RegAllocGreedy.cpp revision 95a9d937728ca9cf2bf44f86ff1184df318b3bd7
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "RegAllocBase.h"
20#include "Spiller.h"
21#include "SpillPlacement.h"
22#include "SplitKit.h"
23#include "VirtRegMap.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Function.h"
27#include "llvm/PassAnalysisSupport.h"
28#include "llvm/CodeGen/CalcSpillWeights.h"
29#include "llvm/CodeGen/EdgeBundles.h"
30#include "llvm/CodeGen/LiveIntervalAnalysis.h"
31#include "llvm/CodeGen/LiveRangeEdit.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineLoopInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/CodeGen/RegAllocRegistry.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/Timer.h"
45
46#include <queue>
47
48using namespace llvm;
49
50STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51STATISTIC(NumLocalSplits,  "Number of split local live ranges");
52STATISTIC(NumEvicted,      "Number of interferences evicted");
53
54static cl::opt<SplitEditor::ComplementSpillMode>
55SplitSpillMode("split-spill-mode", cl::Hidden,
56  cl::desc("Spill mode for splitting live ranges"),
57  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
58             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
59             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
60             clEnumValEnd),
61  cl::init(SplitEditor::SM_Partition));
62
63static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
64                                       createGreedyRegisterAllocator);
65
66namespace {
67class RAGreedy : public MachineFunctionPass,
68                 public RegAllocBase,
69                 private LiveRangeEdit::Delegate {
70
71  // context
72  MachineFunction *MF;
73
74  // analyses
75  SlotIndexes *Indexes;
76  MachineDominatorTree *DomTree;
77  MachineLoopInfo *Loops;
78  EdgeBundles *Bundles;
79  SpillPlacement *SpillPlacer;
80  LiveDebugVariables *DebugVars;
81
82  // state
83  std::auto_ptr<Spiller> SpillerInstance;
84  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
85  unsigned NextCascade;
86
87  // Live ranges pass through a number of stages as we try to allocate them.
88  // Some of the stages may also create new live ranges:
89  //
90  // - Region splitting.
91  // - Per-block splitting.
92  // - Local splitting.
93  // - Spilling.
94  //
95  // Ranges produced by one of the stages skip the previous stages when they are
96  // dequeued. This improves performance because we can skip interference checks
97  // that are unlikely to give any results. It also guarantees that the live
98  // range splitting algorithm terminates, something that is otherwise hard to
99  // ensure.
100  enum LiveRangeStage {
101    /// Newly created live range that has never been queued.
102    RS_New,
103
104    /// Only attempt assignment and eviction. Then requeue as RS_Split.
105    RS_Assign,
106
107    /// Attempt live range splitting if assignment is impossible.
108    RS_Split,
109
110    /// Attempt more aggressive live range splitting that is guaranteed to make
111    /// progress.  This is used for split products that may not be making
112    /// progress.
113    RS_Split2,
114
115    /// Live range will be spilled.  No more splitting will be attempted.
116    RS_Spill,
117
118    /// There is nothing more we can do to this live range.  Abort compilation
119    /// if it can't be assigned.
120    RS_Done
121  };
122
123  static const char *const StageName[];
124
125  // RegInfo - Keep additional information about each live range.
126  struct RegInfo {
127    LiveRangeStage Stage;
128
129    // Cascade - Eviction loop prevention. See canEvictInterference().
130    unsigned Cascade;
131
132    RegInfo() : Stage(RS_New), Cascade(0) {}
133  };
134
135  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
136
137  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
138    return ExtraRegInfo[VirtReg.reg].Stage;
139  }
140
141  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
142    ExtraRegInfo.resize(MRI->getNumVirtRegs());
143    ExtraRegInfo[VirtReg.reg].Stage = Stage;
144  }
145
146  template<typename Iterator>
147  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
148    ExtraRegInfo.resize(MRI->getNumVirtRegs());
149    for (;Begin != End; ++Begin) {
150      unsigned Reg = (*Begin)->reg;
151      if (ExtraRegInfo[Reg].Stage == RS_New)
152        ExtraRegInfo[Reg].Stage = NewStage;
153    }
154  }
155
156  /// Cost of evicting interference.
157  struct EvictionCost {
158    unsigned BrokenHints; ///< Total number of broken hints.
159    float MaxWeight;      ///< Maximum spill weight evicted.
160
161    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
162
163    bool operator<(const EvictionCost &O) const {
164      if (BrokenHints != O.BrokenHints)
165        return BrokenHints < O.BrokenHints;
166      return MaxWeight < O.MaxWeight;
167    }
168  };
169
170  // Register mask interference. The current VirtReg is checked for register
171  // mask interference on entry to selectOrSplit().  If there is no
172  // interference, UsableRegs is left empty.  If there is interference,
173  // UsableRegs has a bit mask of registers that can be used without register
174  // mask interference.
175  BitVector UsableRegs;
176
177  /// clobberedByRegMask - Returns true if PhysReg is not directly usable
178  /// because of register mask clobbers.
179  bool clobberedByRegMask(unsigned PhysReg) const {
180    return !UsableRegs.empty() && !UsableRegs.test(PhysReg);
181  }
182
183  // splitting state.
184  std::auto_ptr<SplitAnalysis> SA;
185  std::auto_ptr<SplitEditor> SE;
186
187  /// Cached per-block interference maps
188  InterferenceCache IntfCache;
189
190  /// All basic blocks where the current register has uses.
191  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
192
193  /// Global live range splitting candidate info.
194  struct GlobalSplitCandidate {
195    // Register intended for assignment, or 0.
196    unsigned PhysReg;
197
198    // SplitKit interval index for this candidate.
199    unsigned IntvIdx;
200
201    // Interference for PhysReg.
202    InterferenceCache::Cursor Intf;
203
204    // Bundles where this candidate should be live.
205    BitVector LiveBundles;
206    SmallVector<unsigned, 8> ActiveBlocks;
207
208    void reset(InterferenceCache &Cache, unsigned Reg) {
209      PhysReg = Reg;
210      IntvIdx = 0;
211      Intf.setPhysReg(Cache, Reg);
212      LiveBundles.clear();
213      ActiveBlocks.clear();
214    }
215
216    // Set B[i] = C for every live bundle where B[i] was NoCand.
217    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
218      unsigned Count = 0;
219      for (int i = LiveBundles.find_first(); i >= 0;
220           i = LiveBundles.find_next(i))
221        if (B[i] == NoCand) {
222          B[i] = C;
223          Count++;
224        }
225      return Count;
226    }
227  };
228
229  /// Candidate info for for each PhysReg in AllocationOrder.
230  /// This vector never shrinks, but grows to the size of the largest register
231  /// class.
232  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
233
234  enum { NoCand = ~0u };
235
236  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
237  /// NoCand which indicates the stack interval.
238  SmallVector<unsigned, 32> BundleCand;
239
240public:
241  RAGreedy();
242
243  /// Return the pass name.
244  virtual const char* getPassName() const {
245    return "Greedy Register Allocator";
246  }
247
248  /// RAGreedy analysis usage.
249  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
250  virtual void releaseMemory();
251  virtual Spiller &spiller() { return *SpillerInstance; }
252  virtual void enqueue(LiveInterval *LI);
253  virtual LiveInterval *dequeue();
254  virtual unsigned selectOrSplit(LiveInterval&,
255                                 SmallVectorImpl<LiveInterval*>&);
256
257  /// Perform register allocation.
258  virtual bool runOnMachineFunction(MachineFunction &mf);
259
260  static char ID;
261
262private:
263  bool LRE_CanEraseVirtReg(unsigned);
264  void LRE_WillShrinkVirtReg(unsigned);
265  void LRE_DidCloneVirtReg(unsigned, unsigned);
266
267  float calcSpillCost();
268  bool addSplitConstraints(InterferenceCache::Cursor, float&);
269  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
270  void growRegion(GlobalSplitCandidate &Cand);
271  float calcGlobalSplitCost(GlobalSplitCandidate&);
272  bool calcCompactRegion(GlobalSplitCandidate&);
273  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
274  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
275  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
276  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
277  void evictInterference(LiveInterval&, unsigned,
278                         SmallVectorImpl<LiveInterval*>&);
279
280  unsigned tryAssign(LiveInterval&, AllocationOrder&,
281                     SmallVectorImpl<LiveInterval*>&);
282  unsigned tryEvict(LiveInterval&, AllocationOrder&,
283                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
284  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
285                          SmallVectorImpl<LiveInterval*>&);
286  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
287                         SmallVectorImpl<LiveInterval*>&);
288  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
289                               SmallVectorImpl<LiveInterval*>&);
290  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
291    SmallVectorImpl<LiveInterval*>&);
292  unsigned trySplit(LiveInterval&, AllocationOrder&,
293                    SmallVectorImpl<LiveInterval*>&);
294};
295} // end anonymous namespace
296
297char RAGreedy::ID = 0;
298
299#ifndef NDEBUG
300const char *const RAGreedy::StageName[] = {
301    "RS_New",
302    "RS_Assign",
303    "RS_Split",
304    "RS_Split2",
305    "RS_Spill",
306    "RS_Done"
307};
308#endif
309
310// Hysteresis to use when comparing floats.
311// This helps stabilize decisions based on float comparisons.
312const float Hysteresis = 0.98f;
313
314
315FunctionPass* llvm::createGreedyRegisterAllocator() {
316  return new RAGreedy();
317}
318
319RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
320  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
321  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
322  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
323  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
324  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
325  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
326  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
327  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
328  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
329  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
330  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
331  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
332  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
333}
334
335void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
336  AU.setPreservesCFG();
337  AU.addRequired<AliasAnalysis>();
338  AU.addPreserved<AliasAnalysis>();
339  AU.addRequired<LiveIntervals>();
340  AU.addRequired<SlotIndexes>();
341  AU.addPreserved<SlotIndexes>();
342  AU.addRequired<LiveDebugVariables>();
343  AU.addPreserved<LiveDebugVariables>();
344  AU.addRequired<CalculateSpillWeights>();
345  AU.addRequired<LiveStacks>();
346  AU.addPreserved<LiveStacks>();
347  AU.addRequired<MachineDominatorTree>();
348  AU.addPreserved<MachineDominatorTree>();
349  AU.addRequired<MachineLoopInfo>();
350  AU.addPreserved<MachineLoopInfo>();
351  AU.addRequired<VirtRegMap>();
352  AU.addPreserved<VirtRegMap>();
353  AU.addRequired<EdgeBundles>();
354  AU.addRequired<SpillPlacement>();
355  MachineFunctionPass::getAnalysisUsage(AU);
356}
357
358
359//===----------------------------------------------------------------------===//
360//                     LiveRangeEdit delegate methods
361//===----------------------------------------------------------------------===//
362
363bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
364  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
365    unassign(LIS->getInterval(VirtReg), PhysReg);
366    return true;
367  }
368  // Unassigned virtreg is probably in the priority queue.
369  // RegAllocBase will erase it after dequeueing.
370  return false;
371}
372
373void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
374  unsigned PhysReg = VRM->getPhys(VirtReg);
375  if (!PhysReg)
376    return;
377
378  // Register is assigned, put it back on the queue for reassignment.
379  LiveInterval &LI = LIS->getInterval(VirtReg);
380  unassign(LI, PhysReg);
381  enqueue(&LI);
382}
383
384void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
385  // Cloning a register we haven't even heard about yet?  Just ignore it.
386  if (!ExtraRegInfo.inBounds(Old))
387    return;
388
389  // LRE may clone a virtual register because dead code elimination causes it to
390  // be split into connected components. The new components are much smaller
391  // than the original, so they should get a new chance at being assigned.
392  // same stage as the parent.
393  ExtraRegInfo[Old].Stage = RS_Assign;
394  ExtraRegInfo.grow(New);
395  ExtraRegInfo[New] = ExtraRegInfo[Old];
396}
397
398void RAGreedy::releaseMemory() {
399  SpillerInstance.reset(0);
400  ExtraRegInfo.clear();
401  GlobalCand.clear();
402  RegAllocBase::releaseMemory();
403}
404
405void RAGreedy::enqueue(LiveInterval *LI) {
406  // Prioritize live ranges by size, assigning larger ranges first.
407  // The queue holds (size, reg) pairs.
408  const unsigned Size = LI->getSize();
409  const unsigned Reg = LI->reg;
410  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
411         "Can only enqueue virtual registers");
412  unsigned Prio;
413
414  ExtraRegInfo.grow(Reg);
415  if (ExtraRegInfo[Reg].Stage == RS_New)
416    ExtraRegInfo[Reg].Stage = RS_Assign;
417
418  if (ExtraRegInfo[Reg].Stage == RS_Split) {
419    // Unsplit ranges that couldn't be allocated immediately are deferred until
420    // everything else has been allocated.
421    Prio = Size;
422  } else {
423    // Everything is allocated in long->short order. Long ranges that don't fit
424    // should be spilled (or split) ASAP so they don't create interference.
425    Prio = (1u << 31) + Size;
426
427    // Boost ranges that have a physical register hint.
428    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
429      Prio |= (1u << 30);
430  }
431
432  Queue.push(std::make_pair(Prio, ~Reg));
433}
434
435LiveInterval *RAGreedy::dequeue() {
436  if (Queue.empty())
437    return 0;
438  LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
439  Queue.pop();
440  return LI;
441}
442
443
444//===----------------------------------------------------------------------===//
445//                            Direct Assignment
446//===----------------------------------------------------------------------===//
447
448/// tryAssign - Try to assign VirtReg to an available register.
449unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
450                             AllocationOrder &Order,
451                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
452  Order.rewind();
453  unsigned PhysReg;
454  while ((PhysReg = Order.next())) {
455    if (clobberedByRegMask(PhysReg))
456      continue;
457    if (!checkPhysRegInterference(VirtReg, PhysReg))
458      break;
459  }
460  if (!PhysReg || Order.isHint(PhysReg))
461    return PhysReg;
462
463  // PhysReg is available, but there may be a better choice.
464
465  // If we missed a simple hint, try to cheaply evict interference from the
466  // preferred register.
467  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
468    if (Order.isHint(Hint) && !clobberedByRegMask(Hint)) {
469      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
470      EvictionCost MaxCost(1);
471      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
472        evictInterference(VirtReg, Hint, NewVRegs);
473        return Hint;
474      }
475    }
476
477  // Try to evict interference from a cheaper alternative.
478  unsigned Cost = TRI->getCostPerUse(PhysReg);
479
480  // Most registers have 0 additional cost.
481  if (!Cost)
482    return PhysReg;
483
484  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
485               << '\n');
486  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
487  return CheapReg ? CheapReg : PhysReg;
488}
489
490
491//===----------------------------------------------------------------------===//
492//                         Interference eviction
493//===----------------------------------------------------------------------===//
494
495/// shouldEvict - determine if A should evict the assigned live range B. The
496/// eviction policy defined by this function together with the allocation order
497/// defined by enqueue() decides which registers ultimately end up being split
498/// and spilled.
499///
500/// Cascade numbers are used to prevent infinite loops if this function is a
501/// cyclic relation.
502///
503/// @param A          The live range to be assigned.
504/// @param IsHint     True when A is about to be assigned to its preferred
505///                   register.
506/// @param B          The live range to be evicted.
507/// @param BreaksHint True when B is already assigned to its preferred register.
508bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
509                           LiveInterval &B, bool BreaksHint) {
510  bool CanSplit = getStage(B) < RS_Spill;
511
512  // Be fairly aggressive about following hints as long as the evictee can be
513  // split.
514  if (CanSplit && IsHint && !BreaksHint)
515    return true;
516
517  return A.weight > B.weight;
518}
519
520/// canEvictInterference - Return true if all interferences between VirtReg and
521/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
522///
523/// @param VirtReg Live range that is about to be assigned.
524/// @param PhysReg Desired register for assignment.
525/// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
526/// @param MaxCost Only look for cheaper candidates and update with new cost
527///                when returning true.
528/// @returns True when interference can be evicted cheaper than MaxCost.
529bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
530                                    bool IsHint, EvictionCost &MaxCost) {
531  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
532  // involved in an eviction before. If a cascade number was assigned, deny
533  // evicting anything with the same or a newer cascade number. This prevents
534  // infinite eviction loops.
535  //
536  // This works out so a register without a cascade number is allowed to evict
537  // anything, and it can be evicted by anything.
538  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
539  if (!Cascade)
540    Cascade = NextCascade;
541
542  EvictionCost Cost;
543  for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) {
544    LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
545    // If there is 10 or more interferences, chances are one is heavier.
546    if (Q.collectInterferingVRegs(10) >= 10)
547      return false;
548
549    // Check if any interfering live range is heavier than MaxWeight.
550    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
551      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
552      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
553        return false;
554      // Never evict spill products. They cannot split or spill.
555      if (getStage(*Intf) == RS_Done)
556        return false;
557      // Once a live range becomes small enough, it is urgent that we find a
558      // register for it. This is indicated by an infinite spill weight. These
559      // urgent live ranges get to evict almost anything.
560      //
561      // Also allow urgent evictions of unspillable ranges from a strictly
562      // larger allocation order.
563      bool Urgent = !VirtReg.isSpillable() &&
564        (Intf->isSpillable() ||
565         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
566         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
567      // Only evict older cascades or live ranges without a cascade.
568      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
569      if (Cascade <= IntfCascade) {
570        if (!Urgent)
571          return false;
572        // We permit breaking cascades for urgent evictions. It should be the
573        // last resort, though, so make it really expensive.
574        Cost.BrokenHints += 10;
575      }
576      // Would this break a satisfied hint?
577      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
578      // Update eviction cost.
579      Cost.BrokenHints += BreaksHint;
580      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
581      // Abort if this would be too expensive.
582      if (!(Cost < MaxCost))
583        return false;
584      // Finally, apply the eviction policy for non-urgent evictions.
585      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
586        return false;
587    }
588  }
589  MaxCost = Cost;
590  return true;
591}
592
593/// evictInterference - Evict any interferring registers that prevent VirtReg
594/// from being assigned to Physreg. This assumes that canEvictInterference
595/// returned true.
596void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
597                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
598  // Make sure that VirtReg has a cascade number, and assign that cascade
599  // number to every evicted register. These live ranges than then only be
600  // evicted by a newer cascade, preventing infinite loops.
601  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
602  if (!Cascade)
603    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
604
605  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
606               << " interference: Cascade " << Cascade << '\n');
607  for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) {
608    LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
609    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
610    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
611      LiveInterval *Intf = Q.interferingVRegs()[i];
612      unassign(*Intf, VRM->getPhys(Intf->reg));
613      assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
614              VirtReg.isSpillable() < Intf->isSpillable()) &&
615             "Cannot decrease cascade number, illegal eviction");
616      ExtraRegInfo[Intf->reg].Cascade = Cascade;
617      ++NumEvicted;
618      NewVRegs.push_back(Intf);
619    }
620  }
621}
622
623/// tryEvict - Try to evict all interferences for a physreg.
624/// @param  VirtReg Currently unassigned virtual register.
625/// @param  Order   Physregs to try.
626/// @return         Physreg to assign VirtReg, or 0.
627unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
628                            AllocationOrder &Order,
629                            SmallVectorImpl<LiveInterval*> &NewVRegs,
630                            unsigned CostPerUseLimit) {
631  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
632
633  // Keep track of the cheapest interference seen so far.
634  EvictionCost BestCost(~0u);
635  unsigned BestPhys = 0;
636
637  // When we are just looking for a reduced cost per use, don't break any
638  // hints, and only evict smaller spill weights.
639  if (CostPerUseLimit < ~0u) {
640    BestCost.BrokenHints = 0;
641    BestCost.MaxWeight = VirtReg.weight;
642  }
643
644  Order.rewind();
645  while (unsigned PhysReg = Order.next()) {
646    if (clobberedByRegMask(PhysReg))
647      continue;
648    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
649      continue;
650    // The first use of a callee-saved register in a function has cost 1.
651    // Don't start using a CSR when the CostPerUseLimit is low.
652    if (CostPerUseLimit == 1)
653     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
654       if (!MRI->isPhysRegUsed(CSR)) {
655         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
656                      << PrintReg(CSR, TRI) << '\n');
657         continue;
658       }
659
660    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
661      continue;
662
663    // Best so far.
664    BestPhys = PhysReg;
665
666    // Stop if the hint can be used.
667    if (Order.isHint(PhysReg))
668      break;
669  }
670
671  if (!BestPhys)
672    return 0;
673
674  evictInterference(VirtReg, BestPhys, NewVRegs);
675  return BestPhys;
676}
677
678
679//===----------------------------------------------------------------------===//
680//                              Region Splitting
681//===----------------------------------------------------------------------===//
682
683/// addSplitConstraints - Fill out the SplitConstraints vector based on the
684/// interference pattern in Physreg and its aliases. Add the constraints to
685/// SpillPlacement and return the static cost of this split in Cost, assuming
686/// that all preferences in SplitConstraints are met.
687/// Return false if there are no bundles with positive bias.
688bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
689                                   float &Cost) {
690  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
691
692  // Reset interference dependent info.
693  SplitConstraints.resize(UseBlocks.size());
694  float StaticCost = 0;
695  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
696    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
697    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
698
699    BC.Number = BI.MBB->getNumber();
700    Intf.moveToBlock(BC.Number);
701    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
702    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
703    BC.ChangesValue = BI.FirstDef;
704
705    if (!Intf.hasInterference())
706      continue;
707
708    // Number of spill code instructions to insert.
709    unsigned Ins = 0;
710
711    // Interference for the live-in value.
712    if (BI.LiveIn) {
713      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
714        BC.Entry = SpillPlacement::MustSpill, ++Ins;
715      else if (Intf.first() < BI.FirstInstr)
716        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
717      else if (Intf.first() < BI.LastInstr)
718        ++Ins;
719    }
720
721    // Interference for the live-out value.
722    if (BI.LiveOut) {
723      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
724        BC.Exit = SpillPlacement::MustSpill, ++Ins;
725      else if (Intf.last() > BI.LastInstr)
726        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
727      else if (Intf.last() > BI.FirstInstr)
728        ++Ins;
729    }
730
731    // Accumulate the total frequency of inserted spill code.
732    if (Ins)
733      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
734  }
735  Cost = StaticCost;
736
737  // Add constraints for use-blocks. Note that these are the only constraints
738  // that may add a positive bias, it is downhill from here.
739  SpillPlacer->addConstraints(SplitConstraints);
740  return SpillPlacer->scanActiveBundles();
741}
742
743
744/// addThroughConstraints - Add constraints and links to SpillPlacer from the
745/// live-through blocks in Blocks.
746void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
747                                     ArrayRef<unsigned> Blocks) {
748  const unsigned GroupSize = 8;
749  SpillPlacement::BlockConstraint BCS[GroupSize];
750  unsigned TBS[GroupSize];
751  unsigned B = 0, T = 0;
752
753  for (unsigned i = 0; i != Blocks.size(); ++i) {
754    unsigned Number = Blocks[i];
755    Intf.moveToBlock(Number);
756
757    if (!Intf.hasInterference()) {
758      assert(T < GroupSize && "Array overflow");
759      TBS[T] = Number;
760      if (++T == GroupSize) {
761        SpillPlacer->addLinks(makeArrayRef(TBS, T));
762        T = 0;
763      }
764      continue;
765    }
766
767    assert(B < GroupSize && "Array overflow");
768    BCS[B].Number = Number;
769
770    // Interference for the live-in value.
771    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
772      BCS[B].Entry = SpillPlacement::MustSpill;
773    else
774      BCS[B].Entry = SpillPlacement::PrefSpill;
775
776    // Interference for the live-out value.
777    if (Intf.last() >= SA->getLastSplitPoint(Number))
778      BCS[B].Exit = SpillPlacement::MustSpill;
779    else
780      BCS[B].Exit = SpillPlacement::PrefSpill;
781
782    if (++B == GroupSize) {
783      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
784      SpillPlacer->addConstraints(Array);
785      B = 0;
786    }
787  }
788
789  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
790  SpillPlacer->addConstraints(Array);
791  SpillPlacer->addLinks(makeArrayRef(TBS, T));
792}
793
794void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
795  // Keep track of through blocks that have not been added to SpillPlacer.
796  BitVector Todo = SA->getThroughBlocks();
797  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
798  unsigned AddedTo = 0;
799#ifndef NDEBUG
800  unsigned Visited = 0;
801#endif
802
803  for (;;) {
804    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
805    // Find new through blocks in the periphery of PrefRegBundles.
806    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
807      unsigned Bundle = NewBundles[i];
808      // Look at all blocks connected to Bundle in the full graph.
809      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
810      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
811           I != E; ++I) {
812        unsigned Block = *I;
813        if (!Todo.test(Block))
814          continue;
815        Todo.reset(Block);
816        // This is a new through block. Add it to SpillPlacer later.
817        ActiveBlocks.push_back(Block);
818#ifndef NDEBUG
819        ++Visited;
820#endif
821      }
822    }
823    // Any new blocks to add?
824    if (ActiveBlocks.size() == AddedTo)
825      break;
826
827    // Compute through constraints from the interference, or assume that all
828    // through blocks prefer spilling when forming compact regions.
829    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
830    if (Cand.PhysReg)
831      addThroughConstraints(Cand.Intf, NewBlocks);
832    else
833      // Provide a strong negative bias on through blocks to prevent unwanted
834      // liveness on loop backedges.
835      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
836    AddedTo = ActiveBlocks.size();
837
838    // Perhaps iterating can enable more bundles?
839    SpillPlacer->iterate();
840  }
841  DEBUG(dbgs() << ", v=" << Visited);
842}
843
844/// calcCompactRegion - Compute the set of edge bundles that should be live
845/// when splitting the current live range into compact regions.  Compact
846/// regions can be computed without looking at interference.  They are the
847/// regions formed by removing all the live-through blocks from the live range.
848///
849/// Returns false if the current live range is already compact, or if the
850/// compact regions would form single block regions anyway.
851bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
852  // Without any through blocks, the live range is already compact.
853  if (!SA->getNumThroughBlocks())
854    return false;
855
856  // Compact regions don't correspond to any physreg.
857  Cand.reset(IntfCache, 0);
858
859  DEBUG(dbgs() << "Compact region bundles");
860
861  // Use the spill placer to determine the live bundles. GrowRegion pretends
862  // that all the through blocks have interference when PhysReg is unset.
863  SpillPlacer->prepare(Cand.LiveBundles);
864
865  // The static split cost will be zero since Cand.Intf reports no interference.
866  float Cost;
867  if (!addSplitConstraints(Cand.Intf, Cost)) {
868    DEBUG(dbgs() << ", none.\n");
869    return false;
870  }
871
872  growRegion(Cand);
873  SpillPlacer->finish();
874
875  if (!Cand.LiveBundles.any()) {
876    DEBUG(dbgs() << ", none.\n");
877    return false;
878  }
879
880  DEBUG({
881    for (int i = Cand.LiveBundles.find_first(); i>=0;
882         i = Cand.LiveBundles.find_next(i))
883    dbgs() << " EB#" << i;
884    dbgs() << ".\n";
885  });
886  return true;
887}
888
889/// calcSpillCost - Compute how expensive it would be to split the live range in
890/// SA around all use blocks instead of forming bundle regions.
891float RAGreedy::calcSpillCost() {
892  float Cost = 0;
893  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
894  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
895    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
896    unsigned Number = BI.MBB->getNumber();
897    // We normally only need one spill instruction - a load or a store.
898    Cost += SpillPlacer->getBlockFrequency(Number);
899
900    // Unless the value is redefined in the block.
901    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
902      Cost += SpillPlacer->getBlockFrequency(Number);
903  }
904  return Cost;
905}
906
907/// calcGlobalSplitCost - Return the global split cost of following the split
908/// pattern in LiveBundles. This cost should be added to the local cost of the
909/// interference pattern in SplitConstraints.
910///
911float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
912  float GlobalCost = 0;
913  const BitVector &LiveBundles = Cand.LiveBundles;
914  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
915  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
916    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
917    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
918    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
919    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
920    unsigned Ins = 0;
921
922    if (BI.LiveIn)
923      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
924    if (BI.LiveOut)
925      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
926    if (Ins)
927      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
928  }
929
930  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
931    unsigned Number = Cand.ActiveBlocks[i];
932    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
933    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
934    if (!RegIn && !RegOut)
935      continue;
936    if (RegIn && RegOut) {
937      // We need double spill code if this block has interference.
938      Cand.Intf.moveToBlock(Number);
939      if (Cand.Intf.hasInterference())
940        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
941      continue;
942    }
943    // live-in / stack-out or stack-in live-out.
944    GlobalCost += SpillPlacer->getBlockFrequency(Number);
945  }
946  return GlobalCost;
947}
948
949/// splitAroundRegion - Split the current live range around the regions
950/// determined by BundleCand and GlobalCand.
951///
952/// Before calling this function, GlobalCand and BundleCand must be initialized
953/// so each bundle is assigned to a valid candidate, or NoCand for the
954/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
955/// objects must be initialized for the current live range, and intervals
956/// created for the used candidates.
957///
958/// @param LREdit    The LiveRangeEdit object handling the current split.
959/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
960///                  must appear in this list.
961void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
962                                 ArrayRef<unsigned> UsedCands) {
963  // These are the intervals created for new global ranges. We may create more
964  // intervals for local ranges.
965  const unsigned NumGlobalIntvs = LREdit.size();
966  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
967  assert(NumGlobalIntvs && "No global intervals configured");
968
969  // Isolate even single instructions when dealing with a proper sub-class.
970  // That guarantees register class inflation for the stack interval because it
971  // is all copies.
972  unsigned Reg = SA->getParent().reg;
973  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
974
975  // First handle all the blocks with uses.
976  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
977  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
978    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
979    unsigned Number = BI.MBB->getNumber();
980    unsigned IntvIn = 0, IntvOut = 0;
981    SlotIndex IntfIn, IntfOut;
982    if (BI.LiveIn) {
983      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
984      if (CandIn != NoCand) {
985        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
986        IntvIn = Cand.IntvIdx;
987        Cand.Intf.moveToBlock(Number);
988        IntfIn = Cand.Intf.first();
989      }
990    }
991    if (BI.LiveOut) {
992      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
993      if (CandOut != NoCand) {
994        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
995        IntvOut = Cand.IntvIdx;
996        Cand.Intf.moveToBlock(Number);
997        IntfOut = Cand.Intf.last();
998      }
999    }
1000
1001    // Create separate intervals for isolated blocks with multiple uses.
1002    if (!IntvIn && !IntvOut) {
1003      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1004      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1005        SE->splitSingleBlock(BI);
1006      continue;
1007    }
1008
1009    if (IntvIn && IntvOut)
1010      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1011    else if (IntvIn)
1012      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1013    else
1014      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1015  }
1016
1017  // Handle live-through blocks. The relevant live-through blocks are stored in
1018  // the ActiveBlocks list with each candidate. We need to filter out
1019  // duplicates.
1020  BitVector Todo = SA->getThroughBlocks();
1021  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1022    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1023    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1024      unsigned Number = Blocks[i];
1025      if (!Todo.test(Number))
1026        continue;
1027      Todo.reset(Number);
1028
1029      unsigned IntvIn = 0, IntvOut = 0;
1030      SlotIndex IntfIn, IntfOut;
1031
1032      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1033      if (CandIn != NoCand) {
1034        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1035        IntvIn = Cand.IntvIdx;
1036        Cand.Intf.moveToBlock(Number);
1037        IntfIn = Cand.Intf.first();
1038      }
1039
1040      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1041      if (CandOut != NoCand) {
1042        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1043        IntvOut = Cand.IntvIdx;
1044        Cand.Intf.moveToBlock(Number);
1045        IntfOut = Cand.Intf.last();
1046      }
1047      if (!IntvIn && !IntvOut)
1048        continue;
1049      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1050    }
1051  }
1052
1053  ++NumGlobalSplits;
1054
1055  SmallVector<unsigned, 8> IntvMap;
1056  SE->finish(&IntvMap);
1057  DebugVars->splitRegister(Reg, LREdit.regs());
1058
1059  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1060  unsigned OrigBlocks = SA->getNumLiveBlocks();
1061
1062  // Sort out the new intervals created by splitting. We get four kinds:
1063  // - Remainder intervals should not be split again.
1064  // - Candidate intervals can be assigned to Cand.PhysReg.
1065  // - Block-local splits are candidates for local splitting.
1066  // - DCE leftovers should go back on the queue.
1067  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1068    LiveInterval &Reg = *LREdit.get(i);
1069
1070    // Ignore old intervals from DCE.
1071    if (getStage(Reg) != RS_New)
1072      continue;
1073
1074    // Remainder interval. Don't try splitting again, spill if it doesn't
1075    // allocate.
1076    if (IntvMap[i] == 0) {
1077      setStage(Reg, RS_Spill);
1078      continue;
1079    }
1080
1081    // Global intervals. Allow repeated splitting as long as the number of live
1082    // blocks is strictly decreasing.
1083    if (IntvMap[i] < NumGlobalIntvs) {
1084      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1085        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1086                     << " blocks as original.\n");
1087        // Don't allow repeated splitting as a safe guard against looping.
1088        setStage(Reg, RS_Split2);
1089      }
1090      continue;
1091    }
1092
1093    // Other intervals are treated as new. This includes local intervals created
1094    // for blocks with multiple uses, and anything created by DCE.
1095  }
1096
1097  if (VerifyEnabled)
1098    MF->verify(this, "After splitting live range around region");
1099}
1100
1101unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1102                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1103  unsigned NumCands = 0;
1104  unsigned BestCand = NoCand;
1105  float BestCost;
1106  SmallVector<unsigned, 8> UsedCands;
1107
1108  // Check if we can split this live range around a compact region.
1109  bool HasCompact = calcCompactRegion(GlobalCand.front());
1110  if (HasCompact) {
1111    // Yes, keep GlobalCand[0] as the compact region candidate.
1112    NumCands = 1;
1113    BestCost = HUGE_VALF;
1114  } else {
1115    // No benefit from the compact region, our fallback will be per-block
1116    // splitting. Make sure we find a solution that is cheaper than spilling.
1117    BestCost = Hysteresis * calcSpillCost();
1118    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1119  }
1120
1121  Order.rewind();
1122  while (unsigned PhysReg = Order.next()) {
1123    // Discard bad candidates before we run out of interference cache cursors.
1124    // This will only affect register classes with a lot of registers (>32).
1125    if (NumCands == IntfCache.getMaxCursors()) {
1126      unsigned WorstCount = ~0u;
1127      unsigned Worst = 0;
1128      for (unsigned i = 0; i != NumCands; ++i) {
1129        if (i == BestCand || !GlobalCand[i].PhysReg)
1130          continue;
1131        unsigned Count = GlobalCand[i].LiveBundles.count();
1132        if (Count < WorstCount)
1133          Worst = i, WorstCount = Count;
1134      }
1135      --NumCands;
1136      GlobalCand[Worst] = GlobalCand[NumCands];
1137      if (BestCand == NumCands)
1138        BestCand = Worst;
1139    }
1140
1141    if (GlobalCand.size() <= NumCands)
1142      GlobalCand.resize(NumCands+1);
1143    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1144    Cand.reset(IntfCache, PhysReg);
1145
1146    SpillPlacer->prepare(Cand.LiveBundles);
1147    float Cost;
1148    if (!addSplitConstraints(Cand.Intf, Cost)) {
1149      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1150      continue;
1151    }
1152    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1153    if (Cost >= BestCost) {
1154      DEBUG({
1155        if (BestCand == NoCand)
1156          dbgs() << " worse than no bundles\n";
1157        else
1158          dbgs() << " worse than "
1159                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1160      });
1161      continue;
1162    }
1163    growRegion(Cand);
1164
1165    SpillPlacer->finish();
1166
1167    // No live bundles, defer to splitSingleBlocks().
1168    if (!Cand.LiveBundles.any()) {
1169      DEBUG(dbgs() << " no bundles.\n");
1170      continue;
1171    }
1172
1173    Cost += calcGlobalSplitCost(Cand);
1174    DEBUG({
1175      dbgs() << ", total = " << Cost << " with bundles";
1176      for (int i = Cand.LiveBundles.find_first(); i>=0;
1177           i = Cand.LiveBundles.find_next(i))
1178        dbgs() << " EB#" << i;
1179      dbgs() << ".\n";
1180    });
1181    if (Cost < BestCost) {
1182      BestCand = NumCands;
1183      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1184    }
1185    ++NumCands;
1186  }
1187
1188  // No solutions found, fall back to single block splitting.
1189  if (!HasCompact && BestCand == NoCand)
1190    return 0;
1191
1192  // Prepare split editor.
1193  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1194  SE->reset(LREdit, SplitSpillMode);
1195
1196  // Assign all edge bundles to the preferred candidate, or NoCand.
1197  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1198
1199  // Assign bundles for the best candidate region.
1200  if (BestCand != NoCand) {
1201    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1202    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1203      UsedCands.push_back(BestCand);
1204      Cand.IntvIdx = SE->openIntv();
1205      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1206                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1207      (void)B;
1208    }
1209  }
1210
1211  // Assign bundles for the compact region.
1212  if (HasCompact) {
1213    GlobalSplitCandidate &Cand = GlobalCand.front();
1214    assert(!Cand.PhysReg && "Compact region has no physreg");
1215    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1216      UsedCands.push_back(0);
1217      Cand.IntvIdx = SE->openIntv();
1218      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1219                   << Cand.IntvIdx << ".\n");
1220      (void)B;
1221    }
1222  }
1223
1224  splitAroundRegion(LREdit, UsedCands);
1225  return 0;
1226}
1227
1228
1229//===----------------------------------------------------------------------===//
1230//                            Per-Block Splitting
1231//===----------------------------------------------------------------------===//
1232
1233/// tryBlockSplit - Split a global live range around every block with uses. This
1234/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1235/// they don't allocate.
1236unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1237                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1238  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1239  unsigned Reg = VirtReg.reg;
1240  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1241  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1242  SE->reset(LREdit, SplitSpillMode);
1243  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1244  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1245    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1246    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1247      SE->splitSingleBlock(BI);
1248  }
1249  // No blocks were split.
1250  if (LREdit.empty())
1251    return 0;
1252
1253  // We did split for some blocks.
1254  SmallVector<unsigned, 8> IntvMap;
1255  SE->finish(&IntvMap);
1256
1257  // Tell LiveDebugVariables about the new ranges.
1258  DebugVars->splitRegister(Reg, LREdit.regs());
1259
1260  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1261
1262  // Sort out the new intervals created by splitting. The remainder interval
1263  // goes straight to spilling, the new local ranges get to stay RS_New.
1264  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1265    LiveInterval &LI = *LREdit.get(i);
1266    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1267      setStage(LI, RS_Spill);
1268  }
1269
1270  if (VerifyEnabled)
1271    MF->verify(this, "After splitting live range around basic blocks");
1272  return 0;
1273}
1274
1275
1276//===----------------------------------------------------------------------===//
1277//                         Per-Instruction Splitting
1278//===----------------------------------------------------------------------===//
1279
1280/// tryInstructionSplit - Split a live range around individual instructions.
1281/// This is normally not worthwhile since the spiller is doing essentially the
1282/// same thing. However, when the live range is in a constrained register
1283/// class, it may help to insert copies such that parts of the live range can
1284/// be moved to a larger register class.
1285///
1286/// This is similar to spilling to a larger register class.
1287unsigned
1288RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1289                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
1290  // There is no point to this if there are no larger sub-classes.
1291  if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
1292    return 0;
1293
1294  // Always enable split spill mode, since we're effectively spilling to a
1295  // register.
1296  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1297  SE->reset(LREdit, SplitEditor::SM_Size);
1298
1299  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1300  if (Uses.size() <= 1)
1301    return 0;
1302
1303  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1304
1305  // Split around every non-copy instruction.
1306  for (unsigned i = 0; i != Uses.size(); ++i) {
1307    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1308      if (MI->isFullCopy()) {
1309        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1310        continue;
1311      }
1312    SE->openIntv();
1313    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1314    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1315    SE->useIntv(SegStart, SegStop);
1316  }
1317
1318  if (LREdit.empty()) {
1319    DEBUG(dbgs() << "All uses were copies.\n");
1320    return 0;
1321  }
1322
1323  SmallVector<unsigned, 8> IntvMap;
1324  SE->finish(&IntvMap);
1325  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1326  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1327
1328  // Assign all new registers to RS_Spill. This was the last chance.
1329  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1330  return 0;
1331}
1332
1333
1334//===----------------------------------------------------------------------===//
1335//                             Local Splitting
1336//===----------------------------------------------------------------------===//
1337
1338
1339/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1340/// in order to use PhysReg between two entries in SA->UseSlots.
1341///
1342/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1343///
1344void RAGreedy::calcGapWeights(unsigned PhysReg,
1345                              SmallVectorImpl<float> &GapWeight) {
1346  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1347  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1348  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1349  const unsigned NumGaps = Uses.size()-1;
1350
1351  // Start and end points for the interference check.
1352  SlotIndex StartIdx =
1353    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1354  SlotIndex StopIdx =
1355    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1356
1357  GapWeight.assign(NumGaps, 0.0f);
1358
1359  // Add interference from each overlapping register.
1360  for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) {
1361    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1362           .checkInterference())
1363      continue;
1364
1365    // We know that VirtReg is a continuous interval from FirstInstr to
1366    // LastInstr, so we don't need InterferenceQuery.
1367    //
1368    // Interference that overlaps an instruction is counted in both gaps
1369    // surrounding the instruction. The exception is interference before
1370    // StartIdx and after StopIdx.
1371    //
1372    LiveIntervalUnion::SegmentIter IntI = getLiveUnion(*AI).find(StartIdx);
1373    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1374      // Skip the gaps before IntI.
1375      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1376        if (++Gap == NumGaps)
1377          break;
1378      if (Gap == NumGaps)
1379        break;
1380
1381      // Update the gaps covered by IntI.
1382      const float weight = IntI.value()->weight;
1383      for (; Gap != NumGaps; ++Gap) {
1384        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1385        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1386          break;
1387      }
1388      if (Gap == NumGaps)
1389        break;
1390    }
1391  }
1392}
1393
1394/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1395/// basic block.
1396///
1397unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1398                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1399  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1400  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1401
1402  // Note that it is possible to have an interval that is live-in or live-out
1403  // while only covering a single block - A phi-def can use undef values from
1404  // predecessors, and the block could be a single-block loop.
1405  // We don't bother doing anything clever about such a case, we simply assume
1406  // that the interval is continuous from FirstInstr to LastInstr. We should
1407  // make sure that we don't do anything illegal to such an interval, though.
1408
1409  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1410  if (Uses.size() <= 2)
1411    return 0;
1412  const unsigned NumGaps = Uses.size()-1;
1413
1414  DEBUG({
1415    dbgs() << "tryLocalSplit: ";
1416    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1417      dbgs() << ' ' << Uses[i];
1418    dbgs() << '\n';
1419  });
1420
1421  // If VirtReg is live across any register mask operands, compute a list of
1422  // gaps with register masks.
1423  SmallVector<unsigned, 8> RegMaskGaps;
1424  if (!UsableRegs.empty()) {
1425    // Get regmask slots for the whole block.
1426    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1427    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1428    // Constrain to VirtReg's live range.
1429    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1430                                   Uses.front().getRegSlot()) - RMS.begin();
1431    unsigned re = RMS.size();
1432    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1433      // Look for Uses[i] <= RMS <= Uses[i+1].
1434      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1435      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1436        continue;
1437      // Skip a regmask on the same instruction as the last use. It doesn't
1438      // overlap the live range.
1439      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1440        break;
1441      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1442      RegMaskGaps.push_back(i);
1443      // Advance ri to the next gap. A regmask on one of the uses counts in
1444      // both gaps.
1445      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1446        ++ri;
1447    }
1448    DEBUG(dbgs() << '\n');
1449  }
1450
1451  // Since we allow local split results to be split again, there is a risk of
1452  // creating infinite loops. It is tempting to require that the new live
1453  // ranges have less instructions than the original. That would guarantee
1454  // convergence, but it is too strict. A live range with 3 instructions can be
1455  // split 2+3 (including the COPY), and we want to allow that.
1456  //
1457  // Instead we use these rules:
1458  //
1459  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1460  //    noop split, of course).
1461  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1462  //    the new ranges must have fewer instructions than before the split.
1463  // 3. New ranges with the same number of instructions are marked RS_Split2,
1464  //    smaller ranges are marked RS_New.
1465  //
1466  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1467  // excessive splitting and infinite loops.
1468  //
1469  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1470
1471  // Best split candidate.
1472  unsigned BestBefore = NumGaps;
1473  unsigned BestAfter = 0;
1474  float BestDiff = 0;
1475
1476  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1477  SmallVector<float, 8> GapWeight;
1478
1479  Order.rewind();
1480  while (unsigned PhysReg = Order.next()) {
1481    // Keep track of the largest spill weight that would need to be evicted in
1482    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1483    calcGapWeights(PhysReg, GapWeight);
1484
1485    // Remove any gaps with regmask clobbers.
1486    if (clobberedByRegMask(PhysReg))
1487      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1488        GapWeight[RegMaskGaps[i]] = HUGE_VALF;
1489
1490    // Try to find the best sequence of gaps to close.
1491    // The new spill weight must be larger than any gap interference.
1492
1493    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1494    unsigned SplitBefore = 0, SplitAfter = 1;
1495
1496    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1497    // It is the spill weight that needs to be evicted.
1498    float MaxGap = GapWeight[0];
1499
1500    for (;;) {
1501      // Live before/after split?
1502      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1503      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1504
1505      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1506                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1507                   << " i=" << MaxGap);
1508
1509      // Stop before the interval gets so big we wouldn't be making progress.
1510      if (!LiveBefore && !LiveAfter) {
1511        DEBUG(dbgs() << " all\n");
1512        break;
1513      }
1514      // Should the interval be extended or shrunk?
1515      bool Shrink = true;
1516
1517      // How many gaps would the new range have?
1518      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1519
1520      // Legally, without causing looping?
1521      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1522
1523      if (Legal && MaxGap < HUGE_VALF) {
1524        // Estimate the new spill weight. Each instruction reads or writes the
1525        // register. Conservatively assume there are no read-modify-write
1526        // instructions.
1527        //
1528        // Try to guess the size of the new interval.
1529        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1530                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1531                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1532        // Would this split be possible to allocate?
1533        // Never allocate all gaps, we wouldn't be making progress.
1534        DEBUG(dbgs() << " w=" << EstWeight);
1535        if (EstWeight * Hysteresis >= MaxGap) {
1536          Shrink = false;
1537          float Diff = EstWeight - MaxGap;
1538          if (Diff > BestDiff) {
1539            DEBUG(dbgs() << " (best)");
1540            BestDiff = Hysteresis * Diff;
1541            BestBefore = SplitBefore;
1542            BestAfter = SplitAfter;
1543          }
1544        }
1545      }
1546
1547      // Try to shrink.
1548      if (Shrink) {
1549        if (++SplitBefore < SplitAfter) {
1550          DEBUG(dbgs() << " shrink\n");
1551          // Recompute the max when necessary.
1552          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1553            MaxGap = GapWeight[SplitBefore];
1554            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1555              MaxGap = std::max(MaxGap, GapWeight[i]);
1556          }
1557          continue;
1558        }
1559        MaxGap = 0;
1560      }
1561
1562      // Try to extend the interval.
1563      if (SplitAfter >= NumGaps) {
1564        DEBUG(dbgs() << " end\n");
1565        break;
1566      }
1567
1568      DEBUG(dbgs() << " extend\n");
1569      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1570    }
1571  }
1572
1573  // Didn't find any candidates?
1574  if (BestBefore == NumGaps)
1575    return 0;
1576
1577  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1578               << '-' << Uses[BestAfter] << ", " << BestDiff
1579               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1580
1581  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1582  SE->reset(LREdit);
1583
1584  SE->openIntv();
1585  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1586  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1587  SE->useIntv(SegStart, SegStop);
1588  SmallVector<unsigned, 8> IntvMap;
1589  SE->finish(&IntvMap);
1590  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1591
1592  // If the new range has the same number of instructions as before, mark it as
1593  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1594  // leave the new intervals as RS_New so they can compete.
1595  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1596  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1597  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1598  if (NewGaps >= NumGaps) {
1599    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1600    assert(!ProgressRequired && "Didn't make progress when it was required.");
1601    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1602      if (IntvMap[i] == 1) {
1603        setStage(*LREdit.get(i), RS_Split2);
1604        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1605      }
1606    DEBUG(dbgs() << '\n');
1607  }
1608  ++NumLocalSplits;
1609
1610  return 0;
1611}
1612
1613//===----------------------------------------------------------------------===//
1614//                          Live Range Splitting
1615//===----------------------------------------------------------------------===//
1616
1617/// trySplit - Try to split VirtReg or one of its interferences, making it
1618/// assignable.
1619/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1620unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1621                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1622  // Ranges must be Split2 or less.
1623  if (getStage(VirtReg) >= RS_Spill)
1624    return 0;
1625
1626  // Local intervals are handled separately.
1627  if (LIS->intervalIsInOneMBB(VirtReg)) {
1628    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1629    SA->analyze(&VirtReg);
1630    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1631    if (PhysReg || !NewVRegs.empty())
1632      return PhysReg;
1633    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1634  }
1635
1636  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1637
1638  SA->analyze(&VirtReg);
1639
1640  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1641  // coalescer. That may cause the range to become allocatable which means that
1642  // tryRegionSplit won't be making progress. This check should be replaced with
1643  // an assertion when the coalescer is fixed.
1644  if (SA->didRepairRange()) {
1645    // VirtReg has changed, so all cached queries are invalid.
1646    invalidateVirtRegs();
1647    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1648      return PhysReg;
1649  }
1650
1651  // First try to split around a region spanning multiple blocks. RS_Split2
1652  // ranges already made dubious progress with region splitting, so they go
1653  // straight to single block splitting.
1654  if (getStage(VirtReg) < RS_Split2) {
1655    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1656    if (PhysReg || !NewVRegs.empty())
1657      return PhysReg;
1658  }
1659
1660  // Then isolate blocks.
1661  return tryBlockSplit(VirtReg, Order, NewVRegs);
1662}
1663
1664
1665//===----------------------------------------------------------------------===//
1666//                            Main Entry Point
1667//===----------------------------------------------------------------------===//
1668
1669unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1670                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1671  // Check if VirtReg is live across any calls.
1672  UsableRegs.clear();
1673  if (LIS->checkRegMaskInterference(VirtReg, UsableRegs))
1674    DEBUG(dbgs() << "Live across regmasks.\n");
1675
1676  // First try assigning a free register.
1677  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1678  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1679    return PhysReg;
1680
1681  LiveRangeStage Stage = getStage(VirtReg);
1682  DEBUG(dbgs() << StageName[Stage]
1683               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1684
1685  // Try to evict a less worthy live range, but only for ranges from the primary
1686  // queue. The RS_Split ranges already failed to do this, and they should not
1687  // get a second chance until they have been split.
1688  if (Stage != RS_Split)
1689    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1690      return PhysReg;
1691
1692  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1693
1694  // The first time we see a live range, don't try to split or spill.
1695  // Wait until the second time, when all smaller ranges have been allocated.
1696  // This gives a better picture of the interference to split around.
1697  if (Stage < RS_Split) {
1698    setStage(VirtReg, RS_Split);
1699    DEBUG(dbgs() << "wait for second round\n");
1700    NewVRegs.push_back(&VirtReg);
1701    return 0;
1702  }
1703
1704  // If we couldn't allocate a register from spilling, there is probably some
1705  // invalid inline assembly. The base class wil report it.
1706  if (Stage >= RS_Done || !VirtReg.isSpillable())
1707    return ~0u;
1708
1709  // Try splitting VirtReg or interferences.
1710  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1711  if (PhysReg || !NewVRegs.empty())
1712    return PhysReg;
1713
1714  // Finally spill VirtReg itself.
1715  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1716  LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1717  spiller().spill(LRE);
1718  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1719
1720  if (VerifyEnabled)
1721    MF->verify(this, "After spilling");
1722
1723  // The live virtual register requesting allocation was spilled, so tell
1724  // the caller not to allocate anything during this round.
1725  return 0;
1726}
1727
1728bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1729  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1730               << "********** Function: "
1731               << ((Value*)mf.getFunction())->getName() << '\n');
1732
1733  MF = &mf;
1734  if (VerifyEnabled)
1735    MF->verify(this, "Before greedy register allocator");
1736
1737  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1738  Indexes = &getAnalysis<SlotIndexes>();
1739  DomTree = &getAnalysis<MachineDominatorTree>();
1740  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1741  Loops = &getAnalysis<MachineLoopInfo>();
1742  Bundles = &getAnalysis<EdgeBundles>();
1743  SpillPlacer = &getAnalysis<SpillPlacement>();
1744  DebugVars = &getAnalysis<LiveDebugVariables>();
1745
1746  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1747  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1748  ExtraRegInfo.clear();
1749  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1750  NextCascade = 1;
1751  IntfCache.init(MF, &getLiveUnion(0), Indexes, LIS, TRI);
1752  GlobalCand.resize(32);  // This will grow as needed.
1753
1754  allocatePhysRegs();
1755  addMBBLiveIns(MF);
1756  LIS->addKillFlags();
1757
1758  // Run rewriter
1759  {
1760    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1761    VRM->rewrite(Indexes);
1762  }
1763
1764  // Write out new DBG_VALUE instructions.
1765  {
1766    NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled);
1767    DebugVars->emitDebugValues(VRM);
1768  }
1769
1770  // All machine operands and other references to virtual registers have been
1771  // replaced. Remove the virtual registers and release all the transient data.
1772  VRM->clearAllVirt();
1773  MRI->clearVirtRegs();
1774  releaseMemory();
1775
1776  return true;
1777}
1778