RegAllocGreedy.cpp revision cac5fa39bd861861018bb2c3f0b36cc71c2caa38
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRangeEdit.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Function.h"
28#include "llvm/PassAnalysisSupport.h"
29#include "llvm/CodeGen/CalcSpillWeights.h"
30#include "llvm/CodeGen/EdgeBundles.h"
31#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineLoopInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/CodeGen/RegAllocRegistry.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/Timer.h"
45
46#include <queue>
47
48using namespace llvm;
49
50STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51STATISTIC(NumLocalSplits,  "Number of split local live ranges");
52STATISTIC(NumEvicted,      "Number of interferences evicted");
53
54static cl::opt<SplitEditor::ComplementSpillMode>
55SplitSpillMode("split-spill-mode", cl::Hidden,
56  cl::desc("Spill mode for splitting live ranges"),
57  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
58             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
59             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
60             clEnumValEnd),
61  cl::init(SplitEditor::SM_Partition));
62
63static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
64                                       createGreedyRegisterAllocator);
65
66namespace {
67class RAGreedy : public MachineFunctionPass,
68                 public RegAllocBase,
69                 private LiveRangeEdit::Delegate {
70
71  // context
72  MachineFunction *MF;
73
74  // analyses
75  SlotIndexes *Indexes;
76  LiveStacks *LS;
77  MachineDominatorTree *DomTree;
78  MachineLoopInfo *Loops;
79  EdgeBundles *Bundles;
80  SpillPlacement *SpillPlacer;
81  LiveDebugVariables *DebugVars;
82
83  // state
84  std::auto_ptr<Spiller> SpillerInstance;
85  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
86  unsigned NextCascade;
87
88  // Live ranges pass through a number of stages as we try to allocate them.
89  // Some of the stages may also create new live ranges:
90  //
91  // - Region splitting.
92  // - Per-block splitting.
93  // - Local splitting.
94  // - Spilling.
95  //
96  // Ranges produced by one of the stages skip the previous stages when they are
97  // dequeued. This improves performance because we can skip interference checks
98  // that are unlikely to give any results. It also guarantees that the live
99  // range splitting algorithm terminates, something that is otherwise hard to
100  // ensure.
101  enum LiveRangeStage {
102    /// Newly created live range that has never been queued.
103    RS_New,
104
105    /// Only attempt assignment and eviction. Then requeue as RS_Split.
106    RS_Assign,
107
108    /// Attempt live range splitting if assignment is impossible.
109    RS_Split,
110
111    /// Attempt more aggressive live range splitting that is guaranteed to make
112    /// progress.  This is used for split products that may not be making
113    /// progress.
114    RS_Split2,
115
116    /// Live range will be spilled.  No more splitting will be attempted.
117    RS_Spill,
118
119    /// There is nothing more we can do to this live range.  Abort compilation
120    /// if it can't be assigned.
121    RS_Done
122  };
123
124  static const char *const StageName[];
125
126  // RegInfo - Keep additional information about each live range.
127  struct RegInfo {
128    LiveRangeStage Stage;
129
130    // Cascade - Eviction loop prevention. See canEvictInterference().
131    unsigned Cascade;
132
133    RegInfo() : Stage(RS_New), Cascade(0) {}
134  };
135
136  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
137
138  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
139    return ExtraRegInfo[VirtReg.reg].Stage;
140  }
141
142  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
143    ExtraRegInfo.resize(MRI->getNumVirtRegs());
144    ExtraRegInfo[VirtReg.reg].Stage = Stage;
145  }
146
147  template<typename Iterator>
148  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
149    ExtraRegInfo.resize(MRI->getNumVirtRegs());
150    for (;Begin != End; ++Begin) {
151      unsigned Reg = (*Begin)->reg;
152      if (ExtraRegInfo[Reg].Stage == RS_New)
153        ExtraRegInfo[Reg].Stage = NewStage;
154    }
155  }
156
157  /// Cost of evicting interference.
158  struct EvictionCost {
159    unsigned BrokenHints; ///< Total number of broken hints.
160    float MaxWeight;      ///< Maximum spill weight evicted.
161
162    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
163
164    bool operator<(const EvictionCost &O) const {
165      if (BrokenHints != O.BrokenHints)
166        return BrokenHints < O.BrokenHints;
167      return MaxWeight < O.MaxWeight;
168    }
169  };
170
171  // Register mask interference. The current VirtReg is checked for register
172  // mask interference on entry to selectOrSplit().  If there is no
173  // interference, UsableRegs is left empty.  If there is interference,
174  // UsableRegs has a bit mask of registers that can be used without register
175  // mask interference.
176  BitVector UsableRegs;
177
178  /// clobberedByRegMask - Returns true if PhysReg is not directly usable
179  /// because of register mask clobbers.
180  bool clobberedByRegMask(unsigned PhysReg) const {
181    return !UsableRegs.empty() && !UsableRegs.test(PhysReg);
182  }
183
184  // splitting state.
185  std::auto_ptr<SplitAnalysis> SA;
186  std::auto_ptr<SplitEditor> SE;
187
188  /// Cached per-block interference maps
189  InterferenceCache IntfCache;
190
191  /// All basic blocks where the current register has uses.
192  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
193
194  /// Global live range splitting candidate info.
195  struct GlobalSplitCandidate {
196    // Register intended for assignment, or 0.
197    unsigned PhysReg;
198
199    // SplitKit interval index for this candidate.
200    unsigned IntvIdx;
201
202    // Interference for PhysReg.
203    InterferenceCache::Cursor Intf;
204
205    // Bundles where this candidate should be live.
206    BitVector LiveBundles;
207    SmallVector<unsigned, 8> ActiveBlocks;
208
209    void reset(InterferenceCache &Cache, unsigned Reg) {
210      PhysReg = Reg;
211      IntvIdx = 0;
212      Intf.setPhysReg(Cache, Reg);
213      LiveBundles.clear();
214      ActiveBlocks.clear();
215    }
216
217    // Set B[i] = C for every live bundle where B[i] was NoCand.
218    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
219      unsigned Count = 0;
220      for (int i = LiveBundles.find_first(); i >= 0;
221           i = LiveBundles.find_next(i))
222        if (B[i] == NoCand) {
223          B[i] = C;
224          Count++;
225        }
226      return Count;
227    }
228  };
229
230  /// Candidate info for for each PhysReg in AllocationOrder.
231  /// This vector never shrinks, but grows to the size of the largest register
232  /// class.
233  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
234
235  enum { NoCand = ~0u };
236
237  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
238  /// NoCand which indicates the stack interval.
239  SmallVector<unsigned, 32> BundleCand;
240
241public:
242  RAGreedy();
243
244  /// Return the pass name.
245  virtual const char* getPassName() const {
246    return "Greedy Register Allocator";
247  }
248
249  /// RAGreedy analysis usage.
250  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
251  virtual void releaseMemory();
252  virtual Spiller &spiller() { return *SpillerInstance; }
253  virtual void enqueue(LiveInterval *LI);
254  virtual LiveInterval *dequeue();
255  virtual unsigned selectOrSplit(LiveInterval&,
256                                 SmallVectorImpl<LiveInterval*>&);
257
258  /// Perform register allocation.
259  virtual bool runOnMachineFunction(MachineFunction &mf);
260
261  static char ID;
262
263private:
264  bool LRE_CanEraseVirtReg(unsigned);
265  void LRE_WillShrinkVirtReg(unsigned);
266  void LRE_DidCloneVirtReg(unsigned, unsigned);
267
268  float calcSpillCost();
269  bool addSplitConstraints(InterferenceCache::Cursor, float&);
270  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
271  void growRegion(GlobalSplitCandidate &Cand);
272  float calcGlobalSplitCost(GlobalSplitCandidate&);
273  bool calcCompactRegion(GlobalSplitCandidate&);
274  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
275  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
276  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
277  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
278  void evictInterference(LiveInterval&, unsigned,
279                         SmallVectorImpl<LiveInterval*>&);
280
281  unsigned tryAssign(LiveInterval&, AllocationOrder&,
282                     SmallVectorImpl<LiveInterval*>&);
283  unsigned tryEvict(LiveInterval&, AllocationOrder&,
284                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
285  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
286                          SmallVectorImpl<LiveInterval*>&);
287  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
288                         SmallVectorImpl<LiveInterval*>&);
289  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
290    SmallVectorImpl<LiveInterval*>&);
291  unsigned trySplit(LiveInterval&, AllocationOrder&,
292                    SmallVectorImpl<LiveInterval*>&);
293};
294} // end anonymous namespace
295
296char RAGreedy::ID = 0;
297
298#ifndef NDEBUG
299const char *const RAGreedy::StageName[] = {
300    "RS_New",
301    "RS_Assign",
302    "RS_Split",
303    "RS_Split2",
304    "RS_Spill",
305    "RS_Done"
306};
307#endif
308
309// Hysteresis to use when comparing floats.
310// This helps stabilize decisions based on float comparisons.
311const float Hysteresis = 0.98f;
312
313
314FunctionPass* llvm::createGreedyRegisterAllocator() {
315  return new RAGreedy();
316}
317
318RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
319  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
320  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
321  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
322  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
323  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
324  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
325  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
326  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
327  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
328  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
329  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
330  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
331  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
332}
333
334void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
335  AU.setPreservesCFG();
336  AU.addRequired<AliasAnalysis>();
337  AU.addPreserved<AliasAnalysis>();
338  AU.addRequired<LiveIntervals>();
339  AU.addRequired<SlotIndexes>();
340  AU.addPreserved<SlotIndexes>();
341  AU.addRequired<LiveDebugVariables>();
342  AU.addPreserved<LiveDebugVariables>();
343  AU.addRequired<CalculateSpillWeights>();
344  AU.addRequired<LiveStacks>();
345  AU.addPreserved<LiveStacks>();
346  AU.addRequired<MachineDominatorTree>();
347  AU.addPreserved<MachineDominatorTree>();
348  AU.addRequired<MachineLoopInfo>();
349  AU.addPreserved<MachineLoopInfo>();
350  AU.addRequired<VirtRegMap>();
351  AU.addPreserved<VirtRegMap>();
352  AU.addRequired<EdgeBundles>();
353  AU.addRequired<SpillPlacement>();
354  MachineFunctionPass::getAnalysisUsage(AU);
355}
356
357
358//===----------------------------------------------------------------------===//
359//                     LiveRangeEdit delegate methods
360//===----------------------------------------------------------------------===//
361
362bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
363  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
364    unassign(LIS->getInterval(VirtReg), PhysReg);
365    return true;
366  }
367  // Unassigned virtreg is probably in the priority queue.
368  // RegAllocBase will erase it after dequeueing.
369  return false;
370}
371
372void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
373  unsigned PhysReg = VRM->getPhys(VirtReg);
374  if (!PhysReg)
375    return;
376
377  // Register is assigned, put it back on the queue for reassignment.
378  LiveInterval &LI = LIS->getInterval(VirtReg);
379  unassign(LI, PhysReg);
380  enqueue(&LI);
381}
382
383void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
384  // Cloning a register we haven't even heard about yet?  Just ignore it.
385  if (!ExtraRegInfo.inBounds(Old))
386    return;
387
388  // LRE may clone a virtual register because dead code elimination causes it to
389  // be split into connected components. The new components are much smaller
390  // than the original, so they should get a new chance at being assigned.
391  // same stage as the parent.
392  ExtraRegInfo[Old].Stage = RS_Assign;
393  ExtraRegInfo.grow(New);
394  ExtraRegInfo[New] = ExtraRegInfo[Old];
395}
396
397void RAGreedy::releaseMemory() {
398  SpillerInstance.reset(0);
399  ExtraRegInfo.clear();
400  GlobalCand.clear();
401  RegAllocBase::releaseMemory();
402}
403
404void RAGreedy::enqueue(LiveInterval *LI) {
405  // Prioritize live ranges by size, assigning larger ranges first.
406  // The queue holds (size, reg) pairs.
407  const unsigned Size = LI->getSize();
408  const unsigned Reg = LI->reg;
409  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
410         "Can only enqueue virtual registers");
411  unsigned Prio;
412
413  ExtraRegInfo.grow(Reg);
414  if (ExtraRegInfo[Reg].Stage == RS_New)
415    ExtraRegInfo[Reg].Stage = RS_Assign;
416
417  if (ExtraRegInfo[Reg].Stage == RS_Split) {
418    // Unsplit ranges that couldn't be allocated immediately are deferred until
419    // everything else has been allocated.
420    Prio = Size;
421  } else {
422    // Everything is allocated in long->short order. Long ranges that don't fit
423    // should be spilled (or split) ASAP so they don't create interference.
424    Prio = (1u << 31) + Size;
425
426    // Boost ranges that have a physical register hint.
427    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
428      Prio |= (1u << 30);
429  }
430
431  Queue.push(std::make_pair(Prio, Reg));
432}
433
434LiveInterval *RAGreedy::dequeue() {
435  if (Queue.empty())
436    return 0;
437  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
438  Queue.pop();
439  return LI;
440}
441
442
443//===----------------------------------------------------------------------===//
444//                            Direct Assignment
445//===----------------------------------------------------------------------===//
446
447/// tryAssign - Try to assign VirtReg to an available register.
448unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
449                             AllocationOrder &Order,
450                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
451  Order.rewind();
452  unsigned PhysReg;
453  while ((PhysReg = Order.next())) {
454    if (clobberedByRegMask(PhysReg))
455      continue;
456    if (!checkPhysRegInterference(VirtReg, PhysReg))
457      break;
458  }
459  if (!PhysReg || Order.isHint(PhysReg))
460    return PhysReg;
461
462  // PhysReg is available, but there may be a better choice.
463
464  // If we missed a simple hint, try to cheaply evict interference from the
465  // preferred register.
466  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
467    if (Order.isHint(Hint) && !clobberedByRegMask(Hint)) {
468      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
469      EvictionCost MaxCost(1);
470      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
471        evictInterference(VirtReg, Hint, NewVRegs);
472        return Hint;
473      }
474    }
475
476  // Try to evict interference from a cheaper alternative.
477  unsigned Cost = TRI->getCostPerUse(PhysReg);
478
479  // Most registers have 0 additional cost.
480  if (!Cost)
481    return PhysReg;
482
483  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
484               << '\n');
485  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
486  return CheapReg ? CheapReg : PhysReg;
487}
488
489
490//===----------------------------------------------------------------------===//
491//                         Interference eviction
492//===----------------------------------------------------------------------===//
493
494/// shouldEvict - determine if A should evict the assigned live range B. The
495/// eviction policy defined by this function together with the allocation order
496/// defined by enqueue() decides which registers ultimately end up being split
497/// and spilled.
498///
499/// Cascade numbers are used to prevent infinite loops if this function is a
500/// cyclic relation.
501///
502/// @param A          The live range to be assigned.
503/// @param IsHint     True when A is about to be assigned to its preferred
504///                   register.
505/// @param B          The live range to be evicted.
506/// @param BreaksHint True when B is already assigned to its preferred register.
507bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
508                           LiveInterval &B, bool BreaksHint) {
509  bool CanSplit = getStage(B) < RS_Spill;
510
511  // Be fairly aggressive about following hints as long as the evictee can be
512  // split.
513  if (CanSplit && IsHint && !BreaksHint)
514    return true;
515
516  return A.weight > B.weight;
517}
518
519/// canEvictInterference - Return true if all interferences between VirtReg and
520/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
521///
522/// @param VirtReg Live range that is about to be assigned.
523/// @param PhysReg Desired register for assignment.
524/// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
525/// @param MaxCost Only look for cheaper candidates and update with new cost
526///                when returning true.
527/// @returns True when interference can be evicted cheaper than MaxCost.
528bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
529                                    bool IsHint, EvictionCost &MaxCost) {
530  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
531  // involved in an eviction before. If a cascade number was assigned, deny
532  // evicting anything with the same or a newer cascade number. This prevents
533  // infinite eviction loops.
534  //
535  // This works out so a register without a cascade number is allowed to evict
536  // anything, and it can be evicted by anything.
537  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
538  if (!Cascade)
539    Cascade = NextCascade;
540
541  EvictionCost Cost;
542  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
543    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
544    // If there is 10 or more interferences, chances are one is heavier.
545    if (Q.collectInterferingVRegs(10) >= 10)
546      return false;
547
548    // Check if any interfering live range is heavier than MaxWeight.
549    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
550      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
551      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
552        return false;
553      // Never evict spill products. They cannot split or spill.
554      if (getStage(*Intf) == RS_Done)
555        return false;
556      // Once a live range becomes small enough, it is urgent that we find a
557      // register for it. This is indicated by an infinite spill weight. These
558      // urgent live ranges get to evict almost anything.
559      bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
560      // Only evict older cascades or live ranges without a cascade.
561      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
562      if (Cascade <= IntfCascade) {
563        if (!Urgent)
564          return false;
565        // We permit breaking cascades for urgent evictions. It should be the
566        // last resort, though, so make it really expensive.
567        Cost.BrokenHints += 10;
568      }
569      // Would this break a satisfied hint?
570      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
571      // Update eviction cost.
572      Cost.BrokenHints += BreaksHint;
573      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
574      // Abort if this would be too expensive.
575      if (!(Cost < MaxCost))
576        return false;
577      // Finally, apply the eviction policy for non-urgent evictions.
578      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
579        return false;
580    }
581  }
582  MaxCost = Cost;
583  return true;
584}
585
586/// evictInterference - Evict any interferring registers that prevent VirtReg
587/// from being assigned to Physreg. This assumes that canEvictInterference
588/// returned true.
589void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
590                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
591  // Make sure that VirtReg has a cascade number, and assign that cascade
592  // number to every evicted register. These live ranges than then only be
593  // evicted by a newer cascade, preventing infinite loops.
594  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
595  if (!Cascade)
596    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
597
598  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
599               << " interference: Cascade " << Cascade << '\n');
600  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
601    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
602    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
603    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
604      LiveInterval *Intf = Q.interferingVRegs()[i];
605      unassign(*Intf, VRM->getPhys(Intf->reg));
606      assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
607              VirtReg.isSpillable() < Intf->isSpillable()) &&
608             "Cannot decrease cascade number, illegal eviction");
609      ExtraRegInfo[Intf->reg].Cascade = Cascade;
610      ++NumEvicted;
611      NewVRegs.push_back(Intf);
612    }
613  }
614}
615
616/// tryEvict - Try to evict all interferences for a physreg.
617/// @param  VirtReg Currently unassigned virtual register.
618/// @param  Order   Physregs to try.
619/// @return         Physreg to assign VirtReg, or 0.
620unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
621                            AllocationOrder &Order,
622                            SmallVectorImpl<LiveInterval*> &NewVRegs,
623                            unsigned CostPerUseLimit) {
624  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
625
626  // Keep track of the cheapest interference seen so far.
627  EvictionCost BestCost(~0u);
628  unsigned BestPhys = 0;
629
630  // When we are just looking for a reduced cost per use, don't break any
631  // hints, and only evict smaller spill weights.
632  if (CostPerUseLimit < ~0u) {
633    BestCost.BrokenHints = 0;
634    BestCost.MaxWeight = VirtReg.weight;
635  }
636
637  Order.rewind();
638  while (unsigned PhysReg = Order.next()) {
639    if (clobberedByRegMask(PhysReg))
640      continue;
641    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
642      continue;
643    // The first use of a callee-saved register in a function has cost 1.
644    // Don't start using a CSR when the CostPerUseLimit is low.
645    if (CostPerUseLimit == 1)
646     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
647       if (!MRI->isPhysRegUsed(CSR)) {
648         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
649                      << PrintReg(CSR, TRI) << '\n');
650         continue;
651       }
652
653    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
654      continue;
655
656    // Best so far.
657    BestPhys = PhysReg;
658
659    // Stop if the hint can be used.
660    if (Order.isHint(PhysReg))
661      break;
662  }
663
664  if (!BestPhys)
665    return 0;
666
667  evictInterference(VirtReg, BestPhys, NewVRegs);
668  return BestPhys;
669}
670
671
672//===----------------------------------------------------------------------===//
673//                              Region Splitting
674//===----------------------------------------------------------------------===//
675
676/// addSplitConstraints - Fill out the SplitConstraints vector based on the
677/// interference pattern in Physreg and its aliases. Add the constraints to
678/// SpillPlacement and return the static cost of this split in Cost, assuming
679/// that all preferences in SplitConstraints are met.
680/// Return false if there are no bundles with positive bias.
681bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
682                                   float &Cost) {
683  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
684
685  // Reset interference dependent info.
686  SplitConstraints.resize(UseBlocks.size());
687  float StaticCost = 0;
688  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
689    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
690    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
691
692    BC.Number = BI.MBB->getNumber();
693    Intf.moveToBlock(BC.Number);
694    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
695    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
696    BC.ChangesValue = BI.FirstDef;
697
698    if (!Intf.hasInterference())
699      continue;
700
701    // Number of spill code instructions to insert.
702    unsigned Ins = 0;
703
704    // Interference for the live-in value.
705    if (BI.LiveIn) {
706      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
707        BC.Entry = SpillPlacement::MustSpill, ++Ins;
708      else if (Intf.first() < BI.FirstInstr)
709        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
710      else if (Intf.first() < BI.LastInstr)
711        ++Ins;
712    }
713
714    // Interference for the live-out value.
715    if (BI.LiveOut) {
716      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
717        BC.Exit = SpillPlacement::MustSpill, ++Ins;
718      else if (Intf.last() > BI.LastInstr)
719        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
720      else if (Intf.last() > BI.FirstInstr)
721        ++Ins;
722    }
723
724    // Accumulate the total frequency of inserted spill code.
725    if (Ins)
726      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
727  }
728  Cost = StaticCost;
729
730  // Add constraints for use-blocks. Note that these are the only constraints
731  // that may add a positive bias, it is downhill from here.
732  SpillPlacer->addConstraints(SplitConstraints);
733  return SpillPlacer->scanActiveBundles();
734}
735
736
737/// addThroughConstraints - Add constraints and links to SpillPlacer from the
738/// live-through blocks in Blocks.
739void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
740                                     ArrayRef<unsigned> Blocks) {
741  const unsigned GroupSize = 8;
742  SpillPlacement::BlockConstraint BCS[GroupSize];
743  unsigned TBS[GroupSize];
744  unsigned B = 0, T = 0;
745
746  for (unsigned i = 0; i != Blocks.size(); ++i) {
747    unsigned Number = Blocks[i];
748    Intf.moveToBlock(Number);
749
750    if (!Intf.hasInterference()) {
751      assert(T < GroupSize && "Array overflow");
752      TBS[T] = Number;
753      if (++T == GroupSize) {
754        SpillPlacer->addLinks(makeArrayRef(TBS, T));
755        T = 0;
756      }
757      continue;
758    }
759
760    assert(B < GroupSize && "Array overflow");
761    BCS[B].Number = Number;
762
763    // Interference for the live-in value.
764    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
765      BCS[B].Entry = SpillPlacement::MustSpill;
766    else
767      BCS[B].Entry = SpillPlacement::PrefSpill;
768
769    // Interference for the live-out value.
770    if (Intf.last() >= SA->getLastSplitPoint(Number))
771      BCS[B].Exit = SpillPlacement::MustSpill;
772    else
773      BCS[B].Exit = SpillPlacement::PrefSpill;
774
775    if (++B == GroupSize) {
776      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
777      SpillPlacer->addConstraints(Array);
778      B = 0;
779    }
780  }
781
782  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
783  SpillPlacer->addConstraints(Array);
784  SpillPlacer->addLinks(makeArrayRef(TBS, T));
785}
786
787void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
788  // Keep track of through blocks that have not been added to SpillPlacer.
789  BitVector Todo = SA->getThroughBlocks();
790  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
791  unsigned AddedTo = 0;
792#ifndef NDEBUG
793  unsigned Visited = 0;
794#endif
795
796  for (;;) {
797    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
798    // Find new through blocks in the periphery of PrefRegBundles.
799    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
800      unsigned Bundle = NewBundles[i];
801      // Look at all blocks connected to Bundle in the full graph.
802      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
803      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
804           I != E; ++I) {
805        unsigned Block = *I;
806        if (!Todo.test(Block))
807          continue;
808        Todo.reset(Block);
809        // This is a new through block. Add it to SpillPlacer later.
810        ActiveBlocks.push_back(Block);
811#ifndef NDEBUG
812        ++Visited;
813#endif
814      }
815    }
816    // Any new blocks to add?
817    if (ActiveBlocks.size() == AddedTo)
818      break;
819
820    // Compute through constraints from the interference, or assume that all
821    // through blocks prefer spilling when forming compact regions.
822    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
823    if (Cand.PhysReg)
824      addThroughConstraints(Cand.Intf, NewBlocks);
825    else
826      // Provide a strong negative bias on through blocks to prevent unwanted
827      // liveness on loop backedges.
828      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
829    AddedTo = ActiveBlocks.size();
830
831    // Perhaps iterating can enable more bundles?
832    SpillPlacer->iterate();
833  }
834  DEBUG(dbgs() << ", v=" << Visited);
835}
836
837/// calcCompactRegion - Compute the set of edge bundles that should be live
838/// when splitting the current live range into compact regions.  Compact
839/// regions can be computed without looking at interference.  They are the
840/// regions formed by removing all the live-through blocks from the live range.
841///
842/// Returns false if the current live range is already compact, or if the
843/// compact regions would form single block regions anyway.
844bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
845  // Without any through blocks, the live range is already compact.
846  if (!SA->getNumThroughBlocks())
847    return false;
848
849  // Compact regions don't correspond to any physreg.
850  Cand.reset(IntfCache, 0);
851
852  DEBUG(dbgs() << "Compact region bundles");
853
854  // Use the spill placer to determine the live bundles. GrowRegion pretends
855  // that all the through blocks have interference when PhysReg is unset.
856  SpillPlacer->prepare(Cand.LiveBundles);
857
858  // The static split cost will be zero since Cand.Intf reports no interference.
859  float Cost;
860  if (!addSplitConstraints(Cand.Intf, Cost)) {
861    DEBUG(dbgs() << ", none.\n");
862    return false;
863  }
864
865  growRegion(Cand);
866  SpillPlacer->finish();
867
868  if (!Cand.LiveBundles.any()) {
869    DEBUG(dbgs() << ", none.\n");
870    return false;
871  }
872
873  DEBUG({
874    for (int i = Cand.LiveBundles.find_first(); i>=0;
875         i = Cand.LiveBundles.find_next(i))
876    dbgs() << " EB#" << i;
877    dbgs() << ".\n";
878  });
879  return true;
880}
881
882/// calcSpillCost - Compute how expensive it would be to split the live range in
883/// SA around all use blocks instead of forming bundle regions.
884float RAGreedy::calcSpillCost() {
885  float Cost = 0;
886  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
887  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
888    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
889    unsigned Number = BI.MBB->getNumber();
890    // We normally only need one spill instruction - a load or a store.
891    Cost += SpillPlacer->getBlockFrequency(Number);
892
893    // Unless the value is redefined in the block.
894    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
895      Cost += SpillPlacer->getBlockFrequency(Number);
896  }
897  return Cost;
898}
899
900/// calcGlobalSplitCost - Return the global split cost of following the split
901/// pattern in LiveBundles. This cost should be added to the local cost of the
902/// interference pattern in SplitConstraints.
903///
904float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
905  float GlobalCost = 0;
906  const BitVector &LiveBundles = Cand.LiveBundles;
907  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
908  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
909    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
910    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
911    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
912    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
913    unsigned Ins = 0;
914
915    if (BI.LiveIn)
916      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
917    if (BI.LiveOut)
918      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
919    if (Ins)
920      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
921  }
922
923  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
924    unsigned Number = Cand.ActiveBlocks[i];
925    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
926    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
927    if (!RegIn && !RegOut)
928      continue;
929    if (RegIn && RegOut) {
930      // We need double spill code if this block has interference.
931      Cand.Intf.moveToBlock(Number);
932      if (Cand.Intf.hasInterference())
933        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
934      continue;
935    }
936    // live-in / stack-out or stack-in live-out.
937    GlobalCost += SpillPlacer->getBlockFrequency(Number);
938  }
939  return GlobalCost;
940}
941
942/// splitAroundRegion - Split the current live range around the regions
943/// determined by BundleCand and GlobalCand.
944///
945/// Before calling this function, GlobalCand and BundleCand must be initialized
946/// so each bundle is assigned to a valid candidate, or NoCand for the
947/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
948/// objects must be initialized for the current live range, and intervals
949/// created for the used candidates.
950///
951/// @param LREdit    The LiveRangeEdit object handling the current split.
952/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
953///                  must appear in this list.
954void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
955                                 ArrayRef<unsigned> UsedCands) {
956  // These are the intervals created for new global ranges. We may create more
957  // intervals for local ranges.
958  const unsigned NumGlobalIntvs = LREdit.size();
959  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
960  assert(NumGlobalIntvs && "No global intervals configured");
961
962  // Isolate even single instructions when dealing with a proper sub-class.
963  // That guarantees register class inflation for the stack interval because it
964  // is all copies.
965  unsigned Reg = SA->getParent().reg;
966  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
967
968  // First handle all the blocks with uses.
969  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
970  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
971    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
972    unsigned Number = BI.MBB->getNumber();
973    unsigned IntvIn = 0, IntvOut = 0;
974    SlotIndex IntfIn, IntfOut;
975    if (BI.LiveIn) {
976      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
977      if (CandIn != NoCand) {
978        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
979        IntvIn = Cand.IntvIdx;
980        Cand.Intf.moveToBlock(Number);
981        IntfIn = Cand.Intf.first();
982      }
983    }
984    if (BI.LiveOut) {
985      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
986      if (CandOut != NoCand) {
987        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
988        IntvOut = Cand.IntvIdx;
989        Cand.Intf.moveToBlock(Number);
990        IntfOut = Cand.Intf.last();
991      }
992    }
993
994    // Create separate intervals for isolated blocks with multiple uses.
995    if (!IntvIn && !IntvOut) {
996      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
997      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
998        SE->splitSingleBlock(BI);
999      continue;
1000    }
1001
1002    if (IntvIn && IntvOut)
1003      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1004    else if (IntvIn)
1005      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1006    else
1007      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1008  }
1009
1010  // Handle live-through blocks. The relevant live-through blocks are stored in
1011  // the ActiveBlocks list with each candidate. We need to filter out
1012  // duplicates.
1013  BitVector Todo = SA->getThroughBlocks();
1014  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1015    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1016    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1017      unsigned Number = Blocks[i];
1018      if (!Todo.test(Number))
1019        continue;
1020      Todo.reset(Number);
1021
1022      unsigned IntvIn = 0, IntvOut = 0;
1023      SlotIndex IntfIn, IntfOut;
1024
1025      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1026      if (CandIn != NoCand) {
1027        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1028        IntvIn = Cand.IntvIdx;
1029        Cand.Intf.moveToBlock(Number);
1030        IntfIn = Cand.Intf.first();
1031      }
1032
1033      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1034      if (CandOut != NoCand) {
1035        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1036        IntvOut = Cand.IntvIdx;
1037        Cand.Intf.moveToBlock(Number);
1038        IntfOut = Cand.Intf.last();
1039      }
1040      if (!IntvIn && !IntvOut)
1041        continue;
1042      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1043    }
1044  }
1045
1046  ++NumGlobalSplits;
1047
1048  SmallVector<unsigned, 8> IntvMap;
1049  SE->finish(&IntvMap);
1050  DebugVars->splitRegister(Reg, LREdit.regs());
1051
1052  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1053  unsigned OrigBlocks = SA->getNumLiveBlocks();
1054
1055  // Sort out the new intervals created by splitting. We get four kinds:
1056  // - Remainder intervals should not be split again.
1057  // - Candidate intervals can be assigned to Cand.PhysReg.
1058  // - Block-local splits are candidates for local splitting.
1059  // - DCE leftovers should go back on the queue.
1060  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1061    LiveInterval &Reg = *LREdit.get(i);
1062
1063    // Ignore old intervals from DCE.
1064    if (getStage(Reg) != RS_New)
1065      continue;
1066
1067    // Remainder interval. Don't try splitting again, spill if it doesn't
1068    // allocate.
1069    if (IntvMap[i] == 0) {
1070      setStage(Reg, RS_Spill);
1071      continue;
1072    }
1073
1074    // Global intervals. Allow repeated splitting as long as the number of live
1075    // blocks is strictly decreasing.
1076    if (IntvMap[i] < NumGlobalIntvs) {
1077      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1078        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1079                     << " blocks as original.\n");
1080        // Don't allow repeated splitting as a safe guard against looping.
1081        setStage(Reg, RS_Split2);
1082      }
1083      continue;
1084    }
1085
1086    // Other intervals are treated as new. This includes local intervals created
1087    // for blocks with multiple uses, and anything created by DCE.
1088  }
1089
1090  if (VerifyEnabled)
1091    MF->verify(this, "After splitting live range around region");
1092}
1093
1094unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1095                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1096  unsigned NumCands = 0;
1097  unsigned BestCand = NoCand;
1098  float BestCost;
1099  SmallVector<unsigned, 8> UsedCands;
1100
1101  // Check if we can split this live range around a compact region.
1102  bool HasCompact = calcCompactRegion(GlobalCand.front());
1103  if (HasCompact) {
1104    // Yes, keep GlobalCand[0] as the compact region candidate.
1105    NumCands = 1;
1106    BestCost = HUGE_VALF;
1107  } else {
1108    // No benefit from the compact region, our fallback will be per-block
1109    // splitting. Make sure we find a solution that is cheaper than spilling.
1110    BestCost = Hysteresis * calcSpillCost();
1111    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1112  }
1113
1114  Order.rewind();
1115  while (unsigned PhysReg = Order.next()) {
1116    // Discard bad candidates before we run out of interference cache cursors.
1117    // This will only affect register classes with a lot of registers (>32).
1118    if (NumCands == IntfCache.getMaxCursors()) {
1119      unsigned WorstCount = ~0u;
1120      unsigned Worst = 0;
1121      for (unsigned i = 0; i != NumCands; ++i) {
1122        if (i == BestCand || !GlobalCand[i].PhysReg)
1123          continue;
1124        unsigned Count = GlobalCand[i].LiveBundles.count();
1125        if (Count < WorstCount)
1126          Worst = i, WorstCount = Count;
1127      }
1128      --NumCands;
1129      GlobalCand[Worst] = GlobalCand[NumCands];
1130      if (BestCand == NumCands)
1131        BestCand = Worst;
1132    }
1133
1134    if (GlobalCand.size() <= NumCands)
1135      GlobalCand.resize(NumCands+1);
1136    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1137    Cand.reset(IntfCache, PhysReg);
1138
1139    SpillPlacer->prepare(Cand.LiveBundles);
1140    float Cost;
1141    if (!addSplitConstraints(Cand.Intf, Cost)) {
1142      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1143      continue;
1144    }
1145    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1146    if (Cost >= BestCost) {
1147      DEBUG({
1148        if (BestCand == NoCand)
1149          dbgs() << " worse than no bundles\n";
1150        else
1151          dbgs() << " worse than "
1152                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1153      });
1154      continue;
1155    }
1156    growRegion(Cand);
1157
1158    SpillPlacer->finish();
1159
1160    // No live bundles, defer to splitSingleBlocks().
1161    if (!Cand.LiveBundles.any()) {
1162      DEBUG(dbgs() << " no bundles.\n");
1163      continue;
1164    }
1165
1166    Cost += calcGlobalSplitCost(Cand);
1167    DEBUG({
1168      dbgs() << ", total = " << Cost << " with bundles";
1169      for (int i = Cand.LiveBundles.find_first(); i>=0;
1170           i = Cand.LiveBundles.find_next(i))
1171        dbgs() << " EB#" << i;
1172      dbgs() << ".\n";
1173    });
1174    if (Cost < BestCost) {
1175      BestCand = NumCands;
1176      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1177    }
1178    ++NumCands;
1179  }
1180
1181  // No solutions found, fall back to single block splitting.
1182  if (!HasCompact && BestCand == NoCand)
1183    return 0;
1184
1185  // Prepare split editor.
1186  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1187  SE->reset(LREdit, SplitSpillMode);
1188
1189  // Assign all edge bundles to the preferred candidate, or NoCand.
1190  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1191
1192  // Assign bundles for the best candidate region.
1193  if (BestCand != NoCand) {
1194    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1195    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1196      UsedCands.push_back(BestCand);
1197      Cand.IntvIdx = SE->openIntv();
1198      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1199                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1200      (void)B;
1201    }
1202  }
1203
1204  // Assign bundles for the compact region.
1205  if (HasCompact) {
1206    GlobalSplitCandidate &Cand = GlobalCand.front();
1207    assert(!Cand.PhysReg && "Compact region has no physreg");
1208    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1209      UsedCands.push_back(0);
1210      Cand.IntvIdx = SE->openIntv();
1211      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1212                   << Cand.IntvIdx << ".\n");
1213      (void)B;
1214    }
1215  }
1216
1217  splitAroundRegion(LREdit, UsedCands);
1218  return 0;
1219}
1220
1221
1222//===----------------------------------------------------------------------===//
1223//                            Per-Block Splitting
1224//===----------------------------------------------------------------------===//
1225
1226/// tryBlockSplit - Split a global live range around every block with uses. This
1227/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1228/// they don't allocate.
1229unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1230                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1231  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1232  unsigned Reg = VirtReg.reg;
1233  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1234  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1235  SE->reset(LREdit, SplitSpillMode);
1236  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1237  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1238    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1239    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1240      SE->splitSingleBlock(BI);
1241  }
1242  // No blocks were split.
1243  if (LREdit.empty())
1244    return 0;
1245
1246  // We did split for some blocks.
1247  SmallVector<unsigned, 8> IntvMap;
1248  SE->finish(&IntvMap);
1249
1250  // Tell LiveDebugVariables about the new ranges.
1251  DebugVars->splitRegister(Reg, LREdit.regs());
1252
1253  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1254
1255  // Sort out the new intervals created by splitting. The remainder interval
1256  // goes straight to spilling, the new local ranges get to stay RS_New.
1257  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1258    LiveInterval &LI = *LREdit.get(i);
1259    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1260      setStage(LI, RS_Spill);
1261  }
1262
1263  if (VerifyEnabled)
1264    MF->verify(this, "After splitting live range around basic blocks");
1265  return 0;
1266}
1267
1268//===----------------------------------------------------------------------===//
1269//                             Local Splitting
1270//===----------------------------------------------------------------------===//
1271
1272
1273/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1274/// in order to use PhysReg between two entries in SA->UseSlots.
1275///
1276/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1277///
1278void RAGreedy::calcGapWeights(unsigned PhysReg,
1279                              SmallVectorImpl<float> &GapWeight) {
1280  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1281  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1282  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1283  const unsigned NumGaps = Uses.size()-1;
1284
1285  // Start and end points for the interference check.
1286  SlotIndex StartIdx =
1287    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1288  SlotIndex StopIdx =
1289    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1290
1291  GapWeight.assign(NumGaps, 0.0f);
1292
1293  // Add interference from each overlapping register.
1294  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1295    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1296           .checkInterference())
1297      continue;
1298
1299    // We know that VirtReg is a continuous interval from FirstInstr to
1300    // LastInstr, so we don't need InterferenceQuery.
1301    //
1302    // Interference that overlaps an instruction is counted in both gaps
1303    // surrounding the instruction. The exception is interference before
1304    // StartIdx and after StopIdx.
1305    //
1306    LiveIntervalUnion::SegmentIter IntI = getLiveUnion(*AI).find(StartIdx);
1307    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1308      // Skip the gaps before IntI.
1309      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1310        if (++Gap == NumGaps)
1311          break;
1312      if (Gap == NumGaps)
1313        break;
1314
1315      // Update the gaps covered by IntI.
1316      const float weight = IntI.value()->weight;
1317      for (; Gap != NumGaps; ++Gap) {
1318        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1319        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1320          break;
1321      }
1322      if (Gap == NumGaps)
1323        break;
1324    }
1325  }
1326}
1327
1328/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1329/// basic block.
1330///
1331unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1332                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1333  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1334  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1335
1336  // Note that it is possible to have an interval that is live-in or live-out
1337  // while only covering a single block - A phi-def can use undef values from
1338  // predecessors, and the block could be a single-block loop.
1339  // We don't bother doing anything clever about such a case, we simply assume
1340  // that the interval is continuous from FirstInstr to LastInstr. We should
1341  // make sure that we don't do anything illegal to such an interval, though.
1342
1343  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1344  if (Uses.size() <= 2)
1345    return 0;
1346  const unsigned NumGaps = Uses.size()-1;
1347
1348  DEBUG({
1349    dbgs() << "tryLocalSplit: ";
1350    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1351      dbgs() << ' ' << Uses[i];
1352    dbgs() << '\n';
1353  });
1354
1355  // If VirtReg is live across any register mask operands, compute a list of
1356  // gaps with register masks.
1357  SmallVector<unsigned, 8> RegMaskGaps;
1358  if (!UsableRegs.empty()) {
1359    // Get regmask slots for the whole block.
1360    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1361    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1362    // Constrain to VirtReg's live range.
1363    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1364                                   Uses.front().getRegSlot()) - RMS.begin();
1365    unsigned re = RMS.size();
1366    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1367      // Look for Uses[i] <= RMS <= Uses[i+1].
1368      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1369      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1370        continue;
1371      // Skip a regmask on the same instruction as the last use. It doesn't
1372      // overlap the live range.
1373      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1374        break;
1375      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1376      RegMaskGaps.push_back(i);
1377      // Advance ri to the next gap. A regmask on one of the uses counts in
1378      // both gaps.
1379      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1380        ++ri;
1381    }
1382    DEBUG(dbgs() << '\n');
1383  }
1384
1385  // Since we allow local split results to be split again, there is a risk of
1386  // creating infinite loops. It is tempting to require that the new live
1387  // ranges have less instructions than the original. That would guarantee
1388  // convergence, but it is too strict. A live range with 3 instructions can be
1389  // split 2+3 (including the COPY), and we want to allow that.
1390  //
1391  // Instead we use these rules:
1392  //
1393  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1394  //    noop split, of course).
1395  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1396  //    the new ranges must have fewer instructions than before the split.
1397  // 3. New ranges with the same number of instructions are marked RS_Split2,
1398  //    smaller ranges are marked RS_New.
1399  //
1400  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1401  // excessive splitting and infinite loops.
1402  //
1403  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1404
1405  // Best split candidate.
1406  unsigned BestBefore = NumGaps;
1407  unsigned BestAfter = 0;
1408  float BestDiff = 0;
1409
1410  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1411  SmallVector<float, 8> GapWeight;
1412
1413  Order.rewind();
1414  while (unsigned PhysReg = Order.next()) {
1415    // Keep track of the largest spill weight that would need to be evicted in
1416    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1417    calcGapWeights(PhysReg, GapWeight);
1418
1419    // Remove any gaps with regmask clobbers.
1420    if (clobberedByRegMask(PhysReg))
1421      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1422        GapWeight[RegMaskGaps[i]] = HUGE_VALF;
1423
1424    // Try to find the best sequence of gaps to close.
1425    // The new spill weight must be larger than any gap interference.
1426
1427    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1428    unsigned SplitBefore = 0, SplitAfter = 1;
1429
1430    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1431    // It is the spill weight that needs to be evicted.
1432    float MaxGap = GapWeight[0];
1433
1434    for (;;) {
1435      // Live before/after split?
1436      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1437      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1438
1439      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1440                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1441                   << " i=" << MaxGap);
1442
1443      // Stop before the interval gets so big we wouldn't be making progress.
1444      if (!LiveBefore && !LiveAfter) {
1445        DEBUG(dbgs() << " all\n");
1446        break;
1447      }
1448      // Should the interval be extended or shrunk?
1449      bool Shrink = true;
1450
1451      // How many gaps would the new range have?
1452      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1453
1454      // Legally, without causing looping?
1455      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1456
1457      if (Legal && MaxGap < HUGE_VALF) {
1458        // Estimate the new spill weight. Each instruction reads or writes the
1459        // register. Conservatively assume there are no read-modify-write
1460        // instructions.
1461        //
1462        // Try to guess the size of the new interval.
1463        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1464                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1465                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1466        // Would this split be possible to allocate?
1467        // Never allocate all gaps, we wouldn't be making progress.
1468        DEBUG(dbgs() << " w=" << EstWeight);
1469        if (EstWeight * Hysteresis >= MaxGap) {
1470          Shrink = false;
1471          float Diff = EstWeight - MaxGap;
1472          if (Diff > BestDiff) {
1473            DEBUG(dbgs() << " (best)");
1474            BestDiff = Hysteresis * Diff;
1475            BestBefore = SplitBefore;
1476            BestAfter = SplitAfter;
1477          }
1478        }
1479      }
1480
1481      // Try to shrink.
1482      if (Shrink) {
1483        if (++SplitBefore < SplitAfter) {
1484          DEBUG(dbgs() << " shrink\n");
1485          // Recompute the max when necessary.
1486          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1487            MaxGap = GapWeight[SplitBefore];
1488            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1489              MaxGap = std::max(MaxGap, GapWeight[i]);
1490          }
1491          continue;
1492        }
1493        MaxGap = 0;
1494      }
1495
1496      // Try to extend the interval.
1497      if (SplitAfter >= NumGaps) {
1498        DEBUG(dbgs() << " end\n");
1499        break;
1500      }
1501
1502      DEBUG(dbgs() << " extend\n");
1503      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1504    }
1505  }
1506
1507  // Didn't find any candidates?
1508  if (BestBefore == NumGaps)
1509    return 0;
1510
1511  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1512               << '-' << Uses[BestAfter] << ", " << BestDiff
1513               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1514
1515  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1516  SE->reset(LREdit);
1517
1518  SE->openIntv();
1519  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1520  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1521  SE->useIntv(SegStart, SegStop);
1522  SmallVector<unsigned, 8> IntvMap;
1523  SE->finish(&IntvMap);
1524  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1525
1526  // If the new range has the same number of instructions as before, mark it as
1527  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1528  // leave the new intervals as RS_New so they can compete.
1529  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1530  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1531  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1532  if (NewGaps >= NumGaps) {
1533    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1534    assert(!ProgressRequired && "Didn't make progress when it was required.");
1535    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1536      if (IntvMap[i] == 1) {
1537        setStage(*LREdit.get(i), RS_Split2);
1538        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1539      }
1540    DEBUG(dbgs() << '\n');
1541  }
1542  ++NumLocalSplits;
1543
1544  return 0;
1545}
1546
1547//===----------------------------------------------------------------------===//
1548//                          Live Range Splitting
1549//===----------------------------------------------------------------------===//
1550
1551/// trySplit - Try to split VirtReg or one of its interferences, making it
1552/// assignable.
1553/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1554unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1555                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1556  // Ranges must be Split2 or less.
1557  if (getStage(VirtReg) >= RS_Spill)
1558    return 0;
1559
1560  // Local intervals are handled separately.
1561  if (LIS->intervalIsInOneMBB(VirtReg)) {
1562    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1563    SA->analyze(&VirtReg);
1564    return tryLocalSplit(VirtReg, Order, NewVRegs);
1565  }
1566
1567  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1568
1569  SA->analyze(&VirtReg);
1570
1571  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1572  // coalescer. That may cause the range to become allocatable which means that
1573  // tryRegionSplit won't be making progress. This check should be replaced with
1574  // an assertion when the coalescer is fixed.
1575  if (SA->didRepairRange()) {
1576    // VirtReg has changed, so all cached queries are invalid.
1577    invalidateVirtRegs();
1578    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1579      return PhysReg;
1580  }
1581
1582  // First try to split around a region spanning multiple blocks. RS_Split2
1583  // ranges already made dubious progress with region splitting, so they go
1584  // straight to single block splitting.
1585  if (getStage(VirtReg) < RS_Split2) {
1586    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1587    if (PhysReg || !NewVRegs.empty())
1588      return PhysReg;
1589  }
1590
1591  // Then isolate blocks.
1592  return tryBlockSplit(VirtReg, Order, NewVRegs);
1593}
1594
1595
1596//===----------------------------------------------------------------------===//
1597//                            Main Entry Point
1598//===----------------------------------------------------------------------===//
1599
1600unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1601                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1602  // Check if VirtReg is live across any calls.
1603  UsableRegs.clear();
1604  if (LIS->checkRegMaskInterference(VirtReg, UsableRegs))
1605    DEBUG(dbgs() << "Live across regmasks.\n");
1606
1607  // First try assigning a free register.
1608  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1609  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1610    return PhysReg;
1611
1612  LiveRangeStage Stage = getStage(VirtReg);
1613  DEBUG(dbgs() << StageName[Stage]
1614               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1615
1616  // Try to evict a less worthy live range, but only for ranges from the primary
1617  // queue. The RS_Split ranges already failed to do this, and they should not
1618  // get a second chance until they have been split.
1619  if (Stage != RS_Split)
1620    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1621      return PhysReg;
1622
1623  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1624
1625  // The first time we see a live range, don't try to split or spill.
1626  // Wait until the second time, when all smaller ranges have been allocated.
1627  // This gives a better picture of the interference to split around.
1628  if (Stage < RS_Split) {
1629    setStage(VirtReg, RS_Split);
1630    DEBUG(dbgs() << "wait for second round\n");
1631    NewVRegs.push_back(&VirtReg);
1632    return 0;
1633  }
1634
1635  // If we couldn't allocate a register from spilling, there is probably some
1636  // invalid inline assembly. The base class wil report it.
1637  if (Stage >= RS_Done || !VirtReg.isSpillable())
1638    return ~0u;
1639
1640  // Try splitting VirtReg or interferences.
1641  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1642  if (PhysReg || !NewVRegs.empty())
1643    return PhysReg;
1644
1645  // Finally spill VirtReg itself.
1646  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1647  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1648  spiller().spill(LRE);
1649  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1650
1651  if (VerifyEnabled)
1652    MF->verify(this, "After spilling");
1653
1654  // The live virtual register requesting allocation was spilled, so tell
1655  // the caller not to allocate anything during this round.
1656  return 0;
1657}
1658
1659bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1660  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1661               << "********** Function: "
1662               << ((Value*)mf.getFunction())->getName() << '\n');
1663
1664  MF = &mf;
1665  if (VerifyEnabled)
1666    MF->verify(this, "Before greedy register allocator");
1667
1668  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1669  Indexes = &getAnalysis<SlotIndexes>();
1670  DomTree = &getAnalysis<MachineDominatorTree>();
1671  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1672  Loops = &getAnalysis<MachineLoopInfo>();
1673  Bundles = &getAnalysis<EdgeBundles>();
1674  SpillPlacer = &getAnalysis<SpillPlacement>();
1675  DebugVars = &getAnalysis<LiveDebugVariables>();
1676
1677  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1678  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1679  ExtraRegInfo.clear();
1680  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1681  NextCascade = 1;
1682  IntfCache.init(MF, &getLiveUnion(0), Indexes, LIS, TRI);
1683  GlobalCand.resize(32);  // This will grow as needed.
1684
1685  allocatePhysRegs();
1686  addMBBLiveIns(MF);
1687  LIS->addKillFlags();
1688
1689  // Run rewriter
1690  {
1691    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1692    VRM->rewrite(Indexes);
1693  }
1694
1695  // Write out new DBG_VALUE instructions.
1696  {
1697    NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled);
1698    DebugVars->emitDebugValues(VRM);
1699  }
1700
1701  // The pass output is in VirtRegMap. Release all the transient data.
1702  releaseMemory();
1703
1704  return true;
1705}
1706