RegAllocGreedy.cpp revision 626d6fb1903e74337b257c5e165944bcd1273e65
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRangeEdit.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Function.h"
28#include "llvm/PassAnalysisSupport.h"
29#include "llvm/CodeGen/CalcSpillWeights.h"
30#include "llvm/CodeGen/EdgeBundles.h"
31#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineLoopInfo.h"
36#include "llvm/CodeGen/MachineLoopRanges.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/CodeGen/RegAllocRegistry.h"
40#include "llvm/CodeGen/RegisterCoalescer.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Timer.h"
46
47#include <queue>
48
49using namespace llvm;
50
51STATISTIC(NumGlobalSplits, "Number of split global live ranges");
52STATISTIC(NumLocalSplits,  "Number of split local live ranges");
53STATISTIC(NumEvicted,      "Number of interferences evicted");
54
55static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
56                                       createGreedyRegisterAllocator);
57
58namespace {
59class RAGreedy : public MachineFunctionPass,
60                 public RegAllocBase,
61                 private LiveRangeEdit::Delegate {
62
63  // context
64  MachineFunction *MF;
65  BitVector ReservedRegs;
66
67  // analyses
68  SlotIndexes *Indexes;
69  LiveStacks *LS;
70  MachineDominatorTree *DomTree;
71  MachineLoopInfo *Loops;
72  MachineLoopRanges *LoopRanges;
73  EdgeBundles *Bundles;
74  SpillPlacement *SpillPlacer;
75  LiveDebugVariables *DebugVars;
76
77  // state
78  std::auto_ptr<Spiller> SpillerInstance;
79  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
80
81  // Live ranges pass through a number of stages as we try to allocate them.
82  // Some of the stages may also create new live ranges:
83  //
84  // - Region splitting.
85  // - Per-block splitting.
86  // - Local splitting.
87  // - Spilling.
88  //
89  // Ranges produced by one of the stages skip the previous stages when they are
90  // dequeued. This improves performance because we can skip interference checks
91  // that are unlikely to give any results. It also guarantees that the live
92  // range splitting algorithm terminates, something that is otherwise hard to
93  // ensure.
94  enum LiveRangeStage {
95    RS_New,      ///< Never seen before.
96    RS_First,    ///< First time in the queue.
97    RS_Second,   ///< Second time in the queue.
98    RS_Global,   ///< Produced by global splitting.
99    RS_Local,    ///< Produced by local splitting.
100    RS_Spill     ///< Produced by spilling.
101  };
102
103  static const char *const StageName[];
104
105  IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
106
107  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
108    return LiveRangeStage(LRStage[VirtReg.reg]);
109  }
110
111  template<typename Iterator>
112  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
113    LRStage.resize(MRI->getNumVirtRegs());
114    for (;Begin != End; ++Begin) {
115      unsigned Reg = (*Begin)->reg;
116      if (LRStage[Reg] == RS_New)
117        LRStage[Reg] = NewStage;
118    }
119  }
120
121  // Eviction. Sometimes an assigned live range can be evicted without
122  // conditions, but other times it must be split after being evicted to avoid
123  // infinite loops.
124  enum CanEvict {
125    CE_Never,    ///< Can never evict.
126    CE_Always,   ///< Can always evict.
127    CE_WithSplit ///< Can evict only if range is also split or spilled.
128  };
129
130  // splitting state.
131  std::auto_ptr<SplitAnalysis> SA;
132  std::auto_ptr<SplitEditor> SE;
133
134  /// Cached per-block interference maps
135  InterferenceCache IntfCache;
136
137  /// All basic blocks where the current register has uses.
138  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
139
140  /// Global live range splitting candidate info.
141  struct GlobalSplitCandidate {
142    unsigned PhysReg;
143    BitVector LiveBundles;
144    SmallVector<unsigned, 8> ActiveBlocks;
145
146    void reset(unsigned Reg) {
147      PhysReg = Reg;
148      LiveBundles.clear();
149      ActiveBlocks.clear();
150    }
151  };
152
153  /// Candidate info for for each PhysReg in AllocationOrder.
154  /// This vector never shrinks, but grows to the size of the largest register
155  /// class.
156  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
157
158  /// For every instruction in SA->UseSlots, store the previous non-copy
159  /// instruction.
160  SmallVector<SlotIndex, 8> PrevSlot;
161
162public:
163  RAGreedy();
164
165  /// Return the pass name.
166  virtual const char* getPassName() const {
167    return "Greedy Register Allocator";
168  }
169
170  /// RAGreedy analysis usage.
171  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
172  virtual void releaseMemory();
173  virtual Spiller &spiller() { return *SpillerInstance; }
174  virtual void enqueue(LiveInterval *LI);
175  virtual LiveInterval *dequeue();
176  virtual unsigned selectOrSplit(LiveInterval&,
177                                 SmallVectorImpl<LiveInterval*>&);
178
179  /// Perform register allocation.
180  virtual bool runOnMachineFunction(MachineFunction &mf);
181
182  static char ID;
183
184private:
185  void LRE_WillEraseInstruction(MachineInstr*);
186  bool LRE_CanEraseVirtReg(unsigned);
187  void LRE_WillShrinkVirtReg(unsigned);
188  void LRE_DidCloneVirtReg(unsigned, unsigned);
189
190  float calcSpillCost();
191  bool addSplitConstraints(InterferenceCache::Cursor, float&);
192  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
193  void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
194  float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
195  void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
196                         SmallVectorImpl<LiveInterval*>&);
197  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
198  SlotIndex getPrevMappedIndex(const MachineInstr*);
199  void calcPrevSlots();
200  unsigned nextSplitPoint(unsigned);
201  CanEvict canEvict(LiveInterval &A, LiveInterval &B);
202  bool canEvictInterference(LiveInterval&, unsigned, float&);
203
204  unsigned tryAssign(LiveInterval&, AllocationOrder&,
205                     SmallVectorImpl<LiveInterval*>&);
206  unsigned tryEvict(LiveInterval&, AllocationOrder&,
207                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
208  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
209                          SmallVectorImpl<LiveInterval*>&);
210  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
211    SmallVectorImpl<LiveInterval*>&);
212  unsigned trySplit(LiveInterval&, AllocationOrder&,
213                    SmallVectorImpl<LiveInterval*>&);
214};
215} // end anonymous namespace
216
217char RAGreedy::ID = 0;
218
219#ifndef NDEBUG
220const char *const RAGreedy::StageName[] = {
221  "RS_New",
222  "RS_First",
223  "RS_Second",
224  "RS_Global",
225  "RS_Local",
226  "RS_Spill"
227};
228#endif
229
230// Hysteresis to use when comparing floats.
231// This helps stabilize decisions based on float comparisons.
232const float Hysteresis = 0.98f;
233
234
235FunctionPass* llvm::createGreedyRegisterAllocator() {
236  return new RAGreedy();
237}
238
239RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
240  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
241  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
242  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
243  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
244  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
245  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
246  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
247  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
248  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
249  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
250  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
251  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
252  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
253  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
254}
255
256void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
257  AU.setPreservesCFG();
258  AU.addRequired<AliasAnalysis>();
259  AU.addPreserved<AliasAnalysis>();
260  AU.addRequired<LiveIntervals>();
261  AU.addRequired<SlotIndexes>();
262  AU.addPreserved<SlotIndexes>();
263  AU.addRequired<LiveDebugVariables>();
264  AU.addPreserved<LiveDebugVariables>();
265  if (StrongPHIElim)
266    AU.addRequiredID(StrongPHIEliminationID);
267  AU.addRequiredTransitive<RegisterCoalescer>();
268  AU.addRequired<CalculateSpillWeights>();
269  AU.addRequired<LiveStacks>();
270  AU.addPreserved<LiveStacks>();
271  AU.addRequired<MachineDominatorTree>();
272  AU.addPreserved<MachineDominatorTree>();
273  AU.addRequired<MachineLoopInfo>();
274  AU.addPreserved<MachineLoopInfo>();
275  AU.addRequired<MachineLoopRanges>();
276  AU.addPreserved<MachineLoopRanges>();
277  AU.addRequired<VirtRegMap>();
278  AU.addPreserved<VirtRegMap>();
279  AU.addRequired<EdgeBundles>();
280  AU.addRequired<SpillPlacement>();
281  MachineFunctionPass::getAnalysisUsage(AU);
282}
283
284
285//===----------------------------------------------------------------------===//
286//                     LiveRangeEdit delegate methods
287//===----------------------------------------------------------------------===//
288
289void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
290  // LRE itself will remove from SlotIndexes and parent basic block.
291  VRM->RemoveMachineInstrFromMaps(MI);
292}
293
294bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
295  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
296    unassign(LIS->getInterval(VirtReg), PhysReg);
297    return true;
298  }
299  // Unassigned virtreg is probably in the priority queue.
300  // RegAllocBase will erase it after dequeueing.
301  return false;
302}
303
304void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
305  unsigned PhysReg = VRM->getPhys(VirtReg);
306  if (!PhysReg)
307    return;
308
309  // Register is assigned, put it back on the queue for reassignment.
310  LiveInterval &LI = LIS->getInterval(VirtReg);
311  unassign(LI, PhysReg);
312  enqueue(&LI);
313}
314
315void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
316  // LRE may clone a virtual register because dead code elimination causes it to
317  // be split into connected components. Ensure that the new register gets the
318  // same stage as the parent.
319  LRStage.grow(New);
320  LRStage[New] = LRStage[Old];
321}
322
323void RAGreedy::releaseMemory() {
324  SpillerInstance.reset(0);
325  LRStage.clear();
326  GlobalCand.clear();
327  RegAllocBase::releaseMemory();
328}
329
330void RAGreedy::enqueue(LiveInterval *LI) {
331  // Prioritize live ranges by size, assigning larger ranges first.
332  // The queue holds (size, reg) pairs.
333  const unsigned Size = LI->getSize();
334  const unsigned Reg = LI->reg;
335  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
336         "Can only enqueue virtual registers");
337  unsigned Prio;
338
339  LRStage.grow(Reg);
340  if (LRStage[Reg] == RS_New)
341    LRStage[Reg] = RS_First;
342
343  if (LRStage[Reg] == RS_Second)
344    // Unsplit ranges that couldn't be allocated immediately are deferred until
345    // everything else has been allocated. Long ranges are allocated last so
346    // they are split against realistic interference.
347    Prio = (1u << 31) - Size;
348  else {
349    // Everything else is allocated in long->short order. Long ranges that don't
350    // fit should be spilled ASAP so they don't create interference.
351    Prio = (1u << 31) + Size;
352
353    // Boost ranges that have a physical register hint.
354    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
355      Prio |= (1u << 30);
356  }
357
358  Queue.push(std::make_pair(Prio, Reg));
359}
360
361LiveInterval *RAGreedy::dequeue() {
362  if (Queue.empty())
363    return 0;
364  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
365  Queue.pop();
366  return LI;
367}
368
369
370//===----------------------------------------------------------------------===//
371//                            Direct Assignment
372//===----------------------------------------------------------------------===//
373
374/// tryAssign - Try to assign VirtReg to an available register.
375unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
376                             AllocationOrder &Order,
377                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
378  Order.rewind();
379  unsigned PhysReg;
380  while ((PhysReg = Order.next()))
381    if (!checkPhysRegInterference(VirtReg, PhysReg))
382      break;
383  if (!PhysReg || Order.isHint(PhysReg))
384    return PhysReg;
385
386  // PhysReg is available. Try to evict interference from a cheaper alternative.
387  unsigned Cost = TRI->getCostPerUse(PhysReg);
388
389  // Most registers have 0 additional cost.
390  if (!Cost)
391    return PhysReg;
392
393  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
394               << '\n');
395  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
396  return CheapReg ? CheapReg : PhysReg;
397}
398
399
400//===----------------------------------------------------------------------===//
401//                         Interference eviction
402//===----------------------------------------------------------------------===//
403
404/// canEvict - determine if A can evict the assigned live range B. The eviction
405/// policy defined by this function together with the allocation order defined
406/// by enqueue() decides which registers ultimately end up being split and
407/// spilled.
408///
409/// This function must define a non-circular relation when it returns CE_Always,
410/// otherwise infinite eviction loops are possible. When evicting a <= RS_Second
411/// range, it is possible to return CE_WithSplit which forces the evicted
412/// register to be split or spilled before it can evict anything again. That
413/// guarantees progress.
414RAGreedy::CanEvict RAGreedy::canEvict(LiveInterval &A, LiveInterval &B) {
415  return A.weight > B.weight ? CE_Always : CE_Never;
416}
417
418/// canEvict - Return true if all interferences between VirtReg and PhysReg can
419/// be evicted.
420/// Return false if any interference is heavier than MaxWeight.
421/// On return, set MaxWeight to the maximal spill weight of an interference.
422bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
423                                    float &MaxWeight) {
424  float Weight = 0;
425  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
426    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
427    // If there is 10 or more interferences, chances are one is heavier.
428    if (Q.collectInterferingVRegs(10, MaxWeight) >= 10)
429      return false;
430
431    // Check if any interfering live range is heavier than MaxWeight.
432    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
433      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
434      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
435        return false;
436      if (Intf->weight >= MaxWeight)
437        return false;
438      switch (canEvict(VirtReg, *Intf)) {
439      case CE_Always:
440        break;
441      case CE_Never:
442        return false;
443      case CE_WithSplit:
444        if (getStage(*Intf) > RS_Second)
445          return false;
446        break;
447      }
448      Weight = std::max(Weight, Intf->weight);
449    }
450  }
451  MaxWeight = Weight;
452  return true;
453}
454
455/// tryEvict - Try to evict all interferences for a physreg.
456/// @param  VirtReg Currently unassigned virtual register.
457/// @param  Order   Physregs to try.
458/// @return         Physreg to assign VirtReg, or 0.
459unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
460                            AllocationOrder &Order,
461                            SmallVectorImpl<LiveInterval*> &NewVRegs,
462                            unsigned CostPerUseLimit) {
463  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
464
465  // Keep track of the lightest single interference seen so far.
466  float BestWeight = HUGE_VALF;
467  unsigned BestPhys = 0;
468
469  Order.rewind();
470  while (unsigned PhysReg = Order.next()) {
471    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
472      continue;
473    // The first use of a register in a function has cost 1.
474    if (CostPerUseLimit == 1 && !MRI->isPhysRegUsed(PhysReg))
475      continue;
476
477    float Weight = BestWeight;
478    if (!canEvictInterference(VirtReg, PhysReg, Weight))
479      continue;
480
481    // This is an eviction candidate.
482    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " interference = "
483                 << Weight << '\n');
484    if (BestPhys && Weight >= BestWeight)
485      continue;
486
487    // Best so far.
488    BestPhys = PhysReg;
489    BestWeight = Weight;
490    // Stop if the hint can be used.
491    if (Order.isHint(PhysReg))
492      break;
493  }
494
495  if (!BestPhys)
496    return 0;
497
498  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
499  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
500    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
501    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
502    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
503      LiveInterval *Intf = Q.interferingVRegs()[i];
504      unassign(*Intf, VRM->getPhys(Intf->reg));
505      ++NumEvicted;
506      NewVRegs.push_back(Intf);
507      // Prevent looping by forcing the evicted ranges to be split before they
508      // can evict anything else.
509      if (getStage(*Intf) < RS_Second &&
510          canEvict(VirtReg, *Intf) == CE_WithSplit)
511        LRStage[Intf->reg] = RS_Second;
512    }
513  }
514  return BestPhys;
515}
516
517
518//===----------------------------------------------------------------------===//
519//                              Region Splitting
520//===----------------------------------------------------------------------===//
521
522/// addSplitConstraints - Fill out the SplitConstraints vector based on the
523/// interference pattern in Physreg and its aliases. Add the constraints to
524/// SpillPlacement and return the static cost of this split in Cost, assuming
525/// that all preferences in SplitConstraints are met.
526/// Return false if there are no bundles with positive bias.
527bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
528                                   float &Cost) {
529  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
530
531  // Reset interference dependent info.
532  SplitConstraints.resize(UseBlocks.size());
533  float StaticCost = 0;
534  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
535    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
536    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
537
538    BC.Number = BI.MBB->getNumber();
539    Intf.moveToBlock(BC.Number);
540    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
541    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
542
543    if (!Intf.hasInterference())
544      continue;
545
546    // Number of spill code instructions to insert.
547    unsigned Ins = 0;
548
549    // Interference for the live-in value.
550    if (BI.LiveIn) {
551      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
552        BC.Entry = SpillPlacement::MustSpill, ++Ins;
553      else if (Intf.first() < BI.FirstUse)
554        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
555      else if (Intf.first() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
556        ++Ins;
557    }
558
559    // Interference for the live-out value.
560    if (BI.LiveOut) {
561      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
562        BC.Exit = SpillPlacement::MustSpill, ++Ins;
563      else if (Intf.last() > BI.LastUse)
564        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
565      else if (Intf.last() > (BI.LiveThrough ? BI.FirstUse : BI.Def))
566        ++Ins;
567    }
568
569    // Accumulate the total frequency of inserted spill code.
570    if (Ins)
571      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
572  }
573  Cost = StaticCost;
574
575  // Add constraints for use-blocks. Note that these are the only constraints
576  // that may add a positive bias, it is downhill from here.
577  SpillPlacer->addConstraints(SplitConstraints);
578  return SpillPlacer->scanActiveBundles();
579}
580
581
582/// addThroughConstraints - Add constraints and links to SpillPlacer from the
583/// live-through blocks in Blocks.
584void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
585                                     ArrayRef<unsigned> Blocks) {
586  const unsigned GroupSize = 8;
587  SpillPlacement::BlockConstraint BCS[GroupSize];
588  unsigned TBS[GroupSize];
589  unsigned B = 0, T = 0;
590
591  for (unsigned i = 0; i != Blocks.size(); ++i) {
592    unsigned Number = Blocks[i];
593    Intf.moveToBlock(Number);
594
595    if (!Intf.hasInterference()) {
596      assert(T < GroupSize && "Array overflow");
597      TBS[T] = Number;
598      if (++T == GroupSize) {
599        SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
600        T = 0;
601      }
602      continue;
603    }
604
605    assert(B < GroupSize && "Array overflow");
606    BCS[B].Number = Number;
607
608    // Interference for the live-in value.
609    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
610      BCS[B].Entry = SpillPlacement::MustSpill;
611    else
612      BCS[B].Entry = SpillPlacement::PrefSpill;
613
614    // Interference for the live-out value.
615    if (Intf.last() >= SA->getLastSplitPoint(Number))
616      BCS[B].Exit = SpillPlacement::MustSpill;
617    else
618      BCS[B].Exit = SpillPlacement::PrefSpill;
619
620    if (++B == GroupSize) {
621      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
622      SpillPlacer->addConstraints(Array);
623      B = 0;
624    }
625  }
626
627  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
628  SpillPlacer->addConstraints(Array);
629  SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
630}
631
632void RAGreedy::growRegion(GlobalSplitCandidate &Cand,
633                          InterferenceCache::Cursor Intf) {
634  // Keep track of through blocks that have not been added to SpillPlacer.
635  BitVector Todo = SA->getThroughBlocks();
636  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
637  unsigned AddedTo = 0;
638#ifndef NDEBUG
639  unsigned Visited = 0;
640#endif
641
642  for (;;) {
643    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
644    if (NewBundles.empty())
645      break;
646    // Find new through blocks in the periphery of PrefRegBundles.
647    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
648      unsigned Bundle = NewBundles[i];
649      // Look at all blocks connected to Bundle in the full graph.
650      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
651      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
652           I != E; ++I) {
653        unsigned Block = *I;
654        if (!Todo.test(Block))
655          continue;
656        Todo.reset(Block);
657        // This is a new through block. Add it to SpillPlacer later.
658        ActiveBlocks.push_back(Block);
659#ifndef NDEBUG
660        ++Visited;
661#endif
662      }
663    }
664    // Any new blocks to add?
665    if (ActiveBlocks.size() > AddedTo) {
666      ArrayRef<unsigned> Add(&ActiveBlocks[AddedTo],
667                             ActiveBlocks.size() - AddedTo);
668      addThroughConstraints(Intf, Add);
669      AddedTo = ActiveBlocks.size();
670    }
671    // Perhaps iterating can enable more bundles?
672    SpillPlacer->iterate();
673  }
674  DEBUG(dbgs() << ", v=" << Visited);
675}
676
677/// calcSpillCost - Compute how expensive it would be to split the live range in
678/// SA around all use blocks instead of forming bundle regions.
679float RAGreedy::calcSpillCost() {
680  float Cost = 0;
681  const LiveInterval &LI = SA->getParent();
682  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
683  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
684    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
685    unsigned Number = BI.MBB->getNumber();
686    // We normally only need one spill instruction - a load or a store.
687    Cost += SpillPlacer->getBlockFrequency(Number);
688
689    // Unless the value is redefined in the block.
690    if (BI.LiveIn && BI.LiveOut) {
691      SlotIndex Start, Stop;
692      tie(Start, Stop) = Indexes->getMBBRange(Number);
693      LiveInterval::const_iterator I = LI.find(Start);
694      assert(I != LI.end() && "Expected live-in value");
695      // Is there a different live-out value? If so, we need an extra spill
696      // instruction.
697      if (I->end < Stop)
698        Cost += SpillPlacer->getBlockFrequency(Number);
699    }
700  }
701  return Cost;
702}
703
704/// calcGlobalSplitCost - Return the global split cost of following the split
705/// pattern in LiveBundles. This cost should be added to the local cost of the
706/// interference pattern in SplitConstraints.
707///
708float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
709                                    InterferenceCache::Cursor Intf) {
710  float GlobalCost = 0;
711  const BitVector &LiveBundles = Cand.LiveBundles;
712  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
713  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
714    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
715    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
716    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
717    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
718    unsigned Ins = 0;
719
720    if (BI.LiveIn)
721      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
722    if (BI.LiveOut)
723      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
724    if (Ins)
725      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
726  }
727
728  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
729    unsigned Number = Cand.ActiveBlocks[i];
730    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
731    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
732    if (!RegIn && !RegOut)
733      continue;
734    if (RegIn && RegOut) {
735      // We need double spill code if this block has interference.
736      Intf.moveToBlock(Number);
737      if (Intf.hasInterference())
738        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
739      continue;
740    }
741    // live-in / stack-out or stack-in live-out.
742    GlobalCost += SpillPlacer->getBlockFrequency(Number);
743  }
744  return GlobalCost;
745}
746
747/// splitAroundRegion - Split VirtReg around the region determined by
748/// LiveBundles. Make an effort to avoid interference from PhysReg.
749///
750/// The 'register' interval is going to contain as many uses as possible while
751/// avoiding interference. The 'stack' interval is the complement constructed by
752/// SplitEditor. It will contain the rest.
753///
754void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
755                                 GlobalSplitCandidate &Cand,
756                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
757  const BitVector &LiveBundles = Cand.LiveBundles;
758
759  DEBUG({
760    dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
761           << " with bundles";
762    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
763      dbgs() << " EB#" << i;
764    dbgs() << ".\n";
765  });
766
767  InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
768  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
769  SE->reset(LREdit);
770
771  // Create the main cross-block interval.
772  const unsigned MainIntv = SE->openIntv();
773
774  // First add all defs that are live out of a block.
775  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
776  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
777    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
778    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
779    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
780
781    // Create separate intervals for isolated blocks with multiple uses.
782    if (!RegIn && !RegOut && BI.FirstUse != BI.LastUse) {
783      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
784      SE->splitSingleBlock(BI);
785      SE->selectIntv(MainIntv);
786      continue;
787    }
788
789    // Should the register be live out?
790    if (!BI.LiveOut || !RegOut)
791      continue;
792
793    SlotIndex Start, Stop;
794    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
795    Intf.moveToBlock(BI.MBB->getNumber());
796    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
797                 << Bundles->getBundle(BI.MBB->getNumber(), 1)
798                 << " [" << Start << ';'
799                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
800                 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
801
802    // The interference interval should either be invalid or overlap MBB.
803    assert((!Intf.hasInterference() || Intf.first() < Stop)
804           && "Bad interference");
805    assert((!Intf.hasInterference() || Intf.last() > Start)
806           && "Bad interference");
807
808    // Check interference leaving the block.
809    if (!Intf.hasInterference()) {
810      // Block is interference-free.
811      DEBUG(dbgs() << ", no interference");
812      if (!BI.LiveThrough) {
813        DEBUG(dbgs() << ", not live-through.\n");
814        SE->useIntv(SE->enterIntvBefore(BI.Def), Stop);
815        continue;
816      }
817      if (!RegIn) {
818        // Block is live-through, but entry bundle is on the stack.
819        // Reload just before the first use.
820        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
821        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
822        continue;
823      }
824      DEBUG(dbgs() << ", live-through.\n");
825      continue;
826    }
827
828    // Block has interference.
829    DEBUG(dbgs() << ", interference to " << Intf.last());
830
831    if (!BI.LiveThrough && Intf.last() <= BI.Def) {
832      // The interference doesn't reach the outgoing segment.
833      DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
834      SE->useIntv(BI.Def, Stop);
835      continue;
836    }
837
838    SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
839    if (Intf.last().getBoundaryIndex() < BI.LastUse) {
840      // There are interference-free uses at the end of the block.
841      // Find the first use that can get the live-out register.
842      SmallVectorImpl<SlotIndex>::const_iterator UI =
843        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
844                         Intf.last().getBoundaryIndex());
845      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
846      SlotIndex Use = *UI;
847      assert(Use <= BI.LastUse && "Couldn't find last use");
848      // Only attempt a split befroe the last split point.
849      if (Use.getBaseIndex() <= LastSplitPoint) {
850        DEBUG(dbgs() << ", free use at " << Use << ".\n");
851        SlotIndex SegStart = SE->enterIntvBefore(Use);
852        assert(SegStart >= Intf.last() && "Couldn't avoid interference");
853        assert(SegStart < LastSplitPoint && "Impossible split point");
854        SE->useIntv(SegStart, Stop);
855        continue;
856      }
857    }
858
859    // Interference is after the last use.
860    DEBUG(dbgs() << " after last use.\n");
861    SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
862    assert(SegStart >= Intf.last() && "Couldn't avoid interference");
863  }
864
865  // Now all defs leading to live bundles are handled, do everything else.
866  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
867    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
868    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
869    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
870
871    // Is the register live-in?
872    if (!BI.LiveIn || !RegIn)
873      continue;
874
875    // We have an incoming register. Check for interference.
876    SlotIndex Start, Stop;
877    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
878    Intf.moveToBlock(BI.MBB->getNumber());
879    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
880                 << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
881                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
882                 << ')');
883
884    // Check interference entering the block.
885    if (!Intf.hasInterference()) {
886      // Block is interference-free.
887      DEBUG(dbgs() << ", no interference");
888      if (!BI.LiveThrough) {
889        DEBUG(dbgs() << ", killed in block.\n");
890        SE->useIntv(Start, SE->leaveIntvAfter(BI.Kill));
891        continue;
892      }
893      if (!RegOut) {
894        SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
895        // Block is live-through, but exit bundle is on the stack.
896        // Spill immediately after the last use.
897        if (BI.LastUse < LastSplitPoint) {
898          DEBUG(dbgs() << ", uses, stack-out.\n");
899          SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
900          continue;
901        }
902        // The last use is after the last split point, it is probably an
903        // indirect jump.
904        DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
905                     << LastSplitPoint << ", stack-out.\n");
906        SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
907        SE->useIntv(Start, SegEnd);
908        // Run a double interval from the split to the last use.
909        // This makes it possible to spill the complement without affecting the
910        // indirect branch.
911        SE->overlapIntv(SegEnd, BI.LastUse);
912        continue;
913      }
914      // Register is live-through.
915      DEBUG(dbgs() << ", uses, live-through.\n");
916      SE->useIntv(Start, Stop);
917      continue;
918    }
919
920    // Block has interference.
921    DEBUG(dbgs() << ", interference from " << Intf.first());
922
923    if (!BI.LiveThrough && Intf.first() >= BI.Kill) {
924      // The interference doesn't reach the outgoing segment.
925      DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
926      SE->useIntv(Start, BI.Kill);
927      continue;
928    }
929
930    if (Intf.first().getBaseIndex() > BI.FirstUse) {
931      // There are interference-free uses at the beginning of the block.
932      // Find the last use that can get the register.
933      SmallVectorImpl<SlotIndex>::const_iterator UI =
934        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
935                         Intf.first().getBaseIndex());
936      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
937      SlotIndex Use = (--UI)->getBoundaryIndex();
938      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
939      SlotIndex SegEnd = SE->leaveIntvAfter(Use);
940      assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
941      SE->useIntv(Start, SegEnd);
942      continue;
943    }
944
945    // Interference is before the first use.
946    DEBUG(dbgs() << " before first use.\n");
947    SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
948    assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
949  }
950
951  // Handle live-through blocks.
952  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
953    unsigned Number = Cand.ActiveBlocks[i];
954    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
955    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
956    DEBUG(dbgs() << "Live through BB#" << Number << '\n');
957    if (RegIn && RegOut) {
958      Intf.moveToBlock(Number);
959      if (!Intf.hasInterference()) {
960        SE->useIntv(Indexes->getMBBStartIdx(Number),
961                    Indexes->getMBBEndIdx(Number));
962        continue;
963      }
964    }
965    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
966    if (RegIn)
967      SE->leaveIntvAtTop(*MBB);
968    if (RegOut)
969      SE->enterIntvAtEnd(*MBB);
970  }
971
972  ++NumGlobalSplits;
973
974  SmallVector<unsigned, 8> IntvMap;
975  SE->finish(&IntvMap);
976  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
977
978  LRStage.resize(MRI->getNumVirtRegs());
979  unsigned OrigBlocks = SA->getNumLiveBlocks();
980
981  // Sort out the new intervals created by splitting. We get four kinds:
982  // - Remainder intervals should not be split again.
983  // - Candidate intervals can be assigned to Cand.PhysReg.
984  // - Block-local splits are candidates for local splitting.
985  // - DCE leftovers should go back on the queue.
986  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
987    unsigned Reg = LREdit.get(i)->reg;
988
989    // Ignore old intervals from DCE.
990    if (LRStage[Reg] != RS_New)
991      continue;
992
993    // Remainder interval. Don't try splitting again, spill if it doesn't
994    // allocate.
995    if (IntvMap[i] == 0) {
996      LRStage[Reg] = RS_Global;
997      continue;
998    }
999
1000    // Main interval. Allow repeated splitting as long as the number of live
1001    // blocks is strictly decreasing.
1002    if (IntvMap[i] == MainIntv) {
1003      if (SA->countLiveBlocks(LREdit.get(i)) >= OrigBlocks) {
1004        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1005                     << " blocks as original.\n");
1006        // Don't allow repeated splitting as a safe guard against looping.
1007        LRStage[Reg] = RS_Global;
1008      }
1009      continue;
1010    }
1011
1012    // Other intervals are treated as new. This includes local intervals created
1013    // for blocks with multiple uses, and anything created by DCE.
1014  }
1015
1016  if (VerifyEnabled)
1017    MF->verify(this, "After splitting live range around region");
1018}
1019
1020unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1021                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1022  float BestCost = Hysteresis * calcSpillCost();
1023  DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1024  const unsigned NoCand = ~0u;
1025  unsigned BestCand = NoCand;
1026
1027  Order.rewind();
1028  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
1029    if (GlobalCand.size() <= Cand)
1030      GlobalCand.resize(Cand+1);
1031    GlobalCand[Cand].reset(PhysReg);
1032
1033    SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
1034    float Cost;
1035    InterferenceCache::Cursor Intf(IntfCache, PhysReg);
1036    if (!addSplitConstraints(Intf, Cost)) {
1037      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1038      continue;
1039    }
1040    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1041    if (Cost >= BestCost) {
1042      DEBUG({
1043        if (BestCand == NoCand)
1044          dbgs() << " worse than no bundles\n";
1045        else
1046          dbgs() << " worse than "
1047                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1048      });
1049      continue;
1050    }
1051    growRegion(GlobalCand[Cand], Intf);
1052
1053    SpillPlacer->finish();
1054
1055    // No live bundles, defer to splitSingleBlocks().
1056    if (!GlobalCand[Cand].LiveBundles.any()) {
1057      DEBUG(dbgs() << " no bundles.\n");
1058      continue;
1059    }
1060
1061    Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
1062    DEBUG({
1063      dbgs() << ", total = " << Cost << " with bundles";
1064      for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
1065           i = GlobalCand[Cand].LiveBundles.find_next(i))
1066        dbgs() << " EB#" << i;
1067      dbgs() << ".\n";
1068    });
1069    if (Cost < BestCost) {
1070      BestCand = Cand;
1071      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1072    }
1073  }
1074
1075  if (BestCand == NoCand)
1076    return 0;
1077
1078  splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
1079  return 0;
1080}
1081
1082
1083//===----------------------------------------------------------------------===//
1084//                             Local Splitting
1085//===----------------------------------------------------------------------===//
1086
1087
1088/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1089/// in order to use PhysReg between two entries in SA->UseSlots.
1090///
1091/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1092///
1093void RAGreedy::calcGapWeights(unsigned PhysReg,
1094                              SmallVectorImpl<float> &GapWeight) {
1095  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1096  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1097  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1098  const unsigned NumGaps = Uses.size()-1;
1099
1100  // Start and end points for the interference check.
1101  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1102  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1103
1104  GapWeight.assign(NumGaps, 0.0f);
1105
1106  // Add interference from each overlapping register.
1107  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1108    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1109           .checkInterference())
1110      continue;
1111
1112    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1113    // so we don't need InterferenceQuery.
1114    //
1115    // Interference that overlaps an instruction is counted in both gaps
1116    // surrounding the instruction. The exception is interference before
1117    // StartIdx and after StopIdx.
1118    //
1119    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1120    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1121      // Skip the gaps before IntI.
1122      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1123        if (++Gap == NumGaps)
1124          break;
1125      if (Gap == NumGaps)
1126        break;
1127
1128      // Update the gaps covered by IntI.
1129      const float weight = IntI.value()->weight;
1130      for (; Gap != NumGaps; ++Gap) {
1131        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1132        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1133          break;
1134      }
1135      if (Gap == NumGaps)
1136        break;
1137    }
1138  }
1139}
1140
1141/// getPrevMappedIndex - Return the slot index of the last non-copy instruction
1142/// before MI that has a slot index. If MI is the first mapped instruction in
1143/// its block, return the block start index instead.
1144///
1145SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) {
1146  assert(MI && "Missing MachineInstr");
1147  const MachineBasicBlock *MBB = MI->getParent();
1148  MachineBasicBlock::const_iterator B = MBB->begin(), I = MI;
1149  while (I != B)
1150    if (!(--I)->isDebugValue() && !I->isCopy())
1151      return Indexes->getInstructionIndex(I);
1152  return Indexes->getMBBStartIdx(MBB);
1153}
1154
1155/// calcPrevSlots - Fill in the PrevSlot array with the index of the previous
1156/// real non-copy instruction for each instruction in SA->UseSlots.
1157///
1158void RAGreedy::calcPrevSlots() {
1159  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1160  PrevSlot.clear();
1161  PrevSlot.reserve(Uses.size());
1162  for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
1163    const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]);
1164    PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex());
1165  }
1166}
1167
1168/// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may
1169/// be beneficial to split before UseSlots[i].
1170///
1171/// 0 is always a valid split point
1172unsigned RAGreedy::nextSplitPoint(unsigned i) {
1173  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1174  const unsigned Size = Uses.size();
1175  assert(i != Size && "No split points after the end");
1176  // Allow split before i when Uses[i] is not adjacent to the previous use.
1177  while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex())
1178    ;
1179  return i;
1180}
1181
1182/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1183/// basic block.
1184///
1185unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1186                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1187  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1188  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1189
1190  // Note that it is possible to have an interval that is live-in or live-out
1191  // while only covering a single block - A phi-def can use undef values from
1192  // predecessors, and the block could be a single-block loop.
1193  // We don't bother doing anything clever about such a case, we simply assume
1194  // that the interval is continuous from FirstUse to LastUse. We should make
1195  // sure that we don't do anything illegal to such an interval, though.
1196
1197  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1198  if (Uses.size() <= 2)
1199    return 0;
1200  const unsigned NumGaps = Uses.size()-1;
1201
1202  DEBUG({
1203    dbgs() << "tryLocalSplit: ";
1204    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1205      dbgs() << ' ' << SA->UseSlots[i];
1206    dbgs() << '\n';
1207  });
1208
1209  // For every use, find the previous mapped non-copy instruction.
1210  // We use this to detect valid split points, and to estimate new interval
1211  // sizes.
1212  calcPrevSlots();
1213
1214  unsigned BestBefore = NumGaps;
1215  unsigned BestAfter = 0;
1216  float BestDiff = 0;
1217
1218  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1219  SmallVector<float, 8> GapWeight;
1220
1221  Order.rewind();
1222  while (unsigned PhysReg = Order.next()) {
1223    // Keep track of the largest spill weight that would need to be evicted in
1224    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1225    calcGapWeights(PhysReg, GapWeight);
1226
1227    // Try to find the best sequence of gaps to close.
1228    // The new spill weight must be larger than any gap interference.
1229
1230    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1231    unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1;
1232
1233    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1234    // It is the spill weight that needs to be evicted.
1235    float MaxGap = GapWeight[0];
1236    for (unsigned i = 1; i != SplitAfter; ++i)
1237      MaxGap = std::max(MaxGap, GapWeight[i]);
1238
1239    for (;;) {
1240      // Live before/after split?
1241      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1242      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1243
1244      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1245                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1246                   << " i=" << MaxGap);
1247
1248      // Stop before the interval gets so big we wouldn't be making progress.
1249      if (!LiveBefore && !LiveAfter) {
1250        DEBUG(dbgs() << " all\n");
1251        break;
1252      }
1253      // Should the interval be extended or shrunk?
1254      bool Shrink = true;
1255      if (MaxGap < HUGE_VALF) {
1256        // Estimate the new spill weight.
1257        //
1258        // Each instruction reads and writes the register, except the first
1259        // instr doesn't read when !FirstLive, and the last instr doesn't write
1260        // when !LastLive.
1261        //
1262        // We will be inserting copies before and after, so the total number of
1263        // reads and writes is 2 * EstUses.
1264        //
1265        const unsigned EstUses = 2*(SplitAfter - SplitBefore) +
1266                                 2*(LiveBefore + LiveAfter);
1267
1268        // Try to guess the size of the new interval. This should be trivial,
1269        // but the slot index of an inserted copy can be a lot smaller than the
1270        // instruction it is inserted before if there are many dead indexes
1271        // between them.
1272        //
1273        // We measure the distance from the instruction before SplitBefore to
1274        // get a conservative estimate.
1275        //
1276        // The final distance can still be different if inserting copies
1277        // triggers a slot index renumbering.
1278        //
1279        const float EstWeight = normalizeSpillWeight(blockFreq * EstUses,
1280                              PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
1281        // Would this split be possible to allocate?
1282        // Never allocate all gaps, we wouldn't be making progress.
1283        DEBUG(dbgs() << " w=" << EstWeight);
1284        if (EstWeight * Hysteresis >= MaxGap) {
1285          Shrink = false;
1286          float Diff = EstWeight - MaxGap;
1287          if (Diff > BestDiff) {
1288            DEBUG(dbgs() << " (best)");
1289            BestDiff = Hysteresis * Diff;
1290            BestBefore = SplitBefore;
1291            BestAfter = SplitAfter;
1292          }
1293        }
1294      }
1295
1296      // Try to shrink.
1297      if (Shrink) {
1298        SplitBefore = nextSplitPoint(SplitBefore);
1299        if (SplitBefore < SplitAfter) {
1300          DEBUG(dbgs() << " shrink\n");
1301          // Recompute the max when necessary.
1302          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1303            MaxGap = GapWeight[SplitBefore];
1304            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1305              MaxGap = std::max(MaxGap, GapWeight[i]);
1306          }
1307          continue;
1308        }
1309        MaxGap = 0;
1310      }
1311
1312      // Try to extend the interval.
1313      if (SplitAfter >= NumGaps) {
1314        DEBUG(dbgs() << " end\n");
1315        break;
1316      }
1317
1318      DEBUG(dbgs() << " extend\n");
1319      for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1;
1320           SplitAfter != e; ++SplitAfter)
1321        MaxGap = std::max(MaxGap, GapWeight[SplitAfter]);
1322          continue;
1323    }
1324  }
1325
1326  // Didn't find any candidates?
1327  if (BestBefore == NumGaps)
1328    return 0;
1329
1330  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1331               << '-' << Uses[BestAfter] << ", " << BestDiff
1332               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1333
1334  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1335  SE->reset(LREdit);
1336
1337  SE->openIntv();
1338  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1339  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1340  SE->useIntv(SegStart, SegStop);
1341  SE->finish();
1342  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1343  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local);
1344  ++NumLocalSplits;
1345
1346  return 0;
1347}
1348
1349//===----------------------------------------------------------------------===//
1350//                          Live Range Splitting
1351//===----------------------------------------------------------------------===//
1352
1353/// trySplit - Try to split VirtReg or one of its interferences, making it
1354/// assignable.
1355/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1356unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1357                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1358  // Local intervals are handled separately.
1359  if (LIS->intervalIsInOneMBB(VirtReg)) {
1360    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1361    SA->analyze(&VirtReg);
1362    return tryLocalSplit(VirtReg, Order, NewVRegs);
1363  }
1364
1365  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1366
1367  // Don't iterate global splitting.
1368  // Move straight to spilling if this range was produced by a global split.
1369  if (getStage(VirtReg) >= RS_Global)
1370    return 0;
1371
1372  SA->analyze(&VirtReg);
1373
1374  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1375  // coalescer. That may cause the range to become allocatable which means that
1376  // tryRegionSplit won't be making progress. This check should be replaced with
1377  // an assertion when the coalescer is fixed.
1378  if (SA->didRepairRange()) {
1379    // VirtReg has changed, so all cached queries are invalid.
1380    invalidateVirtRegs();
1381    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1382      return PhysReg;
1383  }
1384
1385  // First try to split around a region spanning multiple blocks.
1386  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1387  if (PhysReg || !NewVRegs.empty())
1388    return PhysReg;
1389
1390  // Then isolate blocks with multiple uses.
1391  SplitAnalysis::BlockPtrSet Blocks;
1392  if (SA->getMultiUseBlocks(Blocks)) {
1393    LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1394    SE->reset(LREdit);
1395    SE->splitSingleBlocks(Blocks);
1396    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1397    if (VerifyEnabled)
1398      MF->verify(this, "After splitting live range around basic blocks");
1399  }
1400
1401  // Don't assign any physregs.
1402  return 0;
1403}
1404
1405
1406//===----------------------------------------------------------------------===//
1407//                            Main Entry Point
1408//===----------------------------------------------------------------------===//
1409
1410unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1411                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1412  // First try assigning a free register.
1413  AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
1414  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1415    return PhysReg;
1416
1417  LiveRangeStage Stage = getStage(VirtReg);
1418  DEBUG(dbgs() << StageName[Stage] << '\n');
1419
1420  // Try to evict a less worthy live range, but only for ranges from the primary
1421  // queue. The RS_Second ranges already failed to do this, and they should not
1422  // get a second chance until they have been split.
1423  if (Stage != RS_Second)
1424    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1425      return PhysReg;
1426
1427  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1428
1429  // The first time we see a live range, don't try to split or spill.
1430  // Wait until the second time, when all smaller ranges have been allocated.
1431  // This gives a better picture of the interference to split around.
1432  if (Stage == RS_First) {
1433    LRStage[VirtReg.reg] = RS_Second;
1434    DEBUG(dbgs() << "wait for second round\n");
1435    NewVRegs.push_back(&VirtReg);
1436    return 0;
1437  }
1438
1439  // If we couldn't allocate a register from spilling, there is probably some
1440  // invalid inline assembly. The base class wil report it.
1441  if (Stage >= RS_Spill)
1442    return ~0u;
1443
1444  // Try splitting VirtReg or interferences.
1445  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1446  if (PhysReg || !NewVRegs.empty())
1447    return PhysReg;
1448
1449  // Finally spill VirtReg itself.
1450  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1451  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1452  spiller().spill(LRE);
1453  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1454
1455  if (VerifyEnabled)
1456    MF->verify(this, "After spilling");
1457
1458  // The live virtual register requesting allocation was spilled, so tell
1459  // the caller not to allocate anything during this round.
1460  return 0;
1461}
1462
1463bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1464  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1465               << "********** Function: "
1466               << ((Value*)mf.getFunction())->getName() << '\n');
1467
1468  MF = &mf;
1469  if (VerifyEnabled)
1470    MF->verify(this, "Before greedy register allocator");
1471
1472  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1473  Indexes = &getAnalysis<SlotIndexes>();
1474  DomTree = &getAnalysis<MachineDominatorTree>();
1475  ReservedRegs = TRI->getReservedRegs(*MF);
1476  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1477  Loops = &getAnalysis<MachineLoopInfo>();
1478  LoopRanges = &getAnalysis<MachineLoopRanges>();
1479  Bundles = &getAnalysis<EdgeBundles>();
1480  SpillPlacer = &getAnalysis<SpillPlacement>();
1481  DebugVars = &getAnalysis<LiveDebugVariables>();
1482
1483  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1484  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1485  LRStage.clear();
1486  LRStage.resize(MRI->getNumVirtRegs());
1487  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1488
1489  allocatePhysRegs();
1490  addMBBLiveIns(MF);
1491  LIS->addKillFlags();
1492
1493  // Run rewriter
1494  {
1495    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1496    VRM->rewrite(Indexes);
1497  }
1498
1499  // Write out new DBG_VALUE instructions.
1500  DebugVars->emitDebugValues(VRM);
1501
1502  // The pass output is in VirtRegMap. Release all the transient data.
1503  releaseMemory();
1504
1505  return true;
1506}
1507