RegAllocGreedy.cpp revision 9162abb39f13146c0dea159e92ac291e4ea900bf
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRangeEdit.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "RegisterCoalescer.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Function.h"
29#include "llvm/PassAnalysisSupport.h"
30#include "llvm/CodeGen/CalcSpillWeights.h"
31#include "llvm/CodeGen/EdgeBundles.h"
32#include "llvm/CodeGen/LiveIntervalAnalysis.h"
33#include "llvm/CodeGen/LiveStackAnalysis.h"
34#include "llvm/CodeGen/MachineDominators.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/CodeGen/RegAllocRegistry.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Timer.h"
46
47#include <queue>
48
49using namespace llvm;
50
51STATISTIC(NumGlobalSplits, "Number of split global live ranges");
52STATISTIC(NumLocalSplits,  "Number of split local live ranges");
53STATISTIC(NumEvicted,      "Number of interferences evicted");
54
55cl::opt<bool> CompactRegions("compact-regions", cl::init(true));
56
57static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
58                                       createGreedyRegisterAllocator);
59
60namespace {
61class RAGreedy : public MachineFunctionPass,
62                 public RegAllocBase,
63                 private LiveRangeEdit::Delegate {
64
65  // context
66  MachineFunction *MF;
67
68  // analyses
69  SlotIndexes *Indexes;
70  LiveStacks *LS;
71  MachineDominatorTree *DomTree;
72  MachineLoopInfo *Loops;
73  EdgeBundles *Bundles;
74  SpillPlacement *SpillPlacer;
75  LiveDebugVariables *DebugVars;
76
77  // state
78  std::auto_ptr<Spiller> SpillerInstance;
79  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
80  unsigned NextCascade;
81
82  // Live ranges pass through a number of stages as we try to allocate them.
83  // Some of the stages may also create new live ranges:
84  //
85  // - Region splitting.
86  // - Per-block splitting.
87  // - Local splitting.
88  // - Spilling.
89  //
90  // Ranges produced by one of the stages skip the previous stages when they are
91  // dequeued. This improves performance because we can skip interference checks
92  // that are unlikely to give any results. It also guarantees that the live
93  // range splitting algorithm terminates, something that is otherwise hard to
94  // ensure.
95  enum LiveRangeStage {
96    /// Newly created live range that has never been queued.
97    RS_New,
98
99    /// Only attempt assignment and eviction. Then requeue as RS_Split.
100    RS_Assign,
101
102    /// Attempt live range splitting if assignment is impossible.
103    RS_Split,
104
105    /// Attempt more aggressive live range splitting that is guaranteed to make
106    /// progress.  This is used for split products that may not be making
107    /// progress.
108    RS_Split2,
109
110    /// Live range will be spilled.  No more splitting will be attempted.
111    RS_Spill,
112
113    /// There is nothing more we can do to this live range.  Abort compilation
114    /// if it can't be assigned.
115    RS_Done
116  };
117
118  static const char *const StageName[];
119
120  // RegInfo - Keep additional information about each live range.
121  struct RegInfo {
122    LiveRangeStage Stage;
123
124    // Cascade - Eviction loop prevention. See canEvictInterference().
125    unsigned Cascade;
126
127    RegInfo() : Stage(RS_New), Cascade(0) {}
128  };
129
130  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
131
132  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
133    return ExtraRegInfo[VirtReg.reg].Stage;
134  }
135
136  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
137    ExtraRegInfo.resize(MRI->getNumVirtRegs());
138    ExtraRegInfo[VirtReg.reg].Stage = Stage;
139  }
140
141  template<typename Iterator>
142  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
143    ExtraRegInfo.resize(MRI->getNumVirtRegs());
144    for (;Begin != End; ++Begin) {
145      unsigned Reg = (*Begin)->reg;
146      if (ExtraRegInfo[Reg].Stage == RS_New)
147        ExtraRegInfo[Reg].Stage = NewStage;
148    }
149  }
150
151  /// Cost of evicting interference.
152  struct EvictionCost {
153    unsigned BrokenHints; ///< Total number of broken hints.
154    float MaxWeight;      ///< Maximum spill weight evicted.
155
156    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
157
158    bool operator<(const EvictionCost &O) const {
159      if (BrokenHints != O.BrokenHints)
160        return BrokenHints < O.BrokenHints;
161      return MaxWeight < O.MaxWeight;
162    }
163  };
164
165  // splitting state.
166  std::auto_ptr<SplitAnalysis> SA;
167  std::auto_ptr<SplitEditor> SE;
168
169  /// Cached per-block interference maps
170  InterferenceCache IntfCache;
171
172  /// All basic blocks where the current register has uses.
173  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
174
175  /// Global live range splitting candidate info.
176  struct GlobalSplitCandidate {
177    // Register intended for assignment, or 0.
178    unsigned PhysReg;
179
180    // SplitKit interval index for this candidate.
181    unsigned IntvIdx;
182
183    // Interference for PhysReg.
184    InterferenceCache::Cursor Intf;
185
186    // Bundles where this candidate should be live.
187    BitVector LiveBundles;
188    SmallVector<unsigned, 8> ActiveBlocks;
189
190    void reset(InterferenceCache &Cache, unsigned Reg) {
191      PhysReg = Reg;
192      IntvIdx = 0;
193      Intf.setPhysReg(Cache, Reg);
194      LiveBundles.clear();
195      ActiveBlocks.clear();
196    }
197
198    // Set B[i] = C for every live bundle where B[i] was NoCand.
199    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
200      unsigned Count = 0;
201      for (int i = LiveBundles.find_first(); i >= 0;
202           i = LiveBundles.find_next(i))
203        if (B[i] == NoCand) {
204          B[i] = C;
205          Count++;
206        }
207      return Count;
208    }
209  };
210
211  /// Candidate info for for each PhysReg in AllocationOrder.
212  /// This vector never shrinks, but grows to the size of the largest register
213  /// class.
214  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
215
216  enum { NoCand = ~0u };
217
218  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
219  /// NoCand which indicates the stack interval.
220  SmallVector<unsigned, 32> BundleCand;
221
222public:
223  RAGreedy();
224
225  /// Return the pass name.
226  virtual const char* getPassName() const {
227    return "Greedy Register Allocator";
228  }
229
230  /// RAGreedy analysis usage.
231  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
232  virtual void releaseMemory();
233  virtual Spiller &spiller() { return *SpillerInstance; }
234  virtual void enqueue(LiveInterval *LI);
235  virtual LiveInterval *dequeue();
236  virtual unsigned selectOrSplit(LiveInterval&,
237                                 SmallVectorImpl<LiveInterval*>&);
238
239  /// Perform register allocation.
240  virtual bool runOnMachineFunction(MachineFunction &mf);
241
242  static char ID;
243
244private:
245  void LRE_WillEraseInstruction(MachineInstr*);
246  bool LRE_CanEraseVirtReg(unsigned);
247  void LRE_WillShrinkVirtReg(unsigned);
248  void LRE_DidCloneVirtReg(unsigned, unsigned);
249
250  float calcSpillCost();
251  bool addSplitConstraints(InterferenceCache::Cursor, float&);
252  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
253  void growRegion(GlobalSplitCandidate &Cand);
254  float calcGlobalSplitCost(GlobalSplitCandidate&);
255  bool calcCompactRegion(GlobalSplitCandidate&);
256  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
257  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
258  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
259  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
260  void evictInterference(LiveInterval&, unsigned,
261                         SmallVectorImpl<LiveInterval*>&);
262
263  unsigned tryAssign(LiveInterval&, AllocationOrder&,
264                     SmallVectorImpl<LiveInterval*>&);
265  unsigned tryEvict(LiveInterval&, AllocationOrder&,
266                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
267  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
268                          SmallVectorImpl<LiveInterval*>&);
269  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
270    SmallVectorImpl<LiveInterval*>&);
271  unsigned trySplit(LiveInterval&, AllocationOrder&,
272                    SmallVectorImpl<LiveInterval*>&);
273};
274} // end anonymous namespace
275
276char RAGreedy::ID = 0;
277
278#ifndef NDEBUG
279const char *const RAGreedy::StageName[] = {
280    "RS_New",
281    "RS_Assign",
282    "RS_Split",
283    "RS_Split2",
284    "RS_Spill",
285    "RS_Done"
286};
287#endif
288
289// Hysteresis to use when comparing floats.
290// This helps stabilize decisions based on float comparisons.
291const float Hysteresis = 0.98f;
292
293
294FunctionPass* llvm::createGreedyRegisterAllocator() {
295  return new RAGreedy();
296}
297
298RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
299  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
300  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
301  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
302  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
303  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
304  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
305  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
306  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
307  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
308  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
309  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
310  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
311  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
312}
313
314void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
315  AU.setPreservesCFG();
316  AU.addRequired<AliasAnalysis>();
317  AU.addPreserved<AliasAnalysis>();
318  AU.addRequired<LiveIntervals>();
319  AU.addRequired<SlotIndexes>();
320  AU.addPreserved<SlotIndexes>();
321  AU.addRequired<LiveDebugVariables>();
322  AU.addPreserved<LiveDebugVariables>();
323  if (StrongPHIElim)
324    AU.addRequiredID(StrongPHIEliminationID);
325  AU.addRequiredTransitive<RegisterCoalescer>();
326  AU.addRequired<CalculateSpillWeights>();
327  AU.addRequired<LiveStacks>();
328  AU.addPreserved<LiveStacks>();
329  AU.addRequired<MachineDominatorTree>();
330  AU.addPreserved<MachineDominatorTree>();
331  AU.addRequired<MachineLoopInfo>();
332  AU.addPreserved<MachineLoopInfo>();
333  AU.addRequired<VirtRegMap>();
334  AU.addPreserved<VirtRegMap>();
335  AU.addRequired<EdgeBundles>();
336  AU.addRequired<SpillPlacement>();
337  MachineFunctionPass::getAnalysisUsage(AU);
338}
339
340
341//===----------------------------------------------------------------------===//
342//                     LiveRangeEdit delegate methods
343//===----------------------------------------------------------------------===//
344
345void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
346  // LRE itself will remove from SlotIndexes and parent basic block.
347  VRM->RemoveMachineInstrFromMaps(MI);
348}
349
350bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
351  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
352    unassign(LIS->getInterval(VirtReg), PhysReg);
353    return true;
354  }
355  // Unassigned virtreg is probably in the priority queue.
356  // RegAllocBase will erase it after dequeueing.
357  return false;
358}
359
360void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
361  unsigned PhysReg = VRM->getPhys(VirtReg);
362  if (!PhysReg)
363    return;
364
365  // Register is assigned, put it back on the queue for reassignment.
366  LiveInterval &LI = LIS->getInterval(VirtReg);
367  unassign(LI, PhysReg);
368  enqueue(&LI);
369}
370
371void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
372  // LRE may clone a virtual register because dead code elimination causes it to
373  // be split into connected components. The new components are much smaller
374  // than the original, so they should get a new chance at being assigned.
375  // same stage as the parent.
376  ExtraRegInfo[Old].Stage = RS_Assign;
377  ExtraRegInfo.grow(New);
378  ExtraRegInfo[New] = ExtraRegInfo[Old];
379}
380
381void RAGreedy::releaseMemory() {
382  SpillerInstance.reset(0);
383  ExtraRegInfo.clear();
384  GlobalCand.clear();
385  RegAllocBase::releaseMemory();
386}
387
388void RAGreedy::enqueue(LiveInterval *LI) {
389  // Prioritize live ranges by size, assigning larger ranges first.
390  // The queue holds (size, reg) pairs.
391  const unsigned Size = LI->getSize();
392  const unsigned Reg = LI->reg;
393  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
394         "Can only enqueue virtual registers");
395  unsigned Prio;
396
397  ExtraRegInfo.grow(Reg);
398  if (ExtraRegInfo[Reg].Stage == RS_New)
399    ExtraRegInfo[Reg].Stage = RS_Assign;
400
401  if (ExtraRegInfo[Reg].Stage == RS_Split) {
402    // Unsplit ranges that couldn't be allocated immediately are deferred until
403    // everything else has been allocated. Long ranges are allocated last so
404    // they are split against realistic interference.
405    if (CompactRegions)
406      Prio = Size;
407    else
408      Prio = (1u << 31) - Size;
409  } else {
410    // Everything else is allocated in long->short order. Long ranges that don't
411    // fit should be spilled ASAP so they don't create interference.
412    Prio = (1u << 31) + Size;
413
414    // Boost ranges that have a physical register hint.
415    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
416      Prio |= (1u << 30);
417  }
418
419  Queue.push(std::make_pair(Prio, Reg));
420}
421
422LiveInterval *RAGreedy::dequeue() {
423  if (Queue.empty())
424    return 0;
425  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
426  Queue.pop();
427  return LI;
428}
429
430
431//===----------------------------------------------------------------------===//
432//                            Direct Assignment
433//===----------------------------------------------------------------------===//
434
435/// tryAssign - Try to assign VirtReg to an available register.
436unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
437                             AllocationOrder &Order,
438                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
439  Order.rewind();
440  unsigned PhysReg;
441  while ((PhysReg = Order.next()))
442    if (!checkPhysRegInterference(VirtReg, PhysReg))
443      break;
444  if (!PhysReg || Order.isHint(PhysReg))
445    return PhysReg;
446
447  // PhysReg is available, but there may be a better choice.
448
449  // If we missed a simple hint, try to cheaply evict interference from the
450  // preferred register.
451  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
452    if (Order.isHint(Hint)) {
453      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
454      EvictionCost MaxCost(1);
455      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
456        evictInterference(VirtReg, Hint, NewVRegs);
457        return Hint;
458      }
459    }
460
461  // Try to evict interference from a cheaper alternative.
462  unsigned Cost = TRI->getCostPerUse(PhysReg);
463
464  // Most registers have 0 additional cost.
465  if (!Cost)
466    return PhysReg;
467
468  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
469               << '\n');
470  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
471  return CheapReg ? CheapReg : PhysReg;
472}
473
474
475//===----------------------------------------------------------------------===//
476//                         Interference eviction
477//===----------------------------------------------------------------------===//
478
479/// shouldEvict - determine if A should evict the assigned live range B. The
480/// eviction policy defined by this function together with the allocation order
481/// defined by enqueue() decides which registers ultimately end up being split
482/// and spilled.
483///
484/// Cascade numbers are used to prevent infinite loops if this function is a
485/// cyclic relation.
486///
487/// @param A          The live range to be assigned.
488/// @param IsHint     True when A is about to be assigned to its preferred
489///                   register.
490/// @param B          The live range to be evicted.
491/// @param BreaksHint True when B is already assigned to its preferred register.
492bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
493                           LiveInterval &B, bool BreaksHint) {
494  bool CanSplit = getStage(B) < RS_Spill;
495
496  // Be fairly aggressive about following hints as long as the evictee can be
497  // split.
498  if (CanSplit && IsHint && !BreaksHint)
499    return true;
500
501  return A.weight > B.weight;
502}
503
504/// canEvictInterference - Return true if all interferences between VirtReg and
505/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
506///
507/// @param VirtReg Live range that is about to be assigned.
508/// @param PhysReg Desired register for assignment.
509/// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
510/// @param MaxCost Only look for cheaper candidates and update with new cost
511///                when returning true.
512/// @returns True when interference can be evicted cheaper than MaxCost.
513bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
514                                    bool IsHint, EvictionCost &MaxCost) {
515  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
516  // involved in an eviction before. If a cascade number was assigned, deny
517  // evicting anything with the same or a newer cascade number. This prevents
518  // infinite eviction loops.
519  //
520  // This works out so a register without a cascade number is allowed to evict
521  // anything, and it can be evicted by anything.
522  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
523  if (!Cascade)
524    Cascade = NextCascade;
525
526  EvictionCost Cost;
527  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
528    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
529    // If there is 10 or more interferences, chances are one is heavier.
530    if (Q.collectInterferingVRegs(10) >= 10)
531      return false;
532
533    // Check if any interfering live range is heavier than MaxWeight.
534    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
535      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
536      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
537        return false;
538      // Never evict spill products. They cannot split or spill.
539      if (getStage(*Intf) == RS_Done)
540        return false;
541      // Once a live range becomes small enough, it is urgent that we find a
542      // register for it. This is indicated by an infinite spill weight. These
543      // urgent live ranges get to evict almost anything.
544      bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
545      // Only evict older cascades or live ranges without a cascade.
546      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
547      if (Cascade <= IntfCascade) {
548        if (!Urgent)
549          return false;
550        // We permit breaking cascades for urgent evictions. It should be the
551        // last resort, though, so make it really expensive.
552        Cost.BrokenHints += 10;
553      }
554      // Would this break a satisfied hint?
555      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
556      // Update eviction cost.
557      Cost.BrokenHints += BreaksHint;
558      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
559      // Abort if this would be too expensive.
560      if (!(Cost < MaxCost))
561        return false;
562      // Finally, apply the eviction policy for non-urgent evictions.
563      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
564        return false;
565    }
566  }
567  MaxCost = Cost;
568  return true;
569}
570
571/// evictInterference - Evict any interferring registers that prevent VirtReg
572/// from being assigned to Physreg. This assumes that canEvictInterference
573/// returned true.
574void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
575                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
576  // Make sure that VirtReg has a cascade number, and assign that cascade
577  // number to every evicted register. These live ranges than then only be
578  // evicted by a newer cascade, preventing infinite loops.
579  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
580  if (!Cascade)
581    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
582
583  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
584               << " interference: Cascade " << Cascade << '\n');
585  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
586    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
587    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
588    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
589      LiveInterval *Intf = Q.interferingVRegs()[i];
590      unassign(*Intf, VRM->getPhys(Intf->reg));
591      assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
592              VirtReg.isSpillable() < Intf->isSpillable()) &&
593             "Cannot decrease cascade number, illegal eviction");
594      ExtraRegInfo[Intf->reg].Cascade = Cascade;
595      ++NumEvicted;
596      NewVRegs.push_back(Intf);
597    }
598  }
599}
600
601/// tryEvict - Try to evict all interferences for a physreg.
602/// @param  VirtReg Currently unassigned virtual register.
603/// @param  Order   Physregs to try.
604/// @return         Physreg to assign VirtReg, or 0.
605unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
606                            AllocationOrder &Order,
607                            SmallVectorImpl<LiveInterval*> &NewVRegs,
608                            unsigned CostPerUseLimit) {
609  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
610
611  // Keep track of the cheapest interference seen so far.
612  EvictionCost BestCost(~0u);
613  unsigned BestPhys = 0;
614
615  // When we are just looking for a reduced cost per use, don't break any
616  // hints, and only evict smaller spill weights.
617  if (CostPerUseLimit < ~0u) {
618    BestCost.BrokenHints = 0;
619    BestCost.MaxWeight = VirtReg.weight;
620  }
621
622  Order.rewind();
623  while (unsigned PhysReg = Order.next()) {
624    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
625      continue;
626    // The first use of a callee-saved register in a function has cost 1.
627    // Don't start using a CSR when the CostPerUseLimit is low.
628    if (CostPerUseLimit == 1)
629     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
630       if (!MRI->isPhysRegUsed(CSR)) {
631         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
632                      << PrintReg(CSR, TRI) << '\n');
633         continue;
634       }
635
636    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
637      continue;
638
639    // Best so far.
640    BestPhys = PhysReg;
641
642    // Stop if the hint can be used.
643    if (Order.isHint(PhysReg))
644      break;
645  }
646
647  if (!BestPhys)
648    return 0;
649
650  evictInterference(VirtReg, BestPhys, NewVRegs);
651  return BestPhys;
652}
653
654
655//===----------------------------------------------------------------------===//
656//                              Region Splitting
657//===----------------------------------------------------------------------===//
658
659/// addSplitConstraints - Fill out the SplitConstraints vector based on the
660/// interference pattern in Physreg and its aliases. Add the constraints to
661/// SpillPlacement and return the static cost of this split in Cost, assuming
662/// that all preferences in SplitConstraints are met.
663/// Return false if there are no bundles with positive bias.
664bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
665                                   float &Cost) {
666  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
667
668  // Reset interference dependent info.
669  SplitConstraints.resize(UseBlocks.size());
670  float StaticCost = 0;
671  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
672    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
673    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
674
675    BC.Number = BI.MBB->getNumber();
676    Intf.moveToBlock(BC.Number);
677    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
678    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
679
680    if (!Intf.hasInterference())
681      continue;
682
683    // Number of spill code instructions to insert.
684    unsigned Ins = 0;
685
686    // Interference for the live-in value.
687    if (BI.LiveIn) {
688      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
689        BC.Entry = SpillPlacement::MustSpill, ++Ins;
690      else if (Intf.first() < BI.FirstUse)
691        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
692      else if (Intf.first() < BI.LastUse)
693        ++Ins;
694    }
695
696    // Interference for the live-out value.
697    if (BI.LiveOut) {
698      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
699        BC.Exit = SpillPlacement::MustSpill, ++Ins;
700      else if (Intf.last() > BI.LastUse)
701        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
702      else if (Intf.last() > BI.FirstUse)
703        ++Ins;
704    }
705
706    // Accumulate the total frequency of inserted spill code.
707    if (Ins)
708      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
709  }
710  Cost = StaticCost;
711
712  // Add constraints for use-blocks. Note that these are the only constraints
713  // that may add a positive bias, it is downhill from here.
714  SpillPlacer->addConstraints(SplitConstraints);
715  return SpillPlacer->scanActiveBundles();
716}
717
718
719/// addThroughConstraints - Add constraints and links to SpillPlacer from the
720/// live-through blocks in Blocks.
721void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
722                                     ArrayRef<unsigned> Blocks) {
723  const unsigned GroupSize = 8;
724  SpillPlacement::BlockConstraint BCS[GroupSize];
725  unsigned TBS[GroupSize];
726  unsigned B = 0, T = 0;
727
728  for (unsigned i = 0; i != Blocks.size(); ++i) {
729    unsigned Number = Blocks[i];
730    Intf.moveToBlock(Number);
731
732    if (!Intf.hasInterference()) {
733      assert(T < GroupSize && "Array overflow");
734      TBS[T] = Number;
735      if (++T == GroupSize) {
736        SpillPlacer->addLinks(makeArrayRef(TBS, T));
737        T = 0;
738      }
739      continue;
740    }
741
742    assert(B < GroupSize && "Array overflow");
743    BCS[B].Number = Number;
744
745    // Interference for the live-in value.
746    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
747      BCS[B].Entry = SpillPlacement::MustSpill;
748    else
749      BCS[B].Entry = SpillPlacement::PrefSpill;
750
751    // Interference for the live-out value.
752    if (Intf.last() >= SA->getLastSplitPoint(Number))
753      BCS[B].Exit = SpillPlacement::MustSpill;
754    else
755      BCS[B].Exit = SpillPlacement::PrefSpill;
756
757    if (++B == GroupSize) {
758      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
759      SpillPlacer->addConstraints(Array);
760      B = 0;
761    }
762  }
763
764  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
765  SpillPlacer->addConstraints(Array);
766  SpillPlacer->addLinks(makeArrayRef(TBS, T));
767}
768
769void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
770  // Keep track of through blocks that have not been added to SpillPlacer.
771  BitVector Todo = SA->getThroughBlocks();
772  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
773  unsigned AddedTo = 0;
774#ifndef NDEBUG
775  unsigned Visited = 0;
776#endif
777
778  for (;;) {
779    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
780    // Find new through blocks in the periphery of PrefRegBundles.
781    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
782      unsigned Bundle = NewBundles[i];
783      // Look at all blocks connected to Bundle in the full graph.
784      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
785      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
786           I != E; ++I) {
787        unsigned Block = *I;
788        if (!Todo.test(Block))
789          continue;
790        Todo.reset(Block);
791        // This is a new through block. Add it to SpillPlacer later.
792        ActiveBlocks.push_back(Block);
793#ifndef NDEBUG
794        ++Visited;
795#endif
796      }
797    }
798    // Any new blocks to add?
799    if (ActiveBlocks.size() == AddedTo)
800      break;
801
802    // Compute through constraints from the interference, or assume that all
803    // through blocks prefer spilling when forming compact regions.
804    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
805    if (Cand.PhysReg)
806      addThroughConstraints(Cand.Intf, NewBlocks);
807    else
808      SpillPlacer->addPrefSpill(NewBlocks);
809    AddedTo = ActiveBlocks.size();
810
811    // Perhaps iterating can enable more bundles?
812    SpillPlacer->iterate();
813  }
814  DEBUG(dbgs() << ", v=" << Visited);
815}
816
817/// calcCompactRegion - Compute the set of edge bundles that should be live
818/// when splitting the current live range into compact regions.  Compact
819/// regions can be computed without looking at interference.  They are the
820/// regions formed by removing all the live-through blocks from the live range.
821///
822/// Returns false if the current live range is already compact, or if the
823/// compact regions would form single block regions anyway.
824bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
825  // Without any through blocks, the live range is already compact.
826  if (!SA->getNumThroughBlocks())
827    return false;
828
829  // Compact regions don't correspond to any physreg.
830  Cand.reset(IntfCache, 0);
831
832  DEBUG(dbgs() << "Compact region bundles");
833
834  // Use the spill placer to determine the live bundles. GrowRegion pretends
835  // that all the through blocks have interference when PhysReg is unset.
836  SpillPlacer->prepare(Cand.LiveBundles);
837
838  // The static split cost will be zero since Cand.Intf reports no interference.
839  float Cost;
840  if (!addSplitConstraints(Cand.Intf, Cost)) {
841    DEBUG(dbgs() << ", none.\n");
842    return false;
843  }
844
845  growRegion(Cand);
846  SpillPlacer->finish();
847
848  if (!Cand.LiveBundles.any()) {
849    DEBUG(dbgs() << ", none.\n");
850    return false;
851  }
852
853  DEBUG({
854    for (int i = Cand.LiveBundles.find_first(); i>=0;
855         i = Cand.LiveBundles.find_next(i))
856    dbgs() << " EB#" << i;
857    dbgs() << ".\n";
858  });
859  return true;
860}
861
862/// calcSpillCost - Compute how expensive it would be to split the live range in
863/// SA around all use blocks instead of forming bundle regions.
864float RAGreedy::calcSpillCost() {
865  float Cost = 0;
866  const LiveInterval &LI = SA->getParent();
867  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
868  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
869    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
870    unsigned Number = BI.MBB->getNumber();
871    // We normally only need one spill instruction - a load or a store.
872    Cost += SpillPlacer->getBlockFrequency(Number);
873
874    // Unless the value is redefined in the block.
875    if (BI.LiveIn && BI.LiveOut) {
876      SlotIndex Start, Stop;
877      tie(Start, Stop) = Indexes->getMBBRange(Number);
878      LiveInterval::const_iterator I = LI.find(Start);
879      assert(I != LI.end() && "Expected live-in value");
880      // Is there a different live-out value? If so, we need an extra spill
881      // instruction.
882      if (I->end < Stop)
883        Cost += SpillPlacer->getBlockFrequency(Number);
884    }
885  }
886  return Cost;
887}
888
889/// calcGlobalSplitCost - Return the global split cost of following the split
890/// pattern in LiveBundles. This cost should be added to the local cost of the
891/// interference pattern in SplitConstraints.
892///
893float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
894  float GlobalCost = 0;
895  const BitVector &LiveBundles = Cand.LiveBundles;
896  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
897  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
898    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
899    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
900    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
901    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
902    unsigned Ins = 0;
903
904    if (BI.LiveIn)
905      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
906    if (BI.LiveOut)
907      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
908    if (Ins)
909      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
910  }
911
912  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
913    unsigned Number = Cand.ActiveBlocks[i];
914    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
915    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
916    if (!RegIn && !RegOut)
917      continue;
918    if (RegIn && RegOut) {
919      // We need double spill code if this block has interference.
920      Cand.Intf.moveToBlock(Number);
921      if (Cand.Intf.hasInterference())
922        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
923      continue;
924    }
925    // live-in / stack-out or stack-in live-out.
926    GlobalCost += SpillPlacer->getBlockFrequency(Number);
927  }
928  return GlobalCost;
929}
930
931/// splitAroundRegion - Split the current live range around the regions
932/// determined by BundleCand and GlobalCand.
933///
934/// Before calling this function, GlobalCand and BundleCand must be initialized
935/// so each bundle is assigned to a valid candidate, or NoCand for the
936/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
937/// objects must be initialized for the current live range, and intervals
938/// created for the used candidates.
939///
940/// @param LREdit    The LiveRangeEdit object handling the current split.
941/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
942///                  must appear in this list.
943void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
944                                 ArrayRef<unsigned> UsedCands) {
945  // These are the intervals created for new global ranges. We may create more
946  // intervals for local ranges.
947  const unsigned NumGlobalIntvs = LREdit.size();
948  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
949  assert(NumGlobalIntvs && "No global intervals configured");
950
951  // First handle all the blocks with uses.
952  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
953  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
954    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
955    unsigned Number = BI.MBB->getNumber();
956    unsigned IntvIn = 0, IntvOut = 0;
957    SlotIndex IntfIn, IntfOut;
958    if (BI.LiveIn) {
959      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
960      if (CandIn != NoCand) {
961        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
962        IntvIn = Cand.IntvIdx;
963        Cand.Intf.moveToBlock(Number);
964        IntfIn = Cand.Intf.first();
965      }
966    }
967    if (BI.LiveOut) {
968      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
969      if (CandOut != NoCand) {
970        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
971        IntvOut = Cand.IntvIdx;
972        Cand.Intf.moveToBlock(Number);
973        IntfOut = Cand.Intf.last();
974      }
975    }
976
977    // Create separate intervals for isolated blocks with multiple uses.
978    if (!IntvIn && !IntvOut) {
979      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
980      if (!BI.isOneInstr())
981        SE->splitSingleBlock(BI);
982      continue;
983    }
984
985    if (IntvIn && IntvOut)
986      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
987    else if (IntvIn)
988      SE->splitRegInBlock(BI, IntvIn, IntfIn);
989    else
990      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
991  }
992
993  // Handle live-through blocks. The relevant live-through blocks are stored in
994  // the ActiveBlocks list with each candidate. We need to filter out
995  // duplicates.
996  BitVector Todo = SA->getThroughBlocks();
997  for (unsigned c = 0; c != UsedCands.size(); ++c) {
998    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
999    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1000      unsigned Number = Blocks[i];
1001      if (!Todo.test(Number))
1002        continue;
1003      Todo.reset(Number);
1004
1005      unsigned IntvIn = 0, IntvOut = 0;
1006      SlotIndex IntfIn, IntfOut;
1007
1008      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1009      if (CandIn != NoCand) {
1010        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1011        IntvIn = Cand.IntvIdx;
1012        Cand.Intf.moveToBlock(Number);
1013        IntfIn = Cand.Intf.first();
1014      }
1015
1016      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1017      if (CandOut != NoCand) {
1018        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1019        IntvOut = Cand.IntvIdx;
1020        Cand.Intf.moveToBlock(Number);
1021        IntfOut = Cand.Intf.last();
1022      }
1023      if (!IntvIn && !IntvOut)
1024        continue;
1025      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1026    }
1027  }
1028
1029  ++NumGlobalSplits;
1030
1031  SmallVector<unsigned, 8> IntvMap;
1032  SE->finish(&IntvMap);
1033  DebugVars->splitRegister(SA->getParent().reg, LREdit.regs());
1034
1035  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1036  unsigned OrigBlocks = SA->getNumLiveBlocks();
1037
1038  // Sort out the new intervals created by splitting. We get four kinds:
1039  // - Remainder intervals should not be split again.
1040  // - Candidate intervals can be assigned to Cand.PhysReg.
1041  // - Block-local splits are candidates for local splitting.
1042  // - DCE leftovers should go back on the queue.
1043  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1044    LiveInterval &Reg = *LREdit.get(i);
1045
1046    // Ignore old intervals from DCE.
1047    if (getStage(Reg) != RS_New)
1048      continue;
1049
1050    // Remainder interval. Don't try splitting again, spill if it doesn't
1051    // allocate.
1052    if (IntvMap[i] == 0) {
1053      setStage(Reg, RS_Spill);
1054      continue;
1055    }
1056
1057    // Global intervals. Allow repeated splitting as long as the number of live
1058    // blocks is strictly decreasing.
1059    if (IntvMap[i] < NumGlobalIntvs) {
1060      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1061        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1062                     << " blocks as original.\n");
1063        // Don't allow repeated splitting as a safe guard against looping.
1064        setStage(Reg, RS_Split2);
1065      }
1066      continue;
1067    }
1068
1069    // Other intervals are treated as new. This includes local intervals created
1070    // for blocks with multiple uses, and anything created by DCE.
1071  }
1072
1073  if (VerifyEnabled)
1074    MF->verify(this, "After splitting live range around region");
1075}
1076
1077unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1078                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1079  unsigned NumCands = 0;
1080  unsigned BestCand = NoCand;
1081  float BestCost;
1082  SmallVector<unsigned, 8> UsedCands;
1083
1084  // Check if we can split this live range around a compact region.
1085  bool HasCompact = CompactRegions && calcCompactRegion(GlobalCand.front());
1086  if (HasCompact) {
1087    // Yes, keep GlobalCand[0] as the compact region candidate.
1088    NumCands = 1;
1089    BestCost = HUGE_VALF;
1090  } else {
1091    // No benefit from the compact region, our fallback will be per-block
1092    // splitting. Make sure we find a solution that is cheaper than spilling.
1093    BestCost = Hysteresis * calcSpillCost();
1094    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1095  }
1096
1097  Order.rewind();
1098  while (unsigned PhysReg = Order.next()) {
1099    // Discard bad candidates before we run out of interference cache cursors.
1100    // This will only affect register classes with a lot of registers (>32).
1101    if (NumCands == IntfCache.getMaxCursors()) {
1102      unsigned WorstCount = ~0u;
1103      unsigned Worst = 0;
1104      for (unsigned i = 0; i != NumCands; ++i) {
1105        if (i == BestCand || !GlobalCand[i].PhysReg)
1106          continue;
1107        unsigned Count = GlobalCand[i].LiveBundles.count();
1108        if (Count < WorstCount)
1109          Worst = i, WorstCount = Count;
1110      }
1111      --NumCands;
1112      GlobalCand[Worst] = GlobalCand[NumCands];
1113    }
1114
1115    if (GlobalCand.size() <= NumCands)
1116      GlobalCand.resize(NumCands+1);
1117    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1118    Cand.reset(IntfCache, PhysReg);
1119
1120    SpillPlacer->prepare(Cand.LiveBundles);
1121    float Cost;
1122    if (!addSplitConstraints(Cand.Intf, Cost)) {
1123      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1124      continue;
1125    }
1126    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1127    if (Cost >= BestCost) {
1128      DEBUG({
1129        if (BestCand == NoCand)
1130          dbgs() << " worse than no bundles\n";
1131        else
1132          dbgs() << " worse than "
1133                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1134      });
1135      continue;
1136    }
1137    growRegion(Cand);
1138
1139    SpillPlacer->finish();
1140
1141    // No live bundles, defer to splitSingleBlocks().
1142    if (!Cand.LiveBundles.any()) {
1143      DEBUG(dbgs() << " no bundles.\n");
1144      continue;
1145    }
1146
1147    Cost += calcGlobalSplitCost(Cand);
1148    DEBUG({
1149      dbgs() << ", total = " << Cost << " with bundles";
1150      for (int i = Cand.LiveBundles.find_first(); i>=0;
1151           i = Cand.LiveBundles.find_next(i))
1152        dbgs() << " EB#" << i;
1153      dbgs() << ".\n";
1154    });
1155    if (Cost < BestCost) {
1156      BestCand = NumCands;
1157      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1158    }
1159    ++NumCands;
1160  }
1161
1162  // No solutions found, fall back to single block splitting.
1163  if (!HasCompact && BestCand == NoCand)
1164    return 0;
1165
1166  // Prepare split editor.
1167  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1168  SE->reset(LREdit);
1169
1170  // Assign all edge bundles to the preferred candidate, or NoCand.
1171  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1172
1173  // Assign bundles for the best candidate region.
1174  if (BestCand != NoCand) {
1175    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1176    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1177      UsedCands.push_back(BestCand);
1178      Cand.IntvIdx = SE->openIntv();
1179      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1180                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1181    }
1182  }
1183
1184  // Assign bundles for the compact region.
1185  if (HasCompact) {
1186    GlobalSplitCandidate &Cand = GlobalCand.front();
1187    assert(!Cand.PhysReg && "Compact region has no physreg");
1188    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1189      UsedCands.push_back(0);
1190      Cand.IntvIdx = SE->openIntv();
1191      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1192                   << Cand.IntvIdx << ".\n");
1193    }
1194  }
1195
1196  splitAroundRegion(LREdit, UsedCands);
1197  return 0;
1198}
1199
1200
1201//===----------------------------------------------------------------------===//
1202//                             Local Splitting
1203//===----------------------------------------------------------------------===//
1204
1205
1206/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1207/// in order to use PhysReg between two entries in SA->UseSlots.
1208///
1209/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1210///
1211void RAGreedy::calcGapWeights(unsigned PhysReg,
1212                              SmallVectorImpl<float> &GapWeight) {
1213  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1214  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1215  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1216  const unsigned NumGaps = Uses.size()-1;
1217
1218  // Start and end points for the interference check.
1219  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1220  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1221
1222  GapWeight.assign(NumGaps, 0.0f);
1223
1224  // Add interference from each overlapping register.
1225  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1226    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1227           .checkInterference())
1228      continue;
1229
1230    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1231    // so we don't need InterferenceQuery.
1232    //
1233    // Interference that overlaps an instruction is counted in both gaps
1234    // surrounding the instruction. The exception is interference before
1235    // StartIdx and after StopIdx.
1236    //
1237    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1238    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1239      // Skip the gaps before IntI.
1240      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1241        if (++Gap == NumGaps)
1242          break;
1243      if (Gap == NumGaps)
1244        break;
1245
1246      // Update the gaps covered by IntI.
1247      const float weight = IntI.value()->weight;
1248      for (; Gap != NumGaps; ++Gap) {
1249        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1250        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1251          break;
1252      }
1253      if (Gap == NumGaps)
1254        break;
1255    }
1256  }
1257}
1258
1259/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1260/// basic block.
1261///
1262unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1263                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1264  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1265  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1266
1267  // Note that it is possible to have an interval that is live-in or live-out
1268  // while only covering a single block - A phi-def can use undef values from
1269  // predecessors, and the block could be a single-block loop.
1270  // We don't bother doing anything clever about such a case, we simply assume
1271  // that the interval is continuous from FirstUse to LastUse. We should make
1272  // sure that we don't do anything illegal to such an interval, though.
1273
1274  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1275  if (Uses.size() <= 2)
1276    return 0;
1277  const unsigned NumGaps = Uses.size()-1;
1278
1279  DEBUG({
1280    dbgs() << "tryLocalSplit: ";
1281    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1282      dbgs() << ' ' << SA->UseSlots[i];
1283    dbgs() << '\n';
1284  });
1285
1286  // Since we allow local split results to be split again, there is a risk of
1287  // creating infinite loops. It is tempting to require that the new live
1288  // ranges have less instructions than the original. That would guarantee
1289  // convergence, but it is too strict. A live range with 3 instructions can be
1290  // split 2+3 (including the COPY), and we want to allow that.
1291  //
1292  // Instead we use these rules:
1293  //
1294  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1295  //    noop split, of course).
1296  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1297  //    the new ranges must have fewer instructions than before the split.
1298  // 3. New ranges with the same number of instructions are marked RS_Split2,
1299  //    smaller ranges are marked RS_New.
1300  //
1301  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1302  // excessive splitting and infinite loops.
1303  //
1304  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1305
1306  // Best split candidate.
1307  unsigned BestBefore = NumGaps;
1308  unsigned BestAfter = 0;
1309  float BestDiff = 0;
1310
1311  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1312  SmallVector<float, 8> GapWeight;
1313
1314  Order.rewind();
1315  while (unsigned PhysReg = Order.next()) {
1316    // Keep track of the largest spill weight that would need to be evicted in
1317    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1318    calcGapWeights(PhysReg, GapWeight);
1319
1320    // Try to find the best sequence of gaps to close.
1321    // The new spill weight must be larger than any gap interference.
1322
1323    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1324    unsigned SplitBefore = 0, SplitAfter = 1;
1325
1326    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1327    // It is the spill weight that needs to be evicted.
1328    float MaxGap = GapWeight[0];
1329
1330    for (;;) {
1331      // Live before/after split?
1332      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1333      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1334
1335      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1336                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1337                   << " i=" << MaxGap);
1338
1339      // Stop before the interval gets so big we wouldn't be making progress.
1340      if (!LiveBefore && !LiveAfter) {
1341        DEBUG(dbgs() << " all\n");
1342        break;
1343      }
1344      // Should the interval be extended or shrunk?
1345      bool Shrink = true;
1346
1347      // How many gaps would the new range have?
1348      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1349
1350      // Legally, without causing looping?
1351      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1352
1353      if (Legal && MaxGap < HUGE_VALF) {
1354        // Estimate the new spill weight. Each instruction reads or writes the
1355        // register. Conservatively assume there are no read-modify-write
1356        // instructions.
1357        //
1358        // Try to guess the size of the new interval.
1359        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1360                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1361                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1362        // Would this split be possible to allocate?
1363        // Never allocate all gaps, we wouldn't be making progress.
1364        DEBUG(dbgs() << " w=" << EstWeight);
1365        if (EstWeight * Hysteresis >= MaxGap) {
1366          Shrink = false;
1367          float Diff = EstWeight - MaxGap;
1368          if (Diff > BestDiff) {
1369            DEBUG(dbgs() << " (best)");
1370            BestDiff = Hysteresis * Diff;
1371            BestBefore = SplitBefore;
1372            BestAfter = SplitAfter;
1373          }
1374        }
1375      }
1376
1377      // Try to shrink.
1378      if (Shrink) {
1379        if (++SplitBefore < SplitAfter) {
1380          DEBUG(dbgs() << " shrink\n");
1381          // Recompute the max when necessary.
1382          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1383            MaxGap = GapWeight[SplitBefore];
1384            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1385              MaxGap = std::max(MaxGap, GapWeight[i]);
1386          }
1387          continue;
1388        }
1389        MaxGap = 0;
1390      }
1391
1392      // Try to extend the interval.
1393      if (SplitAfter >= NumGaps) {
1394        DEBUG(dbgs() << " end\n");
1395        break;
1396      }
1397
1398      DEBUG(dbgs() << " extend\n");
1399      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1400    }
1401  }
1402
1403  // Didn't find any candidates?
1404  if (BestBefore == NumGaps)
1405    return 0;
1406
1407  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1408               << '-' << Uses[BestAfter] << ", " << BestDiff
1409               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1410
1411  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1412  SE->reset(LREdit);
1413
1414  SE->openIntv();
1415  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1416  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1417  SE->useIntv(SegStart, SegStop);
1418  SmallVector<unsigned, 8> IntvMap;
1419  SE->finish(&IntvMap);
1420  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1421
1422  // If the new range has the same number of instructions as before, mark it as
1423  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1424  // leave the new intervals as RS_New so they can compete.
1425  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1426  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1427  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1428  if (NewGaps >= NumGaps) {
1429    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1430    assert(!ProgressRequired && "Didn't make progress when it was required.");
1431    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1432      if (IntvMap[i] == 1) {
1433        setStage(*LREdit.get(i), RS_Split2);
1434        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1435      }
1436    DEBUG(dbgs() << '\n');
1437  }
1438  ++NumLocalSplits;
1439
1440  return 0;
1441}
1442
1443//===----------------------------------------------------------------------===//
1444//                          Live Range Splitting
1445//===----------------------------------------------------------------------===//
1446
1447/// trySplit - Try to split VirtReg or one of its interferences, making it
1448/// assignable.
1449/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1450unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1451                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1452  // Local intervals are handled separately.
1453  if (LIS->intervalIsInOneMBB(VirtReg)) {
1454    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1455    SA->analyze(&VirtReg);
1456    return tryLocalSplit(VirtReg, Order, NewVRegs);
1457  }
1458
1459  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1460
1461  // Ranges must be Split2 or less.
1462  if (getStage(VirtReg) >= RS_Spill)
1463    return 0;
1464
1465  SA->analyze(&VirtReg);
1466
1467  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1468  // coalescer. That may cause the range to become allocatable which means that
1469  // tryRegionSplit won't be making progress. This check should be replaced with
1470  // an assertion when the coalescer is fixed.
1471  if (SA->didRepairRange()) {
1472    // VirtReg has changed, so all cached queries are invalid.
1473    invalidateVirtRegs();
1474    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1475      return PhysReg;
1476  }
1477
1478  // First try to split around a region spanning multiple blocks. RS_Split2
1479  // ranges already made dubious progress with region splitting, so they go
1480  // straight to single block splitting.
1481  if (getStage(VirtReg) < RS_Split2) {
1482    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1483    if (PhysReg || !NewVRegs.empty())
1484      return PhysReg;
1485  }
1486
1487  // Then isolate blocks with multiple uses.
1488  SplitAnalysis::BlockPtrSet Blocks;
1489  if (SA->getMultiUseBlocks(Blocks)) {
1490    LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1491    SE->reset(LREdit);
1492    SE->splitSingleBlocks(Blocks);
1493    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1494    if (VerifyEnabled)
1495      MF->verify(this, "After splitting live range around basic blocks");
1496  }
1497
1498  // Don't assign any physregs.
1499  return 0;
1500}
1501
1502
1503//===----------------------------------------------------------------------===//
1504//                            Main Entry Point
1505//===----------------------------------------------------------------------===//
1506
1507unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1508                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1509  // First try assigning a free register.
1510  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1511  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1512    return PhysReg;
1513
1514  LiveRangeStage Stage = getStage(VirtReg);
1515  DEBUG(dbgs() << StageName[Stage]
1516               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1517
1518  // Try to evict a less worthy live range, but only for ranges from the primary
1519  // queue. The RS_Split ranges already failed to do this, and they should not
1520  // get a second chance until they have been split.
1521  if (Stage != RS_Split)
1522    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1523      return PhysReg;
1524
1525  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1526
1527  // The first time we see a live range, don't try to split or spill.
1528  // Wait until the second time, when all smaller ranges have been allocated.
1529  // This gives a better picture of the interference to split around.
1530  if (Stage < RS_Split) {
1531    setStage(VirtReg, RS_Split);
1532    DEBUG(dbgs() << "wait for second round\n");
1533    NewVRegs.push_back(&VirtReg);
1534    return 0;
1535  }
1536
1537  // If we couldn't allocate a register from spilling, there is probably some
1538  // invalid inline assembly. The base class wil report it.
1539  if (Stage >= RS_Done || !VirtReg.isSpillable())
1540    return ~0u;
1541
1542  // Try splitting VirtReg or interferences.
1543  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1544  if (PhysReg || !NewVRegs.empty())
1545    return PhysReg;
1546
1547  // Finally spill VirtReg itself.
1548  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1549  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1550  spiller().spill(LRE);
1551  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1552
1553  if (VerifyEnabled)
1554    MF->verify(this, "After spilling");
1555
1556  // The live virtual register requesting allocation was spilled, so tell
1557  // the caller not to allocate anything during this round.
1558  return 0;
1559}
1560
1561bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1562  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1563               << "********** Function: "
1564               << ((Value*)mf.getFunction())->getName() << '\n');
1565
1566  MF = &mf;
1567  if (VerifyEnabled)
1568    MF->verify(this, "Before greedy register allocator");
1569
1570  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1571  Indexes = &getAnalysis<SlotIndexes>();
1572  DomTree = &getAnalysis<MachineDominatorTree>();
1573  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1574  Loops = &getAnalysis<MachineLoopInfo>();
1575  Bundles = &getAnalysis<EdgeBundles>();
1576  SpillPlacer = &getAnalysis<SpillPlacement>();
1577  DebugVars = &getAnalysis<LiveDebugVariables>();
1578
1579  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1580  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1581  ExtraRegInfo.clear();
1582  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1583  NextCascade = 1;
1584  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1585  GlobalCand.resize(32);  // This will grow as needed.
1586
1587  allocatePhysRegs();
1588  addMBBLiveIns(MF);
1589  LIS->addKillFlags();
1590
1591  // Run rewriter
1592  {
1593    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1594    VRM->rewrite(Indexes);
1595  }
1596
1597  // Write out new DBG_VALUE instructions.
1598  DebugVars->emitDebugValues(VRM);
1599
1600  // The pass output is in VirtRegMap. Release all the transient data.
1601  releaseMemory();
1602
1603  return true;
1604}
1605