()) {
963      assert(RegIn && "Stack-in, stack-out should already be handled");
964      if (BI.LastUse < LastSplitPoint) {
965        DEBUG(dbgs() << ", live-in, stack-out, interference after last use.\n");
966        SE->selectIntv(MainIntv);
967        SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
968        assert(To <= Intf.first() && "Expected to avoid interference");
969        SE->useIntv(Start, To);
970      } else {
971        DEBUG(dbgs() << ", live-in, stack-out, avoid last split point\n");
972        SE->selectIntv(MainIntv);
973        SlotIndex To = SE->leaveIntvBefore(LastSplitPoint);
974        assert(To <= Intf.first() && "Expected to avoid interference");
975        SE->overlapIntv(To, BI.LastUse);
976        SE->useIntv(Start, To);
977      }
978      continue;
979    }
980
981    // Live-in on stack, interference before first use.
982    //
983    //     ~~~              Interference before first use.
984    //     |---o---o---|    Live-in on stack.
985    //     ____=========    Enter MainIntv before first use.
986    //
987    if (!RegIn && Intf.last() < BI.FirstUse.getBaseIndex()) {
988      assert(RegOut && "Stack-in, stack-out should already be handled");
989      DEBUG(dbgs() << ", stack-in, interference before first use.\n");
990      SE->selectIntv(MainIntv);
991      SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
992      assert(From >= Intf.last() && "Expected to avoid interference");
993      SE->useIntv(From, Stop);
994      continue;
995    }
996
997    // The interference is overlapping somewhere we wanted to use MainIntv. That
998    // means we need to create a local interval that can be allocated a
999    // different register.
1000    unsigned LocalIntv = SE->openIntv();
1001    DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1002
1003    // We may be creating copies directly between MainIntv and LocalIntv,
1004    // bypassing the stack interval. When we do that, we should never use the
1005    // leaveIntv* methods as they define values in the stack interval. By
1006    // starting from the end of the block and working our way backwards, we can
1007    // get by with only enterIntv* methods.
1008    //
1009    // When selecting split points, we generally try to maximize the stack
1010    // interval as long at it contains no uses, maximize the main interval as
1011    // long as it doesn't overlap interference, and minimize the local interval
1012    // that we don't know how to allocate yet.
1013
1014    // Handle the block exit, set Pos to the first handled slot.
1015    SlotIndex Pos = BI.LastUse;
1016    if (RegOut) {
1017      assert(Intf.last() < LastSplitPoint && "Cannot be live-out in register");
1018      // Create a snippet of MainIntv that is live-out.
1019      //
1020      //     ~~~        Interference overlapping uses.
1021      //     --o---|    Live-out in MainIntv.
1022      //     ----===    Switch from LocalIntv to MainIntv after interference.
1023      //
1024      SE->selectIntv(MainIntv);
1025      Pos = SE->enterIntvAfter(Intf.last());
1026      assert(Pos >= Intf.last() && "Expected to avoid interference");
1027      SE->useIntv(Pos, Stop);
1028      SE->selectIntv(LocalIntv);
1029    } else if (BI.LiveOut) {
1030      if (BI.LastUse < LastSplitPoint) {
1031        // Live-out on the stack.
1032        //
1033        //     ~~~        Interference overlapping uses.
1034        //     --o---|    Live-out on stack.
1035        //     ---____    Switch from LocalIntv to stack after last use.
1036        //
1037        Pos = SE->leaveIntvAfter(BI.LastUse);
1038      } else {
1039        // Live-out on the stack, last use after last split point.
1040        //
1041        //     ~~~        Interference overlapping uses.
1042        //     --o--o|    Live-out on stack, late use.
1043        //     ------     Copy to stack before LSP, overlap LocalIntv.
1044        //         \__
1045        //
1046        Pos = SE->leaveIntvBefore(LastSplitPoint);
1047        // We need to overlap LocalIntv so it can reach LastUse.
1048        SE->overlapIntv(Pos, BI.LastUse);
1049      }
1050    }
1051
1052    // When not live-out, leave Pos at LastUse. We have handled everything from
1053    // Pos to Stop. Find the starting point for LocalIntv.
1054    assert(SE->currentIntv() == LocalIntv && "Expecting local interval");
1055
1056    if (RegIn) {
1057      assert(Start < Intf.first() && "Cannot be live-in with interference");
1058      // Live-in in MainIntv, only use LocalIntv for interference.
1059      //
1060      //         ~~~    Interference overlapping uses.
1061      //     |---o--    Live-in in MainIntv.
1062      //     ====---    Switch to LocalIntv before interference.
1063      //
1064      SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, Intf.first()));
1065      assert(Switch <= Intf.first() && "Expected to avoid interference");
1066      SE->useIntv(Switch, Pos);
1067      SE->selectIntv(MainIntv);
1068      SE->useIntv(Start, Switch);
1069    } else {
1070      // Live-in on stack, enter LocalIntv before first use.
1071      //
1072      //         ~~~    Interference overlapping uses.
1073      //     |---o--    Live-in in MainIntv.
1074      //     ____---    Reload to LocalIntv before interference.
1075      //
1076      // Defined in block.
1077      //
1078      //         ~~~    Interference overlapping uses.
1079      //     |   o--    Defined in block.
1080      //         ---    Begin LocalIntv at first use.
1081      //
1082      SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, BI.FirstUse));
1083      SE->useIntv(Switch, Pos);
1084    }
1085  }
1086
1087  // Handle live-through blocks.
1088  SE->selectIntv(MainIntv);
1089  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1090    unsigned Number = Cand.ActiveBlocks[i];
1091    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
1092    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1093    DEBUG(dbgs() << "Live through BB#" << Number << '\n');
1094    if (RegIn && RegOut) {
1095      Intf.moveToBlock(Number);
1096      if (!Intf.hasInterference()) {
1097        SE->useIntv(Indexes->getMBBStartIdx(Number),
1098                    Indexes->getMBBEndIdx(Number));
1099        continue;
1100      }
1101    }
1102    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1103    if (RegIn)
1104      SE->leaveIntvAtTop(*MBB);
1105    if (RegOut)
1106      SE->enterIntvAtEnd(*MBB);
1107  }
1108
1109  ++NumGlobalSplits;
1110
1111  SmallVector<unsigned, 8> IntvMap;
1112  SE->finish(&IntvMap);
1113  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1114
1115  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1116  unsigned OrigBlocks = SA->getNumLiveBlocks();
1117
1118  // Sort out the new intervals created by splitting. We get four kinds:
1119  // - Remainder intervals should not be split again.
1120  // - Candidate intervals can be assigned to Cand.PhysReg.
1121  // - Block-local splits are candidates for local splitting.
1122  // - DCE leftovers should go back on the queue.
1123  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1124    LiveInterval &Reg = *LREdit.get(i);
1125
1126    // Ignore old intervals from DCE.
1127    if (getStage(Reg) != RS_New)
1128      continue;
1129
1130    // Remainder interval. Don't try splitting again, spill if it doesn't
1131    // allocate.
1132    if (IntvMap[i] == 0) {
1133      setStage(Reg, RS_Global);
1134      continue;
1135    }
1136
1137    // Main interval. Allow repeated splitting as long as the number of live
1138    // blocks is strictly decreasing.
1139    if (IntvMap[i] == MainIntv) {
1140      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1141        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1142                     << " blocks as original.\n");
1143        // Don't allow repeated splitting as a safe guard against looping.
1144        setStage(Reg, RS_Global);
1145      }
1146      continue;
1147    }
1148
1149    // Other intervals are treated as new. This includes local intervals created
1150    // for blocks with multiple uses, and anything created by DCE.
1151  }
1152
1153  if (VerifyEnabled)
1154    MF->verify(this, "After splitting live range around region");
1155}
1156
1157unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1158                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1159  float BestCost = Hysteresis * calcSpillCost();
1160  DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1161  const unsigned NoCand = ~0u;
1162  unsigned BestCand = NoCand;
1163
1164  Order.rewind();
1165  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
1166    if (GlobalCand.size() <= Cand)
1167      GlobalCand.resize(Cand+1);
1168    GlobalCand[Cand].reset(PhysReg);
1169
1170    SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
1171    float Cost;
1172    InterferenceCache::Cursor Intf(IntfCache, PhysReg);
1173    if (!addSplitConstraints(Intf, Cost)) {
1174      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1175      continue;
1176    }
1177    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1178    if (Cost >= BestCost) {
1179      DEBUG({
1180        if (BestCand == NoCand)
1181          dbgs() << " worse than no bundles\n";
1182        else
1183          dbgs() << " worse than "
1184                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1185      });
1186      continue;
1187    }
1188    growRegion(GlobalCand[Cand], Intf);
1189
1190    SpillPlacer->finish();
1191
1192    // No live bundles, defer to splitSingleBlocks().
1193    if (!GlobalCand[Cand].LiveBundles.any()) {
1194      DEBUG(dbgs() << " no bundles.\n");
1195      continue;
1196    }
1197
1198    Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
1199    DEBUG({
1200      dbgs() << ", total = " << Cost << " with bundles";
1201      for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
1202           i = GlobalCand[Cand].LiveBundles.find_next(i))
1203        dbgs() << " EB#" << i;
1204      dbgs() << ".\n";
1205    });
1206    if (Cost < BestCost) {
1207      BestCand = Cand;
1208      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1209    }
1210  }
1211
1212  if (BestCand == NoCand)
1213    return 0;
1214
1215  splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
1216  return 0;
1217}
1218
1219
1220//===----------------------------------------------------------------------===//
1221//                             Local Splitting
1222//===----------------------------------------------------------------------===//
1223
1224
1225/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1226/// in order to use PhysReg between two entries in SA->UseSlots.
1227///
1228/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1229///
1230void RAGreedy::calcGapWeights(unsigned PhysReg,
1231                              SmallVectorImpl<float> &GapWeight) {
1232  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1233  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1234  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1235  const unsigned NumGaps = Uses.size()-1;
1236
1237  // Start and end points for the interference check.
1238  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1239  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1240
1241  GapWeight.assign(NumGaps, 0.0f);
1242
1243  // Add interference from each overlapping register.
1244  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1245    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1246           .checkInterference())
1247      continue;
1248
1249    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1250    // so we don't need InterferenceQuery.
1251    //
1252    // Interference that overlaps an instruction is counted in both gaps
1253    // surrounding the instruction. The exception is interference before
1254    // StartIdx and after StopIdx.
1255    //
1256    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1257    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1258      // Skip the gaps before IntI.
1259      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1260        if (++Gap == NumGaps)
1261          break;
1262      if (Gap == NumGaps)
1263        break;
1264
1265      // Update the gaps covered by IntI.
1266      const float weight = IntI.value()->weight;
1267      for (; Gap != NumGaps; ++Gap) {
1268        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1269        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1270          break;
1271      }
1272      if (Gap == NumGaps)
1273        break;
1274    }
1275  }
1276}
1277
1278/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1279/// basic block.
1280///
1281unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1282                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1283  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1284  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1285
1286  // Note that it is possible to have an interval that is live-in or live-out
1287  // while only covering a single block - A phi-def can use undef values from
1288  // predecessors, and the block could be a single-block loop.
1289  // We don't bother doing anything clever about such a case, we simply assume
1290  // that the interval is continuous from FirstUse to LastUse. We should make
1291  // sure that we don't do anything illegal to such an interval, though.
1292
1293  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1294  if (Uses.size() <= 2)
1295    return 0;
1296  const unsigned NumGaps = Uses.size()-1;
1297
1298  DEBUG({
1299    dbgs() << "tryLocalSplit: ";
1300    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1301      dbgs() << ' ' << SA->UseSlots[i];
1302    dbgs() << '\n';
1303  });
1304
1305  // Since we allow local split results to be split again, there is a risk of
1306  // creating infinite loops. It is tempting to require that the new live
1307  // ranges have less instructions than the original. That would guarantee
1308  // convergence, but it is too strict. A live range with 3 instructions can be
1309  // split 2+3 (including the COPY), and we want to allow that.
1310  //
1311  // Instead we use these rules:
1312  //
1313  // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
1314  //    noop split, of course).
1315  // 2. Require progress be made for ranges with getStage() >= RS_Local. All
1316  //    the new ranges must have fewer instructions than before the split.
1317  // 3. New ranges with the same number of instructions are marked RS_Local,
1318  //    smaller ranges are marked RS_New.
1319  //
1320  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1321  // excessive splitting and infinite loops.
1322  //
1323  bool ProgressRequired = getStage(VirtReg) >= RS_Local;
1324
1325  // Best split candidate.
1326  unsigned BestBefore = NumGaps;
1327  unsigned BestAfter = 0;
1328  float BestDiff = 0;
1329
1330  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1331  SmallVector<float, 8> GapWeight;
1332
1333  Order.rewind();
1334  while (unsigned PhysReg = Order.next()) {
1335    // Keep track of the largest spill weight that would need to be evicted in
1336    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1337    calcGapWeights(PhysReg, GapWeight);
1338
1339    // Try to find the best sequence of gaps to close.
1340    // The new spill weight must be larger than any gap interference.
1341
1342    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1343    unsigned SplitBefore = 0, SplitAfter = 1;
1344
1345    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1346    // It is the spill weight that needs to be evicted.
1347    float MaxGap = GapWeight[0];
1348
1349    for (;;) {
1350      // Live before/after split?
1351      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1352      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1353
1354      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1355                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1356                   << " i=" << MaxGap);
1357
1358      // Stop before the interval gets so big we wouldn't be making progress.
1359      if (!LiveBefore && !LiveAfter) {
1360        DEBUG(dbgs() << " all\n");
1361        break;
1362      }
1363      // Should the interval be extended or shrunk?
1364      bool Shrink = true;
1365
1366      // How many gaps would the new range have?
1367      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1368
1369      // Legally, without causing looping?
1370      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1371
1372      if (Legal && MaxGap < HUGE_VALF) {
1373        // Estimate the new spill weight. Each instruction reads or writes the
1374        // register. Conservatively assume there are no read-modify-write
1375        // instructions.
1376        //
1377        // Try to guess the size of the new interval.
1378        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1379                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1380                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1381        // Would this split be possible to allocate?
1382        // Never allocate all gaps, we wouldn't be making progress.
1383        DEBUG(dbgs() << " w=" << EstWeight);
1384        if (EstWeight * Hysteresis >= MaxGap) {
1385          Shrink = false;
1386          float Diff = EstWeight - MaxGap;
1387          if (Diff > BestDiff) {
1388            DEBUG(dbgs() << " (best)");
1389            BestDiff = Hysteresis * Diff;
1390            BestBefore = SplitBefore;
1391            BestAfter = SplitAfter;
1392          }
1393        }
1394      }
1395
1396      // Try to shrink.
1397      if (Shrink) {
1398        if (++SplitBefore < SplitAfter) {
1399          DEBUG(dbgs() << " shrink\n");
1400          // Recompute the max when necessary.
1401          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1402            MaxGap = GapWeight[SplitBefore];
1403            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1404              MaxGap = std::max(MaxGap, GapWeight[i]);
1405          }
1406          continue;
1407        }
1408        MaxGap = 0;
1409      }
1410
1411      // Try to extend the interval.
1412      if (SplitAfter >= NumGaps) {
1413        DEBUG(dbgs() << " end\n");
1414        break;
1415      }
1416
1417      DEBUG(dbgs() << " extend\n");
1418      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1419    }
1420  }
1421
1422  // Didn't find any candidates?
1423  if (BestBefore == NumGaps)
1424    return 0;
1425
1426  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1427               << '-' << Uses[BestAfter] << ", " << BestDiff
1428               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1429
1430  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1431  SE->reset(LREdit);
1432
1433  SE->openIntv();
1434  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1435  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1436  SE->useIntv(SegStart, SegStop);
1437  SmallVector<unsigned, 8> IntvMap;
1438  SE->finish(&IntvMap);
1439  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1440
1441  // If the new range has the same number of instructions as before, mark it as
1442  // RS_Local so the next split will be forced to make progress. Otherwise,
1443  // leave the new intervals as RS_New so they can compete.
1444  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1445  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1446  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1447  if (NewGaps >= NumGaps) {
1448    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1449    assert(!ProgressRequired && "Didn't make progress when it was required.");
1450    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1451      if (IntvMap[i] == 1) {
1452        setStage(*LREdit.get(i), RS_Local);
1453        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1454      }
1455    DEBUG(dbgs() << '\n');
1456  }
1457  ++NumLocalSplits;
1458
1459  return 0;
1460}
1461
1462//===----------------------------------------------------------------------===//
1463//                          Live Range Splitting
1464//===----------------------------------------------------------------------===//
1465
1466/// trySplit - Try to split VirtReg or one of its interferences, making it
1467/// assignable.
1468/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1469unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1470                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1471  // Local intervals are handled separately.
1472  if (LIS->intervalIsInOneMBB(VirtReg)) {
1473    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1474    SA->analyze(&VirtReg);
1475    return tryLocalSplit(VirtReg, Order, NewVRegs);
1476  }
1477
1478  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1479
1480  // Don't iterate global splitting.
1481  // Move straight to spilling if this range was produced by a global split.
1482  if (getStage(VirtReg) >= RS_Global)
1483    return 0;
1484
1485  SA->analyze(&VirtReg);
1486
1487  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1488  // coalescer. That may cause the range to become allocatable which means that
1489  // tryRegionSplit won't be making progress. This check should be replaced with
1490  // an assertion when the coalescer is fixed.
1491  if (SA->didRepairRange()) {
1492    // VirtReg has changed, so all cached queries are invalid.
1493    invalidateVirtRegs();
1494    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1495      return PhysReg;
1496  }
1497
1498  // First try to split around a region spanning multiple blocks.
1499  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1500  if (PhysReg || !NewVRegs.empty())
1501    return PhysReg;
1502
1503  // Then isolate blocks with multiple uses.
1504  SplitAnalysis::BlockPtrSet Blocks;
1505  if (SA->getMultiUseBlocks(Blocks)) {
1506    LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1507    SE->reset(LREdit);
1508    SE->splitSingleBlocks(Blocks);
1509    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1510    if (VerifyEnabled)
1511      MF->verify(this, "After splitting live range around basic blocks");
1512  }
1513
1514  // Don't assign any physregs.
1515  return 0;
1516}
1517
1518
1519//===----------------------------------------------------------------------===//
1520//                            Main Entry Point
1521//===----------------------------------------------------------------------===//
1522
1523unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1524                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1525  // First try assigning a free register.
1526  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1527  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1528    return PhysReg;
1529
1530  LiveRangeStage Stage = getStage(VirtReg);
1531  DEBUG(dbgs() << StageName[Stage]
1532               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1533
1534  // Try to evict a less worthy live range, but only for ranges from the primary
1535  // queue. The RS_Second ranges already failed to do this, and they should not
1536  // get a second chance until they have been split.
1537  if (Stage != RS_Second)
1538    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1539      return PhysReg;
1540
1541  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1542
1543  // The first time we see a live range, don't try to split or spill.
1544  // Wait until the second time, when all smaller ranges have been allocated.
1545  // This gives a better picture of the interference to split around.
1546  if (Stage == RS_First) {
1547    setStage(VirtReg, RS_Second);
1548    DEBUG(dbgs() << "wait for second round\n");
1549    NewVRegs.push_back(&VirtReg);
1550    return 0;
1551  }
1552
1553  // If we couldn't allocate a register from spilling, there is probably some
1554  // invalid inline assembly. The base class wil report it.
1555  if (Stage >= RS_Spill)
1556    return ~0u;
1557
1558  // Try splitting VirtReg or interferences.
1559  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1560  if (PhysReg || !NewVRegs.empty())
1561    return PhysReg;
1562
1563  // Finally spill VirtReg itself.
1564  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1565  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1566  spiller().spill(LRE);
1567  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1568
1569  if (VerifyEnabled)
1570    MF->verify(this, "After spilling");
1571
1572  // The live virtual register requesting allocation was spilled, so tell
1573  // the caller not to allocate anything during this round.
1574  return 0;
1575}
1576
1577bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1578  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1579               << "********** Function: "
1580               << ((Value*)mf.getFunction())->getName() << '\n');
1581
1582  MF = &mf;
1583  if (VerifyEnabled)
1584    MF->verify(this, "Before greedy register allocator");
1585
1586  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1587  Indexes = &getAnalysis<SlotIndexes>();
1588  DomTree = &getAnalysis<MachineDominatorTree>();
1589  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1590  Loops = &getAnalysis<MachineLoopInfo>();
1591  LoopRanges = &getAnalysis<MachineLoopRanges>();
1592  Bundles = &getAnalysis<EdgeBundles>();
1593  SpillPlacer = &getAnalysis<SpillPlacement>();
1594  DebugVars = &getAnalysis<LiveDebugVariables>();
1595
1596  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1597  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1598  ExtraRegInfo.clear();
1599  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1600  NextCascade = 1;
1601  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1602
1603  allocatePhysRegs();
1604  addMBBLiveIns(MF);
1605  LIS->addKillFlags();
1606
1607  // Run rewriter
1608  {
1609    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1610    VRM->rewrite(Indexes);
1611  }
1612
1613  // Write out new DBG_VALUE instructions.
1614  DebugVars->emitDebugValues(VRM);
1615
1616  // The pass output is in VirtRegMap. Release all the transient data.
1617  releaseMemory();
1618
1619  return true;
1620}
1621