RegAllocGreedy.cpp revision 9384111e90cb840e7eb867098f19910cf4c4a11d
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRangeEdit.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Function.h"
28#include "llvm/PassAnalysisSupport.h"
29#include "llvm/CodeGen/CalcSpillWeights.h"
30#include "llvm/CodeGen/EdgeBundles.h"
31#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineLoopInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/CodeGen/RegAllocRegistry.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/Timer.h"
45
46#include <queue>
47
48using namespace llvm;
49
50STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51STATISTIC(NumLocalSplits,  "Number of split local live ranges");
52STATISTIC(NumEvicted,      "Number of interferences evicted");
53
54static cl::opt<SplitEditor::ComplementSpillMode>
55SplitSpillMode("split-spill-mode", cl::Hidden,
56  cl::desc("Spill mode for splitting live ranges"),
57  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
58             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
59             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
60             clEnumValEnd),
61  cl::init(SplitEditor::SM_Partition));
62
63static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
64                                       createGreedyRegisterAllocator);
65
66namespace {
67class RAGreedy : public MachineFunctionPass,
68                 public RegAllocBase,
69                 private LiveRangeEdit::Delegate {
70
71  // context
72  MachineFunction *MF;
73
74  // analyses
75  SlotIndexes *Indexes;
76  LiveStacks *LS;
77  MachineDominatorTree *DomTree;
78  MachineLoopInfo *Loops;
79  EdgeBundles *Bundles;
80  SpillPlacement *SpillPlacer;
81  LiveDebugVariables *DebugVars;
82
83  // state
84  std::auto_ptr<Spiller> SpillerInstance;
85  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
86  unsigned NextCascade;
87
88  // Live ranges pass through a number of stages as we try to allocate them.
89  // Some of the stages may also create new live ranges:
90  //
91  // - Region splitting.
92  // - Per-block splitting.
93  // - Local splitting.
94  // - Spilling.
95  //
96  // Ranges produced by one of the stages skip the previous stages when they are
97  // dequeued. This improves performance because we can skip interference checks
98  // that are unlikely to give any results. It also guarantees that the live
99  // range splitting algorithm terminates, something that is otherwise hard to
100  // ensure.
101  enum LiveRangeStage {
102    /// Newly created live range that has never been queued.
103    RS_New,
104
105    /// Only attempt assignment and eviction. Then requeue as RS_Split.
106    RS_Assign,
107
108    /// Attempt live range splitting if assignment is impossible.
109    RS_Split,
110
111    /// Attempt more aggressive live range splitting that is guaranteed to make
112    /// progress.  This is used for split products that may not be making
113    /// progress.
114    RS_Split2,
115
116    /// Live range will be spilled.  No more splitting will be attempted.
117    RS_Spill,
118
119    /// There is nothing more we can do to this live range.  Abort compilation
120    /// if it can't be assigned.
121    RS_Done
122  };
123
124  static const char *const StageName[];
125
126  // RegInfo - Keep additional information about each live range.
127  struct RegInfo {
128    LiveRangeStage Stage;
129
130    // Cascade - Eviction loop prevention. See canEvictInterference().
131    unsigned Cascade;
132
133    RegInfo() : Stage(RS_New), Cascade(0) {}
134  };
135
136  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
137
138  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
139    return ExtraRegInfo[VirtReg.reg].Stage;
140  }
141
142  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
143    ExtraRegInfo.resize(MRI->getNumVirtRegs());
144    ExtraRegInfo[VirtReg.reg].Stage = Stage;
145  }
146
147  template<typename Iterator>
148  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
149    ExtraRegInfo.resize(MRI->getNumVirtRegs());
150    for (;Begin != End; ++Begin) {
151      unsigned Reg = (*Begin)->reg;
152      if (ExtraRegInfo[Reg].Stage == RS_New)
153        ExtraRegInfo[Reg].Stage = NewStage;
154    }
155  }
156
157  /// Cost of evicting interference.
158  struct EvictionCost {
159    unsigned BrokenHints; ///< Total number of broken hints.
160    float MaxWeight;      ///< Maximum spill weight evicted.
161
162    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
163
164    bool operator<(const EvictionCost &O) const {
165      if (BrokenHints != O.BrokenHints)
166        return BrokenHints < O.BrokenHints;
167      return MaxWeight < O.MaxWeight;
168    }
169  };
170
171  // splitting state.
172  std::auto_ptr<SplitAnalysis> SA;
173  std::auto_ptr<SplitEditor> SE;
174
175  /// Cached per-block interference maps
176  InterferenceCache IntfCache;
177
178  /// All basic blocks where the current register has uses.
179  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
180
181  /// Global live range splitting candidate info.
182  struct GlobalSplitCandidate {
183    // Register intended for assignment, or 0.
184    unsigned PhysReg;
185
186    // SplitKit interval index for this candidate.
187    unsigned IntvIdx;
188
189    // Interference for PhysReg.
190    InterferenceCache::Cursor Intf;
191
192    // Bundles where this candidate should be live.
193    BitVector LiveBundles;
194    SmallVector<unsigned, 8> ActiveBlocks;
195
196    void reset(InterferenceCache &Cache, unsigned Reg) {
197      PhysReg = Reg;
198      IntvIdx = 0;
199      Intf.setPhysReg(Cache, Reg);
200      LiveBundles.clear();
201      ActiveBlocks.clear();
202    }
203
204    // Set B[i] = C for every live bundle where B[i] was NoCand.
205    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
206      unsigned Count = 0;
207      for (int i = LiveBundles.find_first(); i >= 0;
208           i = LiveBundles.find_next(i))
209        if (B[i] == NoCand) {
210          B[i] = C;
211          Count++;
212        }
213      return Count;
214    }
215  };
216
217  /// Candidate info for for each PhysReg in AllocationOrder.
218  /// This vector never shrinks, but grows to the size of the largest register
219  /// class.
220  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
221
222  enum { NoCand = ~0u };
223
224  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
225  /// NoCand which indicates the stack interval.
226  SmallVector<unsigned, 32> BundleCand;
227
228public:
229  RAGreedy();
230
231  /// Return the pass name.
232  virtual const char* getPassName() const {
233    return "Greedy Register Allocator";
234  }
235
236  /// RAGreedy analysis usage.
237  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
238  virtual void releaseMemory();
239  virtual Spiller &spiller() { return *SpillerInstance; }
240  virtual void enqueue(LiveInterval *LI);
241  virtual LiveInterval *dequeue();
242  virtual unsigned selectOrSplit(LiveInterval&,
243                                 SmallVectorImpl<LiveInterval*>&);
244
245  /// Perform register allocation.
246  virtual bool runOnMachineFunction(MachineFunction &mf);
247
248  static char ID;
249
250private:
251  bool LRE_CanEraseVirtReg(unsigned);
252  void LRE_WillShrinkVirtReg(unsigned);
253  void LRE_DidCloneVirtReg(unsigned, unsigned);
254
255  float calcSpillCost();
256  bool addSplitConstraints(InterferenceCache::Cursor, float&);
257  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
258  void growRegion(GlobalSplitCandidate &Cand);
259  float calcGlobalSplitCost(GlobalSplitCandidate&);
260  bool calcCompactRegion(GlobalSplitCandidate&);
261  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
262  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
263  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
264  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
265  void evictInterference(LiveInterval&, unsigned,
266                         SmallVectorImpl<LiveInterval*>&);
267
268  unsigned tryAssign(LiveInterval&, AllocationOrder&,
269                     SmallVectorImpl<LiveInterval*>&);
270  unsigned tryEvict(LiveInterval&, AllocationOrder&,
271                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
272  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
273                          SmallVectorImpl<LiveInterval*>&);
274  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
275                         SmallVectorImpl<LiveInterval*>&);
276  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
277    SmallVectorImpl<LiveInterval*>&);
278  unsigned trySplit(LiveInterval&, AllocationOrder&,
279                    SmallVectorImpl<LiveInterval*>&);
280};
281} // end anonymous namespace
282
283char RAGreedy::ID = 0;
284
285#ifndef NDEBUG
286const char *const RAGreedy::StageName[] = {
287    "RS_New",
288    "RS_Assign",
289    "RS_Split",
290    "RS_Split2",
291    "RS_Spill",
292    "RS_Done"
293};
294#endif
295
296// Hysteresis to use when comparing floats.
297// This helps stabilize decisions based on float comparisons.
298const float Hysteresis = 0.98f;
299
300
301FunctionPass* llvm::createGreedyRegisterAllocator() {
302  return new RAGreedy();
303}
304
305RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
306  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
307  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
308  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
309  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
310  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
311  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
312  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
313  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
314  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
315  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
316  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
317  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
318  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
319}
320
321void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
322  AU.setPreservesCFG();
323  AU.addRequired<AliasAnalysis>();
324  AU.addPreserved<AliasAnalysis>();
325  AU.addRequired<LiveIntervals>();
326  AU.addRequired<SlotIndexes>();
327  AU.addPreserved<SlotIndexes>();
328  AU.addRequired<LiveDebugVariables>();
329  AU.addPreserved<LiveDebugVariables>();
330  if (StrongPHIElim)
331    AU.addRequiredID(StrongPHIEliminationID);
332  AU.addRequiredTransitiveID(RegisterCoalescerPassID);
333  AU.addRequired<CalculateSpillWeights>();
334  AU.addRequired<LiveStacks>();
335  AU.addPreserved<LiveStacks>();
336  AU.addRequired<MachineDominatorTree>();
337  AU.addPreserved<MachineDominatorTree>();
338  AU.addRequired<MachineLoopInfo>();
339  AU.addPreserved<MachineLoopInfo>();
340  AU.addRequired<VirtRegMap>();
341  AU.addPreserved<VirtRegMap>();
342  AU.addRequired<EdgeBundles>();
343  AU.addRequired<SpillPlacement>();
344  MachineFunctionPass::getAnalysisUsage(AU);
345}
346
347
348//===----------------------------------------------------------------------===//
349//                     LiveRangeEdit delegate methods
350//===----------------------------------------------------------------------===//
351
352bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
353  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
354    unassign(LIS->getInterval(VirtReg), PhysReg);
355    return true;
356  }
357  // Unassigned virtreg is probably in the priority queue.
358  // RegAllocBase will erase it after dequeueing.
359  return false;
360}
361
362void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
363  unsigned PhysReg = VRM->getPhys(VirtReg);
364  if (!PhysReg)
365    return;
366
367  // Register is assigned, put it back on the queue for reassignment.
368  LiveInterval &LI = LIS->getInterval(VirtReg);
369  unassign(LI, PhysReg);
370  enqueue(&LI);
371}
372
373void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
374  // Cloning a register we haven't even heard about yet?  Just ignore it.
375  if (!ExtraRegInfo.inBounds(Old))
376    return;
377
378  // LRE may clone a virtual register because dead code elimination causes it to
379  // be split into connected components. The new components are much smaller
380  // than the original, so they should get a new chance at being assigned.
381  // same stage as the parent.
382  ExtraRegInfo[Old].Stage = RS_Assign;
383  ExtraRegInfo.grow(New);
384  ExtraRegInfo[New] = ExtraRegInfo[Old];
385}
386
387void RAGreedy::releaseMemory() {
388  SpillerInstance.reset(0);
389  ExtraRegInfo.clear();
390  GlobalCand.clear();
391  RegAllocBase::releaseMemory();
392}
393
394void RAGreedy::enqueue(LiveInterval *LI) {
395  // Prioritize live ranges by size, assigning larger ranges first.
396  // The queue holds (size, reg) pairs.
397  const unsigned Size = LI->getSize();
398  const unsigned Reg = LI->reg;
399  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
400         "Can only enqueue virtual registers");
401  unsigned Prio;
402
403  ExtraRegInfo.grow(Reg);
404  if (ExtraRegInfo[Reg].Stage == RS_New)
405    ExtraRegInfo[Reg].Stage = RS_Assign;
406
407  if (ExtraRegInfo[Reg].Stage == RS_Split) {
408    // Unsplit ranges that couldn't be allocated immediately are deferred until
409    // everything else has been allocated.
410    Prio = Size;
411  } else {
412    // Everything is allocated in long->short order. Long ranges that don't fit
413    // should be spilled (or split) ASAP so they don't create interference.
414    Prio = (1u << 31) + Size;
415
416    // Boost ranges that have a physical register hint.
417    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
418      Prio |= (1u << 30);
419  }
420
421  Queue.push(std::make_pair(Prio, Reg));
422}
423
424LiveInterval *RAGreedy::dequeue() {
425  if (Queue.empty())
426    return 0;
427  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
428  Queue.pop();
429  return LI;
430}
431
432
433//===----------------------------------------------------------------------===//
434//                            Direct Assignment
435//===----------------------------------------------------------------------===//
436
437/// tryAssign - Try to assign VirtReg to an available register.
438unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
439                             AllocationOrder &Order,
440                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
441  Order.rewind();
442  unsigned PhysReg;
443  while ((PhysReg = Order.next()))
444    if (!checkPhysRegInterference(VirtReg, PhysReg))
445      break;
446  if (!PhysReg || Order.isHint(PhysReg))
447    return PhysReg;
448
449  // PhysReg is available, but there may be a better choice.
450
451  // If we missed a simple hint, try to cheaply evict interference from the
452  // preferred register.
453  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
454    if (Order.isHint(Hint)) {
455      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
456      EvictionCost MaxCost(1);
457      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
458        evictInterference(VirtReg, Hint, NewVRegs);
459        return Hint;
460      }
461    }
462
463  // Try to evict interference from a cheaper alternative.
464  unsigned Cost = TRI->getCostPerUse(PhysReg);
465
466  // Most registers have 0 additional cost.
467  if (!Cost)
468    return PhysReg;
469
470  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
471               << '\n');
472  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
473  return CheapReg ? CheapReg : PhysReg;
474}
475
476
477//===----------------------------------------------------------------------===//
478//                         Interference eviction
479//===----------------------------------------------------------------------===//
480
481/// shouldEvict - determine if A should evict the assigned live range B. The
482/// eviction policy defined by this function together with the allocation order
483/// defined by enqueue() decides which registers ultimately end up being split
484/// and spilled.
485///
486/// Cascade numbers are used to prevent infinite loops if this function is a
487/// cyclic relation.
488///
489/// @param A          The live range to be assigned.
490/// @param IsHint     True when A is about to be assigned to its preferred
491///                   register.
492/// @param B          The live range to be evicted.
493/// @param BreaksHint True when B is already assigned to its preferred register.
494bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
495                           LiveInterval &B, bool BreaksHint) {
496  bool CanSplit = getStage(B) < RS_Spill;
497
498  // Be fairly aggressive about following hints as long as the evictee can be
499  // split.
500  if (CanSplit && IsHint && !BreaksHint)
501    return true;
502
503  return A.weight > B.weight;
504}
505
506/// canEvictInterference - Return true if all interferences between VirtReg and
507/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
508///
509/// @param VirtReg Live range that is about to be assigned.
510/// @param PhysReg Desired register for assignment.
511/// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
512/// @param MaxCost Only look for cheaper candidates and update with new cost
513///                when returning true.
514/// @returns True when interference can be evicted cheaper than MaxCost.
515bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
516                                    bool IsHint, EvictionCost &MaxCost) {
517  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
518  // involved in an eviction before. If a cascade number was assigned, deny
519  // evicting anything with the same or a newer cascade number. This prevents
520  // infinite eviction loops.
521  //
522  // This works out so a register without a cascade number is allowed to evict
523  // anything, and it can be evicted by anything.
524  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
525  if (!Cascade)
526    Cascade = NextCascade;
527
528  EvictionCost Cost;
529  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
530    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
531    // If there is 10 or more interferences, chances are one is heavier.
532    if (Q.collectInterferingVRegs(10) >= 10)
533      return false;
534
535    // Check if any interfering live range is heavier than MaxWeight.
536    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
537      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
538      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
539        return false;
540      // Never evict spill products. They cannot split or spill.
541      if (getStage(*Intf) == RS_Done)
542        return false;
543      // Once a live range becomes small enough, it is urgent that we find a
544      // register for it. This is indicated by an infinite spill weight. These
545      // urgent live ranges get to evict almost anything.
546      bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
547      // Only evict older cascades or live ranges without a cascade.
548      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
549      if (Cascade <= IntfCascade) {
550        if (!Urgent)
551          return false;
552        // We permit breaking cascades for urgent evictions. It should be the
553        // last resort, though, so make it really expensive.
554        Cost.BrokenHints += 10;
555      }
556      // Would this break a satisfied hint?
557      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
558      // Update eviction cost.
559      Cost.BrokenHints += BreaksHint;
560      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
561      // Abort if this would be too expensive.
562      if (!(Cost < MaxCost))
563        return false;
564      // Finally, apply the eviction policy for non-urgent evictions.
565      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
566        return false;
567    }
568  }
569  MaxCost = Cost;
570  return true;
571}
572
573/// evictInterference - Evict any interferring registers that prevent VirtReg
574/// from being assigned to Physreg. This assumes that canEvictInterference
575/// returned true.
576void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
577                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
578  // Make sure that VirtReg has a cascade number, and assign that cascade
579  // number to every evicted register. These live ranges than then only be
580  // evicted by a newer cascade, preventing infinite loops.
581  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
582  if (!Cascade)
583    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
584
585  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
586               << " interference: Cascade " << Cascade << '\n');
587  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
588    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
589    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
590    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
591      LiveInterval *Intf = Q.interferingVRegs()[i];
592      unassign(*Intf, VRM->getPhys(Intf->reg));
593      assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
594              VirtReg.isSpillable() < Intf->isSpillable()) &&
595             "Cannot decrease cascade number, illegal eviction");
596      ExtraRegInfo[Intf->reg].Cascade = Cascade;
597      ++NumEvicted;
598      NewVRegs.push_back(Intf);
599    }
600  }
601}
602
603/// tryEvict - Try to evict all interferences for a physreg.
604/// @param  VirtReg Currently unassigned virtual register.
605/// @param  Order   Physregs to try.
606/// @return         Physreg to assign VirtReg, or 0.
607unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
608                            AllocationOrder &Order,
609                            SmallVectorImpl<LiveInterval*> &NewVRegs,
610                            unsigned CostPerUseLimit) {
611  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
612
613  // Keep track of the cheapest interference seen so far.
614  EvictionCost BestCost(~0u);
615  unsigned BestPhys = 0;
616
617  // When we are just looking for a reduced cost per use, don't break any
618  // hints, and only evict smaller spill weights.
619  if (CostPerUseLimit < ~0u) {
620    BestCost.BrokenHints = 0;
621    BestCost.MaxWeight = VirtReg.weight;
622  }
623
624  Order.rewind();
625  while (unsigned PhysReg = Order.next()) {
626    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
627      continue;
628    // The first use of a callee-saved register in a function has cost 1.
629    // Don't start using a CSR when the CostPerUseLimit is low.
630    if (CostPerUseLimit == 1)
631     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
632       if (!MRI->isPhysRegUsed(CSR)) {
633         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
634                      << PrintReg(CSR, TRI) << '\n');
635         continue;
636       }
637
638    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
639      continue;
640
641    // Best so far.
642    BestPhys = PhysReg;
643
644    // Stop if the hint can be used.
645    if (Order.isHint(PhysReg))
646      break;
647  }
648
649  if (!BestPhys)
650    return 0;
651
652  evictInterference(VirtReg, BestPhys, NewVRegs);
653  return BestPhys;
654}
655
656
657//===----------------------------------------------------------------------===//
658//                              Region Splitting
659//===----------------------------------------------------------------------===//
660
661/// addSplitConstraints - Fill out the SplitConstraints vector based on the
662/// interference pattern in Physreg and its aliases. Add the constraints to
663/// SpillPlacement and return the static cost of this split in Cost, assuming
664/// that all preferences in SplitConstraints are met.
665/// Return false if there are no bundles with positive bias.
666bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
667                                   float &Cost) {
668  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
669
670  // Reset interference dependent info.
671  SplitConstraints.resize(UseBlocks.size());
672  float StaticCost = 0;
673  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
674    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
675    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
676
677    BC.Number = BI.MBB->getNumber();
678    Intf.moveToBlock(BC.Number);
679    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
680    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
681    BC.ChangesValue = BI.FirstDef;
682
683    if (!Intf.hasInterference())
684      continue;
685
686    // Number of spill code instructions to insert.
687    unsigned Ins = 0;
688
689    // Interference for the live-in value.
690    if (BI.LiveIn) {
691      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
692        BC.Entry = SpillPlacement::MustSpill, ++Ins;
693      else if (Intf.first() < BI.FirstInstr)
694        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
695      else if (Intf.first() < BI.LastInstr)
696        ++Ins;
697    }
698
699    // Interference for the live-out value.
700    if (BI.LiveOut) {
701      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
702        BC.Exit = SpillPlacement::MustSpill, ++Ins;
703      else if (Intf.last() > BI.LastInstr)
704        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
705      else if (Intf.last() > BI.FirstInstr)
706        ++Ins;
707    }
708
709    // Accumulate the total frequency of inserted spill code.
710    if (Ins)
711      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
712  }
713  Cost = StaticCost;
714
715  // Add constraints for use-blocks. Note that these are the only constraints
716  // that may add a positive bias, it is downhill from here.
717  SpillPlacer->addConstraints(SplitConstraints);
718  return SpillPlacer->scanActiveBundles();
719}
720
721
722/// addThroughConstraints - Add constraints and links to SpillPlacer from the
723/// live-through blocks in Blocks.
724void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
725                                     ArrayRef<unsigned> Blocks) {
726  const unsigned GroupSize = 8;
727  SpillPlacement::BlockConstraint BCS[GroupSize];
728  unsigned TBS[GroupSize];
729  unsigned B = 0, T = 0;
730
731  for (unsigned i = 0; i != Blocks.size(); ++i) {
732    unsigned Number = Blocks[i];
733    Intf.moveToBlock(Number);
734
735    if (!Intf.hasInterference()) {
736      assert(T < GroupSize && "Array overflow");
737      TBS[T] = Number;
738      if (++T == GroupSize) {
739        SpillPlacer->addLinks(makeArrayRef(TBS, T));
740        T = 0;
741      }
742      continue;
743    }
744
745    assert(B < GroupSize && "Array overflow");
746    BCS[B].Number = Number;
747
748    // Interference for the live-in value.
749    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
750      BCS[B].Entry = SpillPlacement::MustSpill;
751    else
752      BCS[B].Entry = SpillPlacement::PrefSpill;
753
754    // Interference for the live-out value.
755    if (Intf.last() >= SA->getLastSplitPoint(Number))
756      BCS[B].Exit = SpillPlacement::MustSpill;
757    else
758      BCS[B].Exit = SpillPlacement::PrefSpill;
759
760    if (++B == GroupSize) {
761      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
762      SpillPlacer->addConstraints(Array);
763      B = 0;
764    }
765  }
766
767  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
768  SpillPlacer->addConstraints(Array);
769  SpillPlacer->addLinks(makeArrayRef(TBS, T));
770}
771
772void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
773  // Keep track of through blocks that have not been added to SpillPlacer.
774  BitVector Todo = SA->getThroughBlocks();
775  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
776  unsigned AddedTo = 0;
777#ifndef NDEBUG
778  unsigned Visited = 0;
779#endif
780
781  for (;;) {
782    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
783    // Find new through blocks in the periphery of PrefRegBundles.
784    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
785      unsigned Bundle = NewBundles[i];
786      // Look at all blocks connected to Bundle in the full graph.
787      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
788      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
789           I != E; ++I) {
790        unsigned Block = *I;
791        if (!Todo.test(Block))
792          continue;
793        Todo.reset(Block);
794        // This is a new through block. Add it to SpillPlacer later.
795        ActiveBlocks.push_back(Block);
796#ifndef NDEBUG
797        ++Visited;
798#endif
799      }
800    }
801    // Any new blocks to add?
802    if (ActiveBlocks.size() == AddedTo)
803      break;
804
805    // Compute through constraints from the interference, or assume that all
806    // through blocks prefer spilling when forming compact regions.
807    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
808    if (Cand.PhysReg)
809      addThroughConstraints(Cand.Intf, NewBlocks);
810    else
811      // Provide a strong negative bias on through blocks to prevent unwanted
812      // liveness on loop backedges.
813      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
814    AddedTo = ActiveBlocks.size();
815
816    // Perhaps iterating can enable more bundles?
817    SpillPlacer->iterate();
818  }
819  DEBUG(dbgs() << ", v=" << Visited);
820}
821
822/// calcCompactRegion - Compute the set of edge bundles that should be live
823/// when splitting the current live range into compact regions.  Compact
824/// regions can be computed without looking at interference.  They are the
825/// regions formed by removing all the live-through blocks from the live range.
826///
827/// Returns false if the current live range is already compact, or if the
828/// compact regions would form single block regions anyway.
829bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
830  // Without any through blocks, the live range is already compact.
831  if (!SA->getNumThroughBlocks())
832    return false;
833
834  // Compact regions don't correspond to any physreg.
835  Cand.reset(IntfCache, 0);
836
837  DEBUG(dbgs() << "Compact region bundles");
838
839  // Use the spill placer to determine the live bundles. GrowRegion pretends
840  // that all the through blocks have interference when PhysReg is unset.
841  SpillPlacer->prepare(Cand.LiveBundles);
842
843  // The static split cost will be zero since Cand.Intf reports no interference.
844  float Cost;
845  if (!addSplitConstraints(Cand.Intf, Cost)) {
846    DEBUG(dbgs() << ", none.\n");
847    return false;
848  }
849
850  growRegion(Cand);
851  SpillPlacer->finish();
852
853  if (!Cand.LiveBundles.any()) {
854    DEBUG(dbgs() << ", none.\n");
855    return false;
856  }
857
858  DEBUG({
859    for (int i = Cand.LiveBundles.find_first(); i>=0;
860         i = Cand.LiveBundles.find_next(i))
861    dbgs() << " EB#" << i;
862    dbgs() << ".\n";
863  });
864  return true;
865}
866
867/// calcSpillCost - Compute how expensive it would be to split the live range in
868/// SA around all use blocks instead of forming bundle regions.
869float RAGreedy::calcSpillCost() {
870  float Cost = 0;
871  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
872  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
873    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
874    unsigned Number = BI.MBB->getNumber();
875    // We normally only need one spill instruction - a load or a store.
876    Cost += SpillPlacer->getBlockFrequency(Number);
877
878    // Unless the value is redefined in the block.
879    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
880      Cost += SpillPlacer->getBlockFrequency(Number);
881  }
882  return Cost;
883}
884
885/// calcGlobalSplitCost - Return the global split cost of following the split
886/// pattern in LiveBundles. This cost should be added to the local cost of the
887/// interference pattern in SplitConstraints.
888///
889float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
890  float GlobalCost = 0;
891  const BitVector &LiveBundles = Cand.LiveBundles;
892  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
893  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
894    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
895    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
896    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
897    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
898    unsigned Ins = 0;
899
900    if (BI.LiveIn)
901      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
902    if (BI.LiveOut)
903      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
904    if (Ins)
905      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
906  }
907
908  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
909    unsigned Number = Cand.ActiveBlocks[i];
910    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
911    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
912    if (!RegIn && !RegOut)
913      continue;
914    if (RegIn && RegOut) {
915      // We need double spill code if this block has interference.
916      Cand.Intf.moveToBlock(Number);
917      if (Cand.Intf.hasInterference())
918        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
919      continue;
920    }
921    // live-in / stack-out or stack-in live-out.
922    GlobalCost += SpillPlacer->getBlockFrequency(Number);
923  }
924  return GlobalCost;
925}
926
927/// splitAroundRegion - Split the current live range around the regions
928/// determined by BundleCand and GlobalCand.
929///
930/// Before calling this function, GlobalCand and BundleCand must be initialized
931/// so each bundle is assigned to a valid candidate, or NoCand for the
932/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
933/// objects must be initialized for the current live range, and intervals
934/// created for the used candidates.
935///
936/// @param LREdit    The LiveRangeEdit object handling the current split.
937/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
938///                  must appear in this list.
939void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
940                                 ArrayRef<unsigned> UsedCands) {
941  // These are the intervals created for new global ranges. We may create more
942  // intervals for local ranges.
943  const unsigned NumGlobalIntvs = LREdit.size();
944  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
945  assert(NumGlobalIntvs && "No global intervals configured");
946
947  // Isolate even single instructions when dealing with a proper sub-class.
948  // That guarantees register class inflation for the stack interval because it
949  // is all copies.
950  unsigned Reg = SA->getParent().reg;
951  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
952
953  // First handle all the blocks with uses.
954  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
955  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
956    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
957    unsigned Number = BI.MBB->getNumber();
958    unsigned IntvIn = 0, IntvOut = 0;
959    SlotIndex IntfIn, IntfOut;
960    if (BI.LiveIn) {
961      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
962      if (CandIn != NoCand) {
963        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
964        IntvIn = Cand.IntvIdx;
965        Cand.Intf.moveToBlock(Number);
966        IntfIn = Cand.Intf.first();
967      }
968    }
969    if (BI.LiveOut) {
970      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
971      if (CandOut != NoCand) {
972        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
973        IntvOut = Cand.IntvIdx;
974        Cand.Intf.moveToBlock(Number);
975        IntfOut = Cand.Intf.last();
976      }
977    }
978
979    // Create separate intervals for isolated blocks with multiple uses.
980    if (!IntvIn && !IntvOut) {
981      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
982      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
983        SE->splitSingleBlock(BI);
984      continue;
985    }
986
987    if (IntvIn && IntvOut)
988      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
989    else if (IntvIn)
990      SE->splitRegInBlock(BI, IntvIn, IntfIn);
991    else
992      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
993  }
994
995  // Handle live-through blocks. The relevant live-through blocks are stored in
996  // the ActiveBlocks list with each candidate. We need to filter out
997  // duplicates.
998  BitVector Todo = SA->getThroughBlocks();
999  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1000    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1001    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1002      unsigned Number = Blocks[i];
1003      if (!Todo.test(Number))
1004        continue;
1005      Todo.reset(Number);
1006
1007      unsigned IntvIn = 0, IntvOut = 0;
1008      SlotIndex IntfIn, IntfOut;
1009
1010      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1011      if (CandIn != NoCand) {
1012        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1013        IntvIn = Cand.IntvIdx;
1014        Cand.Intf.moveToBlock(Number);
1015        IntfIn = Cand.Intf.first();
1016      }
1017
1018      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1019      if (CandOut != NoCand) {
1020        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1021        IntvOut = Cand.IntvIdx;
1022        Cand.Intf.moveToBlock(Number);
1023        IntfOut = Cand.Intf.last();
1024      }
1025      if (!IntvIn && !IntvOut)
1026        continue;
1027      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1028    }
1029  }
1030
1031  ++NumGlobalSplits;
1032
1033  SmallVector<unsigned, 8> IntvMap;
1034  SE->finish(&IntvMap);
1035  DebugVars->splitRegister(Reg, LREdit.regs());
1036
1037  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1038  unsigned OrigBlocks = SA->getNumLiveBlocks();
1039
1040  // Sort out the new intervals created by splitting. We get four kinds:
1041  // - Remainder intervals should not be split again.
1042  // - Candidate intervals can be assigned to Cand.PhysReg.
1043  // - Block-local splits are candidates for local splitting.
1044  // - DCE leftovers should go back on the queue.
1045  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1046    LiveInterval &Reg = *LREdit.get(i);
1047
1048    // Ignore old intervals from DCE.
1049    if (getStage(Reg) != RS_New)
1050      continue;
1051
1052    // Remainder interval. Don't try splitting again, spill if it doesn't
1053    // allocate.
1054    if (IntvMap[i] == 0) {
1055      setStage(Reg, RS_Spill);
1056      continue;
1057    }
1058
1059    // Global intervals. Allow repeated splitting as long as the number of live
1060    // blocks is strictly decreasing.
1061    if (IntvMap[i] < NumGlobalIntvs) {
1062      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1063        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1064                     << " blocks as original.\n");
1065        // Don't allow repeated splitting as a safe guard against looping.
1066        setStage(Reg, RS_Split2);
1067      }
1068      continue;
1069    }
1070
1071    // Other intervals are treated as new. This includes local intervals created
1072    // for blocks with multiple uses, and anything created by DCE.
1073  }
1074
1075  if (VerifyEnabled)
1076    MF->verify(this, "After splitting live range around region");
1077}
1078
1079unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1080                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1081  unsigned NumCands = 0;
1082  unsigned BestCand = NoCand;
1083  float BestCost;
1084  SmallVector<unsigned, 8> UsedCands;
1085
1086  // Check if we can split this live range around a compact region.
1087  bool HasCompact = calcCompactRegion(GlobalCand.front());
1088  if (HasCompact) {
1089    // Yes, keep GlobalCand[0] as the compact region candidate.
1090    NumCands = 1;
1091    BestCost = HUGE_VALF;
1092  } else {
1093    // No benefit from the compact region, our fallback will be per-block
1094    // splitting. Make sure we find a solution that is cheaper than spilling.
1095    BestCost = Hysteresis * calcSpillCost();
1096    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1097  }
1098
1099  Order.rewind();
1100  while (unsigned PhysReg = Order.next()) {
1101    // Discard bad candidates before we run out of interference cache cursors.
1102    // This will only affect register classes with a lot of registers (>32).
1103    if (NumCands == IntfCache.getMaxCursors()) {
1104      unsigned WorstCount = ~0u;
1105      unsigned Worst = 0;
1106      for (unsigned i = 0; i != NumCands; ++i) {
1107        if (i == BestCand || !GlobalCand[i].PhysReg)
1108          continue;
1109        unsigned Count = GlobalCand[i].LiveBundles.count();
1110        if (Count < WorstCount)
1111          Worst = i, WorstCount = Count;
1112      }
1113      --NumCands;
1114      GlobalCand[Worst] = GlobalCand[NumCands];
1115      if (BestCand == NumCands)
1116        BestCand = Worst;
1117    }
1118
1119    if (GlobalCand.size() <= NumCands)
1120      GlobalCand.resize(NumCands+1);
1121    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1122    Cand.reset(IntfCache, PhysReg);
1123
1124    SpillPlacer->prepare(Cand.LiveBundles);
1125    float Cost;
1126    if (!addSplitConstraints(Cand.Intf, Cost)) {
1127      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1128      continue;
1129    }
1130    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1131    if (Cost >= BestCost) {
1132      DEBUG({
1133        if (BestCand == NoCand)
1134          dbgs() << " worse than no bundles\n";
1135        else
1136          dbgs() << " worse than "
1137                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1138      });
1139      continue;
1140    }
1141    growRegion(Cand);
1142
1143    SpillPlacer->finish();
1144
1145    // No live bundles, defer to splitSingleBlocks().
1146    if (!Cand.LiveBundles.any()) {
1147      DEBUG(dbgs() << " no bundles.\n");
1148      continue;
1149    }
1150
1151    Cost += calcGlobalSplitCost(Cand);
1152    DEBUG({
1153      dbgs() << ", total = " << Cost << " with bundles";
1154      for (int i = Cand.LiveBundles.find_first(); i>=0;
1155           i = Cand.LiveBundles.find_next(i))
1156        dbgs() << " EB#" << i;
1157      dbgs() << ".\n";
1158    });
1159    if (Cost < BestCost) {
1160      BestCand = NumCands;
1161      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1162    }
1163    ++NumCands;
1164  }
1165
1166  // No solutions found, fall back to single block splitting.
1167  if (!HasCompact && BestCand == NoCand)
1168    return 0;
1169
1170  // Prepare split editor.
1171  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1172  SE->reset(LREdit, SplitSpillMode);
1173
1174  // Assign all edge bundles to the preferred candidate, or NoCand.
1175  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1176
1177  // Assign bundles for the best candidate region.
1178  if (BestCand != NoCand) {
1179    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1180    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1181      UsedCands.push_back(BestCand);
1182      Cand.IntvIdx = SE->openIntv();
1183      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1184                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1185      (void)B;
1186    }
1187  }
1188
1189  // Assign bundles for the compact region.
1190  if (HasCompact) {
1191    GlobalSplitCandidate &Cand = GlobalCand.front();
1192    assert(!Cand.PhysReg && "Compact region has no physreg");
1193    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1194      UsedCands.push_back(0);
1195      Cand.IntvIdx = SE->openIntv();
1196      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1197                   << Cand.IntvIdx << ".\n");
1198      (void)B;
1199    }
1200  }
1201
1202  splitAroundRegion(LREdit, UsedCands);
1203  return 0;
1204}
1205
1206
1207//===----------------------------------------------------------------------===//
1208//                            Per-Block Splitting
1209//===----------------------------------------------------------------------===//
1210
1211/// tryBlockSplit - Split a global live range around every block with uses. This
1212/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1213/// they don't allocate.
1214unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1215                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1216  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1217  unsigned Reg = VirtReg.reg;
1218  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1219  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1220  SE->reset(LREdit, SplitSpillMode);
1221  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1222  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1223    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1224    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1225      SE->splitSingleBlock(BI);
1226  }
1227  // No blocks were split.
1228  if (LREdit.empty())
1229    return 0;
1230
1231  // We did split for some blocks.
1232  SmallVector<unsigned, 8> IntvMap;
1233  SE->finish(&IntvMap);
1234
1235  // Tell LiveDebugVariables about the new ranges.
1236  DebugVars->splitRegister(Reg, LREdit.regs());
1237
1238  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1239
1240  // Sort out the new intervals created by splitting. The remainder interval
1241  // goes straight to spilling, the new local ranges get to stay RS_New.
1242  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1243    LiveInterval &LI = *LREdit.get(i);
1244    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1245      setStage(LI, RS_Spill);
1246  }
1247
1248  if (VerifyEnabled)
1249    MF->verify(this, "After splitting live range around basic blocks");
1250  return 0;
1251}
1252
1253//===----------------------------------------------------------------------===//
1254//                             Local Splitting
1255//===----------------------------------------------------------------------===//
1256
1257
1258/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1259/// in order to use PhysReg between two entries in SA->UseSlots.
1260///
1261/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1262///
1263void RAGreedy::calcGapWeights(unsigned PhysReg,
1264                              SmallVectorImpl<float> &GapWeight) {
1265  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1266  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1267  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1268  const unsigned NumGaps = Uses.size()-1;
1269
1270  // Start and end points for the interference check.
1271  SlotIndex StartIdx =
1272    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1273  SlotIndex StopIdx =
1274    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1275
1276  GapWeight.assign(NumGaps, 0.0f);
1277
1278  // Add interference from each overlapping register.
1279  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1280    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1281           .checkInterference())
1282      continue;
1283
1284    // We know that VirtReg is a continuous interval from FirstInstr to
1285    // LastInstr, so we don't need InterferenceQuery.
1286    //
1287    // Interference that overlaps an instruction is counted in both gaps
1288    // surrounding the instruction. The exception is interference before
1289    // StartIdx and after StopIdx.
1290    //
1291    LiveIntervalUnion::SegmentIter IntI = getLiveUnion(*AI).find(StartIdx);
1292    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1293      // Skip the gaps before IntI.
1294      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1295        if (++Gap == NumGaps)
1296          break;
1297      if (Gap == NumGaps)
1298        break;
1299
1300      // Update the gaps covered by IntI.
1301      const float weight = IntI.value()->weight;
1302      for (; Gap != NumGaps; ++Gap) {
1303        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1304        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1305          break;
1306      }
1307      if (Gap == NumGaps)
1308        break;
1309    }
1310  }
1311}
1312
1313/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1314/// basic block.
1315///
1316unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1317                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1318  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1319  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1320
1321  // Note that it is possible to have an interval that is live-in or live-out
1322  // while only covering a single block - A phi-def can use undef values from
1323  // predecessors, and the block could be a single-block loop.
1324  // We don't bother doing anything clever about such a case, we simply assume
1325  // that the interval is continuous from FirstInstr to LastInstr. We should
1326  // make sure that we don't do anything illegal to such an interval, though.
1327
1328  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1329  if (Uses.size() <= 2)
1330    return 0;
1331  const unsigned NumGaps = Uses.size()-1;
1332
1333  DEBUG({
1334    dbgs() << "tryLocalSplit: ";
1335    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1336      dbgs() << ' ' << SA->UseSlots[i];
1337    dbgs() << '\n';
1338  });
1339
1340  // Since we allow local split results to be split again, there is a risk of
1341  // creating infinite loops. It is tempting to require that the new live
1342  // ranges have less instructions than the original. That would guarantee
1343  // convergence, but it is too strict. A live range with 3 instructions can be
1344  // split 2+3 (including the COPY), and we want to allow that.
1345  //
1346  // Instead we use these rules:
1347  //
1348  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1349  //    noop split, of course).
1350  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1351  //    the new ranges must have fewer instructions than before the split.
1352  // 3. New ranges with the same number of instructions are marked RS_Split2,
1353  //    smaller ranges are marked RS_New.
1354  //
1355  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1356  // excessive splitting and infinite loops.
1357  //
1358  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1359
1360  // Best split candidate.
1361  unsigned BestBefore = NumGaps;
1362  unsigned BestAfter = 0;
1363  float BestDiff = 0;
1364
1365  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1366  SmallVector<float, 8> GapWeight;
1367
1368  Order.rewind();
1369  while (unsigned PhysReg = Order.next()) {
1370    // Keep track of the largest spill weight that would need to be evicted in
1371    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1372    calcGapWeights(PhysReg, GapWeight);
1373
1374    // Try to find the best sequence of gaps to close.
1375    // The new spill weight must be larger than any gap interference.
1376
1377    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1378    unsigned SplitBefore = 0, SplitAfter = 1;
1379
1380    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1381    // It is the spill weight that needs to be evicted.
1382    float MaxGap = GapWeight[0];
1383
1384    for (;;) {
1385      // Live before/after split?
1386      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1387      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1388
1389      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1390                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1391                   << " i=" << MaxGap);
1392
1393      // Stop before the interval gets so big we wouldn't be making progress.
1394      if (!LiveBefore && !LiveAfter) {
1395        DEBUG(dbgs() << " all\n");
1396        break;
1397      }
1398      // Should the interval be extended or shrunk?
1399      bool Shrink = true;
1400
1401      // How many gaps would the new range have?
1402      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1403
1404      // Legally, without causing looping?
1405      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1406
1407      if (Legal && MaxGap < HUGE_VALF) {
1408        // Estimate the new spill weight. Each instruction reads or writes the
1409        // register. Conservatively assume there are no read-modify-write
1410        // instructions.
1411        //
1412        // Try to guess the size of the new interval.
1413        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1414                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1415                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1416        // Would this split be possible to allocate?
1417        // Never allocate all gaps, we wouldn't be making progress.
1418        DEBUG(dbgs() << " w=" << EstWeight);
1419        if (EstWeight * Hysteresis >= MaxGap) {
1420          Shrink = false;
1421          float Diff = EstWeight - MaxGap;
1422          if (Diff > BestDiff) {
1423            DEBUG(dbgs() << " (best)");
1424            BestDiff = Hysteresis * Diff;
1425            BestBefore = SplitBefore;
1426            BestAfter = SplitAfter;
1427          }
1428        }
1429      }
1430
1431      // Try to shrink.
1432      if (Shrink) {
1433        if (++SplitBefore < SplitAfter) {
1434          DEBUG(dbgs() << " shrink\n");
1435          // Recompute the max when necessary.
1436          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1437            MaxGap = GapWeight[SplitBefore];
1438            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1439              MaxGap = std::max(MaxGap, GapWeight[i]);
1440          }
1441          continue;
1442        }
1443        MaxGap = 0;
1444      }
1445
1446      // Try to extend the interval.
1447      if (SplitAfter >= NumGaps) {
1448        DEBUG(dbgs() << " end\n");
1449        break;
1450      }
1451
1452      DEBUG(dbgs() << " extend\n");
1453      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1454    }
1455  }
1456
1457  // Didn't find any candidates?
1458  if (BestBefore == NumGaps)
1459    return 0;
1460
1461  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1462               << '-' << Uses[BestAfter] << ", " << BestDiff
1463               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1464
1465  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1466  SE->reset(LREdit);
1467
1468  SE->openIntv();
1469  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1470  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1471  SE->useIntv(SegStart, SegStop);
1472  SmallVector<unsigned, 8> IntvMap;
1473  SE->finish(&IntvMap);
1474  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1475
1476  // If the new range has the same number of instructions as before, mark it as
1477  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1478  // leave the new intervals as RS_New so they can compete.
1479  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1480  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1481  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1482  if (NewGaps >= NumGaps) {
1483    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1484    assert(!ProgressRequired && "Didn't make progress when it was required.");
1485    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1486      if (IntvMap[i] == 1) {
1487        setStage(*LREdit.get(i), RS_Split2);
1488        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1489      }
1490    DEBUG(dbgs() << '\n');
1491  }
1492  ++NumLocalSplits;
1493
1494  return 0;
1495}
1496
1497//===----------------------------------------------------------------------===//
1498//                          Live Range Splitting
1499//===----------------------------------------------------------------------===//
1500
1501/// trySplit - Try to split VirtReg or one of its interferences, making it
1502/// assignable.
1503/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1504unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1505                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1506  // Ranges must be Split2 or less.
1507  if (getStage(VirtReg) >= RS_Spill)
1508    return 0;
1509
1510  // Local intervals are handled separately.
1511  if (LIS->intervalIsInOneMBB(VirtReg)) {
1512    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1513    SA->analyze(&VirtReg);
1514    return tryLocalSplit(VirtReg, Order, NewVRegs);
1515  }
1516
1517  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1518
1519  SA->analyze(&VirtReg);
1520
1521  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1522  // coalescer. That may cause the range to become allocatable which means that
1523  // tryRegionSplit won't be making progress. This check should be replaced with
1524  // an assertion when the coalescer is fixed.
1525  if (SA->didRepairRange()) {
1526    // VirtReg has changed, so all cached queries are invalid.
1527    invalidateVirtRegs();
1528    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1529      return PhysReg;
1530  }
1531
1532  // First try to split around a region spanning multiple blocks. RS_Split2
1533  // ranges already made dubious progress with region splitting, so they go
1534  // straight to single block splitting.
1535  if (getStage(VirtReg) < RS_Split2) {
1536    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1537    if (PhysReg || !NewVRegs.empty())
1538      return PhysReg;
1539  }
1540
1541  // Then isolate blocks.
1542  return tryBlockSplit(VirtReg, Order, NewVRegs);
1543}
1544
1545
1546//===----------------------------------------------------------------------===//
1547//                            Main Entry Point
1548//===----------------------------------------------------------------------===//
1549
1550unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1551                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1552  // First try assigning a free register.
1553  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1554  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1555    return PhysReg;
1556
1557  LiveRangeStage Stage = getStage(VirtReg);
1558  DEBUG(dbgs() << StageName[Stage]
1559               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1560
1561  // Try to evict a less worthy live range, but only for ranges from the primary
1562  // queue. The RS_Split ranges already failed to do this, and they should not
1563  // get a second chance until they have been split.
1564  if (Stage != RS_Split)
1565    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1566      return PhysReg;
1567
1568  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1569
1570  // The first time we see a live range, don't try to split or spill.
1571  // Wait until the second time, when all smaller ranges have been allocated.
1572  // This gives a better picture of the interference to split around.
1573  if (Stage < RS_Split) {
1574    setStage(VirtReg, RS_Split);
1575    DEBUG(dbgs() << "wait for second round\n");
1576    NewVRegs.push_back(&VirtReg);
1577    return 0;
1578  }
1579
1580  // If we couldn't allocate a register from spilling, there is probably some
1581  // invalid inline assembly. The base class wil report it.
1582  if (Stage >= RS_Done || !VirtReg.isSpillable())
1583    return ~0u;
1584
1585  // Try splitting VirtReg or interferences.
1586  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1587  if (PhysReg || !NewVRegs.empty())
1588    return PhysReg;
1589
1590  // Finally spill VirtReg itself.
1591  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1592  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1593  spiller().spill(LRE);
1594  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1595
1596  if (VerifyEnabled)
1597    MF->verify(this, "After spilling");
1598
1599  // The live virtual register requesting allocation was spilled, so tell
1600  // the caller not to allocate anything during this round.
1601  return 0;
1602}
1603
1604bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1605  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1606               << "********** Function: "
1607               << ((Value*)mf.getFunction())->getName() << '\n');
1608
1609  MF = &mf;
1610  if (VerifyEnabled)
1611    MF->verify(this, "Before greedy register allocator");
1612
1613  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1614  Indexes = &getAnalysis<SlotIndexes>();
1615  DomTree = &getAnalysis<MachineDominatorTree>();
1616  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1617  Loops = &getAnalysis<MachineLoopInfo>();
1618  Bundles = &getAnalysis<EdgeBundles>();
1619  SpillPlacer = &getAnalysis<SpillPlacement>();
1620  DebugVars = &getAnalysis<LiveDebugVariables>();
1621
1622  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1623  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1624  ExtraRegInfo.clear();
1625  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1626  NextCascade = 1;
1627  IntfCache.init(MF, &getLiveUnion(0), Indexes, TRI);
1628  GlobalCand.resize(32);  // This will grow as needed.
1629
1630  allocatePhysRegs();
1631  addMBBLiveIns(MF);
1632  LIS->addKillFlags();
1633
1634  // Run rewriter
1635  {
1636    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1637    VRM->rewrite(Indexes);
1638  }
1639
1640  // Write out new DBG_VALUE instructions.
1641  {
1642    NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled);
1643    DebugVars->emitDebugValues(VRM);
1644  }
1645
1646  // The pass output is in VirtRegMap. Release all the transient data.
1647  releaseMemory();
1648
1649  return true;
1650}
1651