RegAllocGreedy.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/Passes.h"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "RegAllocBase.h"
20#include "SpillPlacement.h"
21#include "Spiller.h"
22#include "SplitKit.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/CodeGen/CalcSpillWeights.h"
26#include "llvm/CodeGen/EdgeBundles.h"
27#include "llvm/CodeGen/LiveIntervalAnalysis.h"
28#include "llvm/CodeGen/LiveRangeEdit.h"
29#include "llvm/CodeGen/LiveRegMatrix.h"
30#include "llvm/CodeGen/LiveStackAnalysis.h"
31#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/RegAllocRegistry.h"
37#include "llvm/CodeGen/RegisterClassInfo.h"
38#include "llvm/CodeGen/VirtRegMap.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/PassAnalysisSupport.h"
41#include "llvm/Support/BranchProbability.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/Timer.h"
46#include "llvm/Support/raw_ostream.h"
47#include <queue>
48
49using namespace llvm;
50
51#define DEBUG_TYPE "regalloc"
52
53STATISTIC(NumGlobalSplits, "Number of split global live ranges");
54STATISTIC(NumLocalSplits,  "Number of split local live ranges");
55STATISTIC(NumEvicted,      "Number of interferences evicted");
56
57static cl::opt<SplitEditor::ComplementSpillMode>
58SplitSpillMode("split-spill-mode", cl::Hidden,
59  cl::desc("Spill mode for splitting live ranges"),
60  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
61             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
62             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
63             clEnumValEnd),
64  cl::init(SplitEditor::SM_Partition));
65
66static cl::opt<unsigned>
67LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
68                             cl::desc("Last chance recoloring max depth"),
69                             cl::init(5));
70
71static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
72    "lcr-max-interf", cl::Hidden,
73    cl::desc("Last chance recoloring maximum number of considered"
74             " interference at a time"),
75    cl::init(8));
76
77static cl::opt<bool>
78ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
79                 cl::desc("Exhaustive Search for registers bypassing the depth "
80                          "and interference cutoffs of last chance recoloring"));
81
82// FIXME: Find a good default for this flag and remove the flag.
83static cl::opt<unsigned>
84CSRFirstTimeCost("regalloc-csr-first-time-cost",
85              cl::desc("Cost for first time use of callee-saved register."),
86              cl::init(0), cl::Hidden);
87
88static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
89                                       createGreedyRegisterAllocator);
90
91namespace {
92class RAGreedy : public MachineFunctionPass,
93                 public RegAllocBase,
94                 private LiveRangeEdit::Delegate {
95  // Convenient shortcuts.
96  typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
97  typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
98  typedef SmallSet<unsigned, 16> SmallVirtRegSet;
99
100  // context
101  MachineFunction *MF;
102
103  // Shortcuts to some useful interface.
104  const TargetInstrInfo *TII;
105  const TargetRegisterInfo *TRI;
106  RegisterClassInfo RCI;
107
108  // analyses
109  SlotIndexes *Indexes;
110  MachineBlockFrequencyInfo *MBFI;
111  MachineDominatorTree *DomTree;
112  MachineLoopInfo *Loops;
113  EdgeBundles *Bundles;
114  SpillPlacement *SpillPlacer;
115  LiveDebugVariables *DebugVars;
116
117  // state
118  std::unique_ptr<Spiller> SpillerInstance;
119  PQueue Queue;
120  unsigned NextCascade;
121
122  // Live ranges pass through a number of stages as we try to allocate them.
123  // Some of the stages may also create new live ranges:
124  //
125  // - Region splitting.
126  // - Per-block splitting.
127  // - Local splitting.
128  // - Spilling.
129  //
130  // Ranges produced by one of the stages skip the previous stages when they are
131  // dequeued. This improves performance because we can skip interference checks
132  // that are unlikely to give any results. It also guarantees that the live
133  // range splitting algorithm terminates, something that is otherwise hard to
134  // ensure.
135  enum LiveRangeStage {
136    /// Newly created live range that has never been queued.
137    RS_New,
138
139    /// Only attempt assignment and eviction. Then requeue as RS_Split.
140    RS_Assign,
141
142    /// Attempt live range splitting if assignment is impossible.
143    RS_Split,
144
145    /// Attempt more aggressive live range splitting that is guaranteed to make
146    /// progress.  This is used for split products that may not be making
147    /// progress.
148    RS_Split2,
149
150    /// Live range will be spilled.  No more splitting will be attempted.
151    RS_Spill,
152
153    /// There is nothing more we can do to this live range.  Abort compilation
154    /// if it can't be assigned.
155    RS_Done
156  };
157
158  // Enum CutOffStage to keep a track whether the register allocation failed
159  // because of the cutoffs encountered in last chance recoloring.
160  // Note: This is used as bitmask. New value should be next power of 2.
161  enum CutOffStage {
162    // No cutoffs encountered
163    CO_None = 0,
164
165    // lcr-max-depth cutoff encountered
166    CO_Depth = 1,
167
168    // lcr-max-interf cutoff encountered
169    CO_Interf = 2
170  };
171
172  uint8_t CutOffInfo;
173
174#ifndef NDEBUG
175  static const char *const StageName[];
176#endif
177
178  // RegInfo - Keep additional information about each live range.
179  struct RegInfo {
180    LiveRangeStage Stage;
181
182    // Cascade - Eviction loop prevention. See canEvictInterference().
183    unsigned Cascade;
184
185    RegInfo() : Stage(RS_New), Cascade(0) {}
186  };
187
188  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
189
190  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
191    return ExtraRegInfo[VirtReg.reg].Stage;
192  }
193
194  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
195    ExtraRegInfo.resize(MRI->getNumVirtRegs());
196    ExtraRegInfo[VirtReg.reg].Stage = Stage;
197  }
198
199  template<typename Iterator>
200  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
201    ExtraRegInfo.resize(MRI->getNumVirtRegs());
202    for (;Begin != End; ++Begin) {
203      unsigned Reg = *Begin;
204      if (ExtraRegInfo[Reg].Stage == RS_New)
205        ExtraRegInfo[Reg].Stage = NewStage;
206    }
207  }
208
209  /// Cost of evicting interference.
210  struct EvictionCost {
211    unsigned BrokenHints; ///< Total number of broken hints.
212    float MaxWeight;      ///< Maximum spill weight evicted.
213
214    EvictionCost(): BrokenHints(0), MaxWeight(0) {}
215
216    bool isMax() const { return BrokenHints == ~0u; }
217
218    void setMax() { BrokenHints = ~0u; }
219
220    void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
221
222    bool operator<(const EvictionCost &O) const {
223      return std::tie(BrokenHints, MaxWeight) <
224             std::tie(O.BrokenHints, O.MaxWeight);
225    }
226  };
227
228  // splitting state.
229  std::unique_ptr<SplitAnalysis> SA;
230  std::unique_ptr<SplitEditor> SE;
231
232  /// Cached per-block interference maps
233  InterferenceCache IntfCache;
234
235  /// All basic blocks where the current register has uses.
236  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
237
238  /// Global live range splitting candidate info.
239  struct GlobalSplitCandidate {
240    // Register intended for assignment, or 0.
241    unsigned PhysReg;
242
243    // SplitKit interval index for this candidate.
244    unsigned IntvIdx;
245
246    // Interference for PhysReg.
247    InterferenceCache::Cursor Intf;
248
249    // Bundles where this candidate should be live.
250    BitVector LiveBundles;
251    SmallVector<unsigned, 8> ActiveBlocks;
252
253    void reset(InterferenceCache &Cache, unsigned Reg) {
254      PhysReg = Reg;
255      IntvIdx = 0;
256      Intf.setPhysReg(Cache, Reg);
257      LiveBundles.clear();
258      ActiveBlocks.clear();
259    }
260
261    // Set B[i] = C for every live bundle where B[i] was NoCand.
262    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
263      unsigned Count = 0;
264      for (int i = LiveBundles.find_first(); i >= 0;
265           i = LiveBundles.find_next(i))
266        if (B[i] == NoCand) {
267          B[i] = C;
268          Count++;
269        }
270      return Count;
271    }
272  };
273
274  /// Candidate info for each PhysReg in AllocationOrder.
275  /// This vector never shrinks, but grows to the size of the largest register
276  /// class.
277  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
278
279  enum : unsigned { NoCand = ~0u };
280
281  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
282  /// NoCand which indicates the stack interval.
283  SmallVector<unsigned, 32> BundleCand;
284
285  /// Callee-save register cost, calculated once per machine function.
286  BlockFrequency CSRCost;
287
288public:
289  RAGreedy();
290
291  /// Return the pass name.
292  const char* getPassName() const override {
293    return "Greedy Register Allocator";
294  }
295
296  /// RAGreedy analysis usage.
297  void getAnalysisUsage(AnalysisUsage &AU) const override;
298  void releaseMemory() override;
299  Spiller &spiller() override { return *SpillerInstance; }
300  void enqueue(LiveInterval *LI) override;
301  LiveInterval *dequeue() override;
302  unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
303
304  /// Perform register allocation.
305  bool runOnMachineFunction(MachineFunction &mf) override;
306
307  static char ID;
308
309private:
310  unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
311                             SmallVirtRegSet &, unsigned = 0);
312
313  bool LRE_CanEraseVirtReg(unsigned) override;
314  void LRE_WillShrinkVirtReg(unsigned) override;
315  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
316  void enqueue(PQueue &CurQueue, LiveInterval *LI);
317  LiveInterval *dequeue(PQueue &CurQueue);
318
319  BlockFrequency calcSpillCost();
320  bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
321  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
322  void growRegion(GlobalSplitCandidate &Cand);
323  BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
324  bool calcCompactRegion(GlobalSplitCandidate&);
325  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
326  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
327  unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
328  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
329  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
330  void evictInterference(LiveInterval&, unsigned,
331                         SmallVectorImpl<unsigned>&);
332  bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
333                                  SmallLISet &RecoloringCandidates,
334                                  const SmallVirtRegSet &FixedRegisters);
335
336  unsigned tryAssign(LiveInterval&, AllocationOrder&,
337                     SmallVectorImpl<unsigned>&);
338  unsigned tryEvict(LiveInterval&, AllocationOrder&,
339                    SmallVectorImpl<unsigned>&, unsigned = ~0u);
340  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
341                          SmallVectorImpl<unsigned>&);
342  /// Calculate cost of region splitting.
343  unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
344                                    AllocationOrder &Order,
345                                    BlockFrequency &BestCost,
346                                    unsigned &NumCands, bool IgnoreCSR);
347  /// Perform region splitting.
348  unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
349                         bool HasCompact,
350                         SmallVectorImpl<unsigned> &NewVRegs);
351  /// Check other options before using a callee-saved register for the first
352  /// time.
353  unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
354                                 unsigned PhysReg, unsigned &CostPerUseLimit,
355                                 SmallVectorImpl<unsigned> &NewVRegs);
356  void initializeCSRCost();
357  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
358                         SmallVectorImpl<unsigned>&);
359  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
360                               SmallVectorImpl<unsigned>&);
361  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
362    SmallVectorImpl<unsigned>&);
363  unsigned trySplit(LiveInterval&, AllocationOrder&,
364                    SmallVectorImpl<unsigned>&);
365  unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
366                                   SmallVectorImpl<unsigned> &,
367                                   SmallVirtRegSet &, unsigned);
368  bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
369                               SmallVirtRegSet &, unsigned);
370};
371} // end anonymous namespace
372
373char RAGreedy::ID = 0;
374
375#ifndef NDEBUG
376const char *const RAGreedy::StageName[] = {
377    "RS_New",
378    "RS_Assign",
379    "RS_Split",
380    "RS_Split2",
381    "RS_Spill",
382    "RS_Done"
383};
384#endif
385
386// Hysteresis to use when comparing floats.
387// This helps stabilize decisions based on float comparisons.
388const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
389
390
391FunctionPass* llvm::createGreedyRegisterAllocator() {
392  return new RAGreedy();
393}
394
395RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
396  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
397  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
398  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
399  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
400  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
401  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
402  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
403  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
404  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
405  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
406  initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
407  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
408  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
409}
410
411void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
412  AU.setPreservesCFG();
413  AU.addRequired<MachineBlockFrequencyInfo>();
414  AU.addPreserved<MachineBlockFrequencyInfo>();
415  AU.addRequired<AliasAnalysis>();
416  AU.addPreserved<AliasAnalysis>();
417  AU.addRequired<LiveIntervals>();
418  AU.addPreserved<LiveIntervals>();
419  AU.addRequired<SlotIndexes>();
420  AU.addPreserved<SlotIndexes>();
421  AU.addRequired<LiveDebugVariables>();
422  AU.addPreserved<LiveDebugVariables>();
423  AU.addRequired<LiveStacks>();
424  AU.addPreserved<LiveStacks>();
425  AU.addRequired<MachineDominatorTree>();
426  AU.addPreserved<MachineDominatorTree>();
427  AU.addRequired<MachineLoopInfo>();
428  AU.addPreserved<MachineLoopInfo>();
429  AU.addRequired<VirtRegMap>();
430  AU.addPreserved<VirtRegMap>();
431  AU.addRequired<LiveRegMatrix>();
432  AU.addPreserved<LiveRegMatrix>();
433  AU.addRequired<EdgeBundles>();
434  AU.addRequired<SpillPlacement>();
435  MachineFunctionPass::getAnalysisUsage(AU);
436}
437
438
439//===----------------------------------------------------------------------===//
440//                     LiveRangeEdit delegate methods
441//===----------------------------------------------------------------------===//
442
443bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
444  if (VRM->hasPhys(VirtReg)) {
445    Matrix->unassign(LIS->getInterval(VirtReg));
446    return true;
447  }
448  // Unassigned virtreg is probably in the priority queue.
449  // RegAllocBase will erase it after dequeueing.
450  return false;
451}
452
453void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
454  if (!VRM->hasPhys(VirtReg))
455    return;
456
457  // Register is assigned, put it back on the queue for reassignment.
458  LiveInterval &LI = LIS->getInterval(VirtReg);
459  Matrix->unassign(LI);
460  enqueue(&LI);
461}
462
463void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
464  // Cloning a register we haven't even heard about yet?  Just ignore it.
465  if (!ExtraRegInfo.inBounds(Old))
466    return;
467
468  // LRE may clone a virtual register because dead code elimination causes it to
469  // be split into connected components. The new components are much smaller
470  // than the original, so they should get a new chance at being assigned.
471  // same stage as the parent.
472  ExtraRegInfo[Old].Stage = RS_Assign;
473  ExtraRegInfo.grow(New);
474  ExtraRegInfo[New] = ExtraRegInfo[Old];
475}
476
477void RAGreedy::releaseMemory() {
478  SpillerInstance.reset(nullptr);
479  ExtraRegInfo.clear();
480  GlobalCand.clear();
481}
482
483void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
484
485void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
486  // Prioritize live ranges by size, assigning larger ranges first.
487  // The queue holds (size, reg) pairs.
488  const unsigned Size = LI->getSize();
489  const unsigned Reg = LI->reg;
490  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
491         "Can only enqueue virtual registers");
492  unsigned Prio;
493
494  ExtraRegInfo.grow(Reg);
495  if (ExtraRegInfo[Reg].Stage == RS_New)
496    ExtraRegInfo[Reg].Stage = RS_Assign;
497
498  if (ExtraRegInfo[Reg].Stage == RS_Split) {
499    // Unsplit ranges that couldn't be allocated immediately are deferred until
500    // everything else has been allocated.
501    Prio = Size;
502  } else {
503    // Giant live ranges fall back to the global assignment heuristic, which
504    // prevents excessive spilling in pathological cases.
505    bool ReverseLocal = TRI->reverseLocalAssignment();
506    bool ForceGlobal = !ReverseLocal && TRI->mayOverrideLocalAssignment() &&
507      (Size / SlotIndex::InstrDist) > (2 * MRI->getRegClass(Reg)->getNumRegs());
508
509    if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
510        LIS->intervalIsInOneMBB(*LI)) {
511      // Allocate original local ranges in linear instruction order. Since they
512      // are singly defined, this produces optimal coloring in the absence of
513      // global interference and other constraints.
514      if (!ReverseLocal)
515        Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
516      else {
517        // Allocating bottom up may allow many short LRGs to be assigned first
518        // to one of the cheap registers. This could be much faster for very
519        // large blocks on targets with many physical registers.
520        Prio = Indexes->getZeroIndex().getInstrDistance(LI->beginIndex());
521      }
522    }
523    else {
524      // Allocate global and split ranges in long->short order. Long ranges that
525      // don't fit should be spilled (or split) ASAP so they don't create
526      // interference.  Mark a bit to prioritize global above local ranges.
527      Prio = (1u << 29) + Size;
528    }
529    // Mark a higher bit to prioritize global and local above RS_Split.
530    Prio |= (1u << 31);
531
532    // Boost ranges that have a physical register hint.
533    if (VRM->hasKnownPreference(Reg))
534      Prio |= (1u << 30);
535  }
536  // The virtual register number is a tie breaker for same-sized ranges.
537  // Give lower vreg numbers higher priority to assign them first.
538  CurQueue.push(std::make_pair(Prio, ~Reg));
539}
540
541LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
542
543LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
544  if (CurQueue.empty())
545    return nullptr;
546  LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
547  CurQueue.pop();
548  return LI;
549}
550
551
552//===----------------------------------------------------------------------===//
553//                            Direct Assignment
554//===----------------------------------------------------------------------===//
555
556/// tryAssign - Try to assign VirtReg to an available register.
557unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
558                             AllocationOrder &Order,
559                             SmallVectorImpl<unsigned> &NewVRegs) {
560  Order.rewind();
561  unsigned PhysReg;
562  while ((PhysReg = Order.next()))
563    if (!Matrix->checkInterference(VirtReg, PhysReg))
564      break;
565  if (!PhysReg || Order.isHint())
566    return PhysReg;
567
568  // PhysReg is available, but there may be a better choice.
569
570  // If we missed a simple hint, try to cheaply evict interference from the
571  // preferred register.
572  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
573    if (Order.isHint(Hint)) {
574      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
575      EvictionCost MaxCost;
576      MaxCost.setBrokenHints(1);
577      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
578        evictInterference(VirtReg, Hint, NewVRegs);
579        return Hint;
580      }
581    }
582
583  // Try to evict interference from a cheaper alternative.
584  unsigned Cost = TRI->getCostPerUse(PhysReg);
585
586  // Most registers have 0 additional cost.
587  if (!Cost)
588    return PhysReg;
589
590  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
591               << '\n');
592  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
593  return CheapReg ? CheapReg : PhysReg;
594}
595
596
597//===----------------------------------------------------------------------===//
598//                         Interference eviction
599//===----------------------------------------------------------------------===//
600
601unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
602  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
603  unsigned PhysReg;
604  while ((PhysReg = Order.next())) {
605    if (PhysReg == PrevReg)
606      continue;
607
608    MCRegUnitIterator Units(PhysReg, TRI);
609    for (; Units.isValid(); ++Units) {
610      // Instantiate a "subquery", not to be confused with the Queries array.
611      LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
612      if (subQ.checkInterference())
613        break;
614    }
615    // If no units have interference, break out with the current PhysReg.
616    if (!Units.isValid())
617      break;
618  }
619  if (PhysReg)
620    DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
621          << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
622          << '\n');
623  return PhysReg;
624}
625
626/// shouldEvict - determine if A should evict the assigned live range B. The
627/// eviction policy defined by this function together with the allocation order
628/// defined by enqueue() decides which registers ultimately end up being split
629/// and spilled.
630///
631/// Cascade numbers are used to prevent infinite loops if this function is a
632/// cyclic relation.
633///
634/// @param A          The live range to be assigned.
635/// @param IsHint     True when A is about to be assigned to its preferred
636///                   register.
637/// @param B          The live range to be evicted.
638/// @param BreaksHint True when B is already assigned to its preferred register.
639bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
640                           LiveInterval &B, bool BreaksHint) {
641  bool CanSplit = getStage(B) < RS_Spill;
642
643  // Be fairly aggressive about following hints as long as the evictee can be
644  // split.
645  if (CanSplit && IsHint && !BreaksHint)
646    return true;
647
648  if (A.weight > B.weight) {
649    DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
650    return true;
651  }
652  return false;
653}
654
655/// canEvictInterference - Return true if all interferences between VirtReg and
656/// PhysReg can be evicted.
657///
658/// @param VirtReg Live range that is about to be assigned.
659/// @param PhysReg Desired register for assignment.
660/// @param IsHint  True when PhysReg is VirtReg's preferred register.
661/// @param MaxCost Only look for cheaper candidates and update with new cost
662///                when returning true.
663/// @returns True when interference can be evicted cheaper than MaxCost.
664bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
665                                    bool IsHint, EvictionCost &MaxCost) {
666  // It is only possible to evict virtual register interference.
667  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
668    return false;
669
670  bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
671
672  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
673  // involved in an eviction before. If a cascade number was assigned, deny
674  // evicting anything with the same or a newer cascade number. This prevents
675  // infinite eviction loops.
676  //
677  // This works out so a register without a cascade number is allowed to evict
678  // anything, and it can be evicted by anything.
679  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
680  if (!Cascade)
681    Cascade = NextCascade;
682
683  EvictionCost Cost;
684  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
685    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
686    // If there is 10 or more interferences, chances are one is heavier.
687    if (Q.collectInterferingVRegs(10) >= 10)
688      return false;
689
690    // Check if any interfering live range is heavier than MaxWeight.
691    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
692      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
693      assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
694             "Only expecting virtual register interference from query");
695      // Never evict spill products. They cannot split or spill.
696      if (getStage(*Intf) == RS_Done)
697        return false;
698      // Once a live range becomes small enough, it is urgent that we find a
699      // register for it. This is indicated by an infinite spill weight. These
700      // urgent live ranges get to evict almost anything.
701      //
702      // Also allow urgent evictions of unspillable ranges from a strictly
703      // larger allocation order.
704      bool Urgent = !VirtReg.isSpillable() &&
705        (Intf->isSpillable() ||
706         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
707         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
708      // Only evict older cascades or live ranges without a cascade.
709      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
710      if (Cascade <= IntfCascade) {
711        if (!Urgent)
712          return false;
713        // We permit breaking cascades for urgent evictions. It should be the
714        // last resort, though, so make it really expensive.
715        Cost.BrokenHints += 10;
716      }
717      // Would this break a satisfied hint?
718      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
719      // Update eviction cost.
720      Cost.BrokenHints += BreaksHint;
721      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
722      // Abort if this would be too expensive.
723      if (!(Cost < MaxCost))
724        return false;
725      if (Urgent)
726        continue;
727      // Apply the eviction policy for non-urgent evictions.
728      if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
729        return false;
730      // If !MaxCost.isMax(), then we're just looking for a cheap register.
731      // Evicting another local live range in this case could lead to suboptimal
732      // coloring.
733      if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
734          !canReassign(*Intf, PhysReg)) {
735        return false;
736      }
737    }
738  }
739  MaxCost = Cost;
740  return true;
741}
742
743/// evictInterference - Evict any interferring registers that prevent VirtReg
744/// from being assigned to Physreg. This assumes that canEvictInterference
745/// returned true.
746void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
747                                 SmallVectorImpl<unsigned> &NewVRegs) {
748  // Make sure that VirtReg has a cascade number, and assign that cascade
749  // number to every evicted register. These live ranges than then only be
750  // evicted by a newer cascade, preventing infinite loops.
751  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
752  if (!Cascade)
753    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
754
755  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
756               << " interference: Cascade " << Cascade << '\n');
757
758  // Collect all interfering virtregs first.
759  SmallVector<LiveInterval*, 8> Intfs;
760  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
761    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
762    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
763    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
764    Intfs.append(IVR.begin(), IVR.end());
765  }
766
767  // Evict them second. This will invalidate the queries.
768  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
769    LiveInterval *Intf = Intfs[i];
770    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
771    if (!VRM->hasPhys(Intf->reg))
772      continue;
773    Matrix->unassign(*Intf);
774    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
775            VirtReg.isSpillable() < Intf->isSpillable()) &&
776           "Cannot decrease cascade number, illegal eviction");
777    ExtraRegInfo[Intf->reg].Cascade = Cascade;
778    ++NumEvicted;
779    NewVRegs.push_back(Intf->reg);
780  }
781}
782
783/// tryEvict - Try to evict all interferences for a physreg.
784/// @param  VirtReg Currently unassigned virtual register.
785/// @param  Order   Physregs to try.
786/// @return         Physreg to assign VirtReg, or 0.
787unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
788                            AllocationOrder &Order,
789                            SmallVectorImpl<unsigned> &NewVRegs,
790                            unsigned CostPerUseLimit) {
791  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
792
793  // Keep track of the cheapest interference seen so far.
794  EvictionCost BestCost;
795  BestCost.setMax();
796  unsigned BestPhys = 0;
797  unsigned OrderLimit = Order.getOrder().size();
798
799  // When we are just looking for a reduced cost per use, don't break any
800  // hints, and only evict smaller spill weights.
801  if (CostPerUseLimit < ~0u) {
802    BestCost.BrokenHints = 0;
803    BestCost.MaxWeight = VirtReg.weight;
804
805    // Check of any registers in RC are below CostPerUseLimit.
806    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
807    unsigned MinCost = RegClassInfo.getMinCost(RC);
808    if (MinCost >= CostPerUseLimit) {
809      DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
810                   << ", no cheaper registers to be found.\n");
811      return 0;
812    }
813
814    // It is normal for register classes to have a long tail of registers with
815    // the same cost. We don't need to look at them if they're too expensive.
816    if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
817      OrderLimit = RegClassInfo.getLastCostChange(RC);
818      DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
819    }
820  }
821
822  Order.rewind();
823  while (unsigned PhysReg = Order.next(OrderLimit)) {
824    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
825      continue;
826    // The first use of a callee-saved register in a function has cost 1.
827    // Don't start using a CSR when the CostPerUseLimit is low.
828    if (CostPerUseLimit == 1)
829     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
830       if (!MRI->isPhysRegUsed(CSR)) {
831         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
832                      << PrintReg(CSR, TRI) << '\n');
833         continue;
834       }
835
836    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
837      continue;
838
839    // Best so far.
840    BestPhys = PhysReg;
841
842    // Stop if the hint can be used.
843    if (Order.isHint())
844      break;
845  }
846
847  if (!BestPhys)
848    return 0;
849
850  evictInterference(VirtReg, BestPhys, NewVRegs);
851  return BestPhys;
852}
853
854
855//===----------------------------------------------------------------------===//
856//                              Region Splitting
857//===----------------------------------------------------------------------===//
858
859/// addSplitConstraints - Fill out the SplitConstraints vector based on the
860/// interference pattern in Physreg and its aliases. Add the constraints to
861/// SpillPlacement and return the static cost of this split in Cost, assuming
862/// that all preferences in SplitConstraints are met.
863/// Return false if there are no bundles with positive bias.
864bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
865                                   BlockFrequency &Cost) {
866  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
867
868  // Reset interference dependent info.
869  SplitConstraints.resize(UseBlocks.size());
870  BlockFrequency StaticCost = 0;
871  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
872    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
873    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
874
875    BC.Number = BI.MBB->getNumber();
876    Intf.moveToBlock(BC.Number);
877    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
878    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
879    BC.ChangesValue = BI.FirstDef.isValid();
880
881    if (!Intf.hasInterference())
882      continue;
883
884    // Number of spill code instructions to insert.
885    unsigned Ins = 0;
886
887    // Interference for the live-in value.
888    if (BI.LiveIn) {
889      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
890        BC.Entry = SpillPlacement::MustSpill, ++Ins;
891      else if (Intf.first() < BI.FirstInstr)
892        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
893      else if (Intf.first() < BI.LastInstr)
894        ++Ins;
895    }
896
897    // Interference for the live-out value.
898    if (BI.LiveOut) {
899      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
900        BC.Exit = SpillPlacement::MustSpill, ++Ins;
901      else if (Intf.last() > BI.LastInstr)
902        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
903      else if (Intf.last() > BI.FirstInstr)
904        ++Ins;
905    }
906
907    // Accumulate the total frequency of inserted spill code.
908    while (Ins--)
909      StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
910  }
911  Cost = StaticCost;
912
913  // Add constraints for use-blocks. Note that these are the only constraints
914  // that may add a positive bias, it is downhill from here.
915  SpillPlacer->addConstraints(SplitConstraints);
916  return SpillPlacer->scanActiveBundles();
917}
918
919
920/// addThroughConstraints - Add constraints and links to SpillPlacer from the
921/// live-through blocks in Blocks.
922void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
923                                     ArrayRef<unsigned> Blocks) {
924  const unsigned GroupSize = 8;
925  SpillPlacement::BlockConstraint BCS[GroupSize];
926  unsigned TBS[GroupSize];
927  unsigned B = 0, T = 0;
928
929  for (unsigned i = 0; i != Blocks.size(); ++i) {
930    unsigned Number = Blocks[i];
931    Intf.moveToBlock(Number);
932
933    if (!Intf.hasInterference()) {
934      assert(T < GroupSize && "Array overflow");
935      TBS[T] = Number;
936      if (++T == GroupSize) {
937        SpillPlacer->addLinks(makeArrayRef(TBS, T));
938        T = 0;
939      }
940      continue;
941    }
942
943    assert(B < GroupSize && "Array overflow");
944    BCS[B].Number = Number;
945
946    // Interference for the live-in value.
947    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
948      BCS[B].Entry = SpillPlacement::MustSpill;
949    else
950      BCS[B].Entry = SpillPlacement::PrefSpill;
951
952    // Interference for the live-out value.
953    if (Intf.last() >= SA->getLastSplitPoint(Number))
954      BCS[B].Exit = SpillPlacement::MustSpill;
955    else
956      BCS[B].Exit = SpillPlacement::PrefSpill;
957
958    if (++B == GroupSize) {
959      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
960      SpillPlacer->addConstraints(Array);
961      B = 0;
962    }
963  }
964
965  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
966  SpillPlacer->addConstraints(Array);
967  SpillPlacer->addLinks(makeArrayRef(TBS, T));
968}
969
970void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
971  // Keep track of through blocks that have not been added to SpillPlacer.
972  BitVector Todo = SA->getThroughBlocks();
973  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
974  unsigned AddedTo = 0;
975#ifndef NDEBUG
976  unsigned Visited = 0;
977#endif
978
979  for (;;) {
980    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
981    // Find new through blocks in the periphery of PrefRegBundles.
982    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
983      unsigned Bundle = NewBundles[i];
984      // Look at all blocks connected to Bundle in the full graph.
985      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
986      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
987           I != E; ++I) {
988        unsigned Block = *I;
989        if (!Todo.test(Block))
990          continue;
991        Todo.reset(Block);
992        // This is a new through block. Add it to SpillPlacer later.
993        ActiveBlocks.push_back(Block);
994#ifndef NDEBUG
995        ++Visited;
996#endif
997      }
998    }
999    // Any new blocks to add?
1000    if (ActiveBlocks.size() == AddedTo)
1001      break;
1002
1003    // Compute through constraints from the interference, or assume that all
1004    // through blocks prefer spilling when forming compact regions.
1005    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1006    if (Cand.PhysReg)
1007      addThroughConstraints(Cand.Intf, NewBlocks);
1008    else
1009      // Provide a strong negative bias on through blocks to prevent unwanted
1010      // liveness on loop backedges.
1011      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1012    AddedTo = ActiveBlocks.size();
1013
1014    // Perhaps iterating can enable more bundles?
1015    SpillPlacer->iterate();
1016  }
1017  DEBUG(dbgs() << ", v=" << Visited);
1018}
1019
1020/// calcCompactRegion - Compute the set of edge bundles that should be live
1021/// when splitting the current live range into compact regions.  Compact
1022/// regions can be computed without looking at interference.  They are the
1023/// regions formed by removing all the live-through blocks from the live range.
1024///
1025/// Returns false if the current live range is already compact, or if the
1026/// compact regions would form single block regions anyway.
1027bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1028  // Without any through blocks, the live range is already compact.
1029  if (!SA->getNumThroughBlocks())
1030    return false;
1031
1032  // Compact regions don't correspond to any physreg.
1033  Cand.reset(IntfCache, 0);
1034
1035  DEBUG(dbgs() << "Compact region bundles");
1036
1037  // Use the spill placer to determine the live bundles. GrowRegion pretends
1038  // that all the through blocks have interference when PhysReg is unset.
1039  SpillPlacer->prepare(Cand.LiveBundles);
1040
1041  // The static split cost will be zero since Cand.Intf reports no interference.
1042  BlockFrequency Cost;
1043  if (!addSplitConstraints(Cand.Intf, Cost)) {
1044    DEBUG(dbgs() << ", none.\n");
1045    return false;
1046  }
1047
1048  growRegion(Cand);
1049  SpillPlacer->finish();
1050
1051  if (!Cand.LiveBundles.any()) {
1052    DEBUG(dbgs() << ", none.\n");
1053    return false;
1054  }
1055
1056  DEBUG({
1057    for (int i = Cand.LiveBundles.find_first(); i>=0;
1058         i = Cand.LiveBundles.find_next(i))
1059    dbgs() << " EB#" << i;
1060    dbgs() << ".\n";
1061  });
1062  return true;
1063}
1064
1065/// calcSpillCost - Compute how expensive it would be to split the live range in
1066/// SA around all use blocks instead of forming bundle regions.
1067BlockFrequency RAGreedy::calcSpillCost() {
1068  BlockFrequency Cost = 0;
1069  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1070  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1071    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1072    unsigned Number = BI.MBB->getNumber();
1073    // We normally only need one spill instruction - a load or a store.
1074    Cost += SpillPlacer->getBlockFrequency(Number);
1075
1076    // Unless the value is redefined in the block.
1077    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1078      Cost += SpillPlacer->getBlockFrequency(Number);
1079  }
1080  return Cost;
1081}
1082
1083/// calcGlobalSplitCost - Return the global split cost of following the split
1084/// pattern in LiveBundles. This cost should be added to the local cost of the
1085/// interference pattern in SplitConstraints.
1086///
1087BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1088  BlockFrequency GlobalCost = 0;
1089  const BitVector &LiveBundles = Cand.LiveBundles;
1090  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1091  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1092    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1093    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1094    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
1095    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
1096    unsigned Ins = 0;
1097
1098    if (BI.LiveIn)
1099      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1100    if (BI.LiveOut)
1101      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1102    while (Ins--)
1103      GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1104  }
1105
1106  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1107    unsigned Number = Cand.ActiveBlocks[i];
1108    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
1109    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1110    if (!RegIn && !RegOut)
1111      continue;
1112    if (RegIn && RegOut) {
1113      // We need double spill code if this block has interference.
1114      Cand.Intf.moveToBlock(Number);
1115      if (Cand.Intf.hasInterference()) {
1116        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1117        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1118      }
1119      continue;
1120    }
1121    // live-in / stack-out or stack-in live-out.
1122    GlobalCost += SpillPlacer->getBlockFrequency(Number);
1123  }
1124  return GlobalCost;
1125}
1126
1127/// splitAroundRegion - Split the current live range around the regions
1128/// determined by BundleCand and GlobalCand.
1129///
1130/// Before calling this function, GlobalCand and BundleCand must be initialized
1131/// so each bundle is assigned to a valid candidate, or NoCand for the
1132/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1133/// objects must be initialized for the current live range, and intervals
1134/// created for the used candidates.
1135///
1136/// @param LREdit    The LiveRangeEdit object handling the current split.
1137/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1138///                  must appear in this list.
1139void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1140                                 ArrayRef<unsigned> UsedCands) {
1141  // These are the intervals created for new global ranges. We may create more
1142  // intervals for local ranges.
1143  const unsigned NumGlobalIntvs = LREdit.size();
1144  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1145  assert(NumGlobalIntvs && "No global intervals configured");
1146
1147  // Isolate even single instructions when dealing with a proper sub-class.
1148  // That guarantees register class inflation for the stack interval because it
1149  // is all copies.
1150  unsigned Reg = SA->getParent().reg;
1151  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1152
1153  // First handle all the blocks with uses.
1154  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1155  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1156    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1157    unsigned Number = BI.MBB->getNumber();
1158    unsigned IntvIn = 0, IntvOut = 0;
1159    SlotIndex IntfIn, IntfOut;
1160    if (BI.LiveIn) {
1161      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1162      if (CandIn != NoCand) {
1163        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1164        IntvIn = Cand.IntvIdx;
1165        Cand.Intf.moveToBlock(Number);
1166        IntfIn = Cand.Intf.first();
1167      }
1168    }
1169    if (BI.LiveOut) {
1170      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1171      if (CandOut != NoCand) {
1172        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1173        IntvOut = Cand.IntvIdx;
1174        Cand.Intf.moveToBlock(Number);
1175        IntfOut = Cand.Intf.last();
1176      }
1177    }
1178
1179    // Create separate intervals for isolated blocks with multiple uses.
1180    if (!IntvIn && !IntvOut) {
1181      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1182      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1183        SE->splitSingleBlock(BI);
1184      continue;
1185    }
1186
1187    if (IntvIn && IntvOut)
1188      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1189    else if (IntvIn)
1190      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1191    else
1192      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1193  }
1194
1195  // Handle live-through blocks. The relevant live-through blocks are stored in
1196  // the ActiveBlocks list with each candidate. We need to filter out
1197  // duplicates.
1198  BitVector Todo = SA->getThroughBlocks();
1199  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1200    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1201    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1202      unsigned Number = Blocks[i];
1203      if (!Todo.test(Number))
1204        continue;
1205      Todo.reset(Number);
1206
1207      unsigned IntvIn = 0, IntvOut = 0;
1208      SlotIndex IntfIn, IntfOut;
1209
1210      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1211      if (CandIn != NoCand) {
1212        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1213        IntvIn = Cand.IntvIdx;
1214        Cand.Intf.moveToBlock(Number);
1215        IntfIn = Cand.Intf.first();
1216      }
1217
1218      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1219      if (CandOut != NoCand) {
1220        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1221        IntvOut = Cand.IntvIdx;
1222        Cand.Intf.moveToBlock(Number);
1223        IntfOut = Cand.Intf.last();
1224      }
1225      if (!IntvIn && !IntvOut)
1226        continue;
1227      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1228    }
1229  }
1230
1231  ++NumGlobalSplits;
1232
1233  SmallVector<unsigned, 8> IntvMap;
1234  SE->finish(&IntvMap);
1235  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1236
1237  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1238  unsigned OrigBlocks = SA->getNumLiveBlocks();
1239
1240  // Sort out the new intervals created by splitting. We get four kinds:
1241  // - Remainder intervals should not be split again.
1242  // - Candidate intervals can be assigned to Cand.PhysReg.
1243  // - Block-local splits are candidates for local splitting.
1244  // - DCE leftovers should go back on the queue.
1245  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1246    LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1247
1248    // Ignore old intervals from DCE.
1249    if (getStage(Reg) != RS_New)
1250      continue;
1251
1252    // Remainder interval. Don't try splitting again, spill if it doesn't
1253    // allocate.
1254    if (IntvMap[i] == 0) {
1255      setStage(Reg, RS_Spill);
1256      continue;
1257    }
1258
1259    // Global intervals. Allow repeated splitting as long as the number of live
1260    // blocks is strictly decreasing.
1261    if (IntvMap[i] < NumGlobalIntvs) {
1262      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1263        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1264                     << " blocks as original.\n");
1265        // Don't allow repeated splitting as a safe guard against looping.
1266        setStage(Reg, RS_Split2);
1267      }
1268      continue;
1269    }
1270
1271    // Other intervals are treated as new. This includes local intervals created
1272    // for blocks with multiple uses, and anything created by DCE.
1273  }
1274
1275  if (VerifyEnabled)
1276    MF->verify(this, "After splitting live range around region");
1277}
1278
1279unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1280                                  SmallVectorImpl<unsigned> &NewVRegs) {
1281  unsigned NumCands = 0;
1282  BlockFrequency BestCost;
1283
1284  // Check if we can split this live range around a compact region.
1285  bool HasCompact = calcCompactRegion(GlobalCand.front());
1286  if (HasCompact) {
1287    // Yes, keep GlobalCand[0] as the compact region candidate.
1288    NumCands = 1;
1289    BestCost = BlockFrequency::getMaxFrequency();
1290  } else {
1291    // No benefit from the compact region, our fallback will be per-block
1292    // splitting. Make sure we find a solution that is cheaper than spilling.
1293    BestCost = calcSpillCost();
1294    DEBUG(dbgs() << "Cost of isolating all blocks = ";
1295                 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1296  }
1297
1298  unsigned BestCand =
1299      calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1300                               false/*IgnoreCSR*/);
1301
1302  // No solutions found, fall back to single block splitting.
1303  if (!HasCompact && BestCand == NoCand)
1304    return 0;
1305
1306  return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1307}
1308
1309unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1310                                            AllocationOrder &Order,
1311                                            BlockFrequency &BestCost,
1312                                            unsigned &NumCands,
1313                                            bool IgnoreCSR) {
1314  unsigned BestCand = NoCand;
1315  Order.rewind();
1316  while (unsigned PhysReg = Order.next()) {
1317   if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
1318     if (IgnoreCSR && !MRI->isPhysRegUsed(CSR))
1319       continue;
1320
1321    // Discard bad candidates before we run out of interference cache cursors.
1322    // This will only affect register classes with a lot of registers (>32).
1323    if (NumCands == IntfCache.getMaxCursors()) {
1324      unsigned WorstCount = ~0u;
1325      unsigned Worst = 0;
1326      for (unsigned i = 0; i != NumCands; ++i) {
1327        if (i == BestCand || !GlobalCand[i].PhysReg)
1328          continue;
1329        unsigned Count = GlobalCand[i].LiveBundles.count();
1330        if (Count < WorstCount)
1331          Worst = i, WorstCount = Count;
1332      }
1333      --NumCands;
1334      GlobalCand[Worst] = GlobalCand[NumCands];
1335      if (BestCand == NumCands)
1336        BestCand = Worst;
1337    }
1338
1339    if (GlobalCand.size() <= NumCands)
1340      GlobalCand.resize(NumCands+1);
1341    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1342    Cand.reset(IntfCache, PhysReg);
1343
1344    SpillPlacer->prepare(Cand.LiveBundles);
1345    BlockFrequency Cost;
1346    if (!addSplitConstraints(Cand.Intf, Cost)) {
1347      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1348      continue;
1349    }
1350    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1351                 MBFI->printBlockFreq(dbgs(), Cost));
1352    if (Cost >= BestCost) {
1353      DEBUG({
1354        if (BestCand == NoCand)
1355          dbgs() << " worse than no bundles\n";
1356        else
1357          dbgs() << " worse than "
1358                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1359      });
1360      continue;
1361    }
1362    growRegion(Cand);
1363
1364    SpillPlacer->finish();
1365
1366    // No live bundles, defer to splitSingleBlocks().
1367    if (!Cand.LiveBundles.any()) {
1368      DEBUG(dbgs() << " no bundles.\n");
1369      continue;
1370    }
1371
1372    Cost += calcGlobalSplitCost(Cand);
1373    DEBUG({
1374      dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1375                                << " with bundles";
1376      for (int i = Cand.LiveBundles.find_first(); i>=0;
1377           i = Cand.LiveBundles.find_next(i))
1378        dbgs() << " EB#" << i;
1379      dbgs() << ".\n";
1380    });
1381    if (Cost < BestCost) {
1382      BestCand = NumCands;
1383      BestCost = Cost;
1384    }
1385    ++NumCands;
1386  }
1387  return BestCand;
1388}
1389
1390unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1391                                 bool HasCompact,
1392                                 SmallVectorImpl<unsigned> &NewVRegs) {
1393  SmallVector<unsigned, 8> UsedCands;
1394  // Prepare split editor.
1395  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1396  SE->reset(LREdit, SplitSpillMode);
1397
1398  // Assign all edge bundles to the preferred candidate, or NoCand.
1399  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1400
1401  // Assign bundles for the best candidate region.
1402  if (BestCand != NoCand) {
1403    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1404    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1405      UsedCands.push_back(BestCand);
1406      Cand.IntvIdx = SE->openIntv();
1407      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1408                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1409      (void)B;
1410    }
1411  }
1412
1413  // Assign bundles for the compact region.
1414  if (HasCompact) {
1415    GlobalSplitCandidate &Cand = GlobalCand.front();
1416    assert(!Cand.PhysReg && "Compact region has no physreg");
1417    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1418      UsedCands.push_back(0);
1419      Cand.IntvIdx = SE->openIntv();
1420      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1421                   << Cand.IntvIdx << ".\n");
1422      (void)B;
1423    }
1424  }
1425
1426  splitAroundRegion(LREdit, UsedCands);
1427  return 0;
1428}
1429
1430
1431//===----------------------------------------------------------------------===//
1432//                            Per-Block Splitting
1433//===----------------------------------------------------------------------===//
1434
1435/// tryBlockSplit - Split a global live range around every block with uses. This
1436/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1437/// they don't allocate.
1438unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1439                                 SmallVectorImpl<unsigned> &NewVRegs) {
1440  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1441  unsigned Reg = VirtReg.reg;
1442  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1443  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1444  SE->reset(LREdit, SplitSpillMode);
1445  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1446  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1447    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1448    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1449      SE->splitSingleBlock(BI);
1450  }
1451  // No blocks were split.
1452  if (LREdit.empty())
1453    return 0;
1454
1455  // We did split for some blocks.
1456  SmallVector<unsigned, 8> IntvMap;
1457  SE->finish(&IntvMap);
1458
1459  // Tell LiveDebugVariables about the new ranges.
1460  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1461
1462  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1463
1464  // Sort out the new intervals created by splitting. The remainder interval
1465  // goes straight to spilling, the new local ranges get to stay RS_New.
1466  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1467    LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1468    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1469      setStage(LI, RS_Spill);
1470  }
1471
1472  if (VerifyEnabled)
1473    MF->verify(this, "After splitting live range around basic blocks");
1474  return 0;
1475}
1476
1477
1478//===----------------------------------------------------------------------===//
1479//                         Per-Instruction Splitting
1480//===----------------------------------------------------------------------===//
1481
1482/// Get the number of allocatable registers that match the constraints of \p Reg
1483/// on \p MI and that are also in \p SuperRC.
1484static unsigned getNumAllocatableRegsForConstraints(
1485    const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1486    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1487    const RegisterClassInfo &RCI) {
1488  assert(SuperRC && "Invalid register class");
1489
1490  const TargetRegisterClass *ConstrainedRC =
1491      MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1492                                             /* ExploreBundle */ true);
1493  if (!ConstrainedRC)
1494    return 0;
1495  return RCI.getNumAllocatableRegs(ConstrainedRC);
1496}
1497
1498/// tryInstructionSplit - Split a live range around individual instructions.
1499/// This is normally not worthwhile since the spiller is doing essentially the
1500/// same thing. However, when the live range is in a constrained register
1501/// class, it may help to insert copies such that parts of the live range can
1502/// be moved to a larger register class.
1503///
1504/// This is similar to spilling to a larger register class.
1505unsigned
1506RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1507                              SmallVectorImpl<unsigned> &NewVRegs) {
1508  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1509  // There is no point to this if there are no larger sub-classes.
1510  if (!RegClassInfo.isProperSubClass(CurRC))
1511    return 0;
1512
1513  // Always enable split spill mode, since we're effectively spilling to a
1514  // register.
1515  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1516  SE->reset(LREdit, SplitEditor::SM_Size);
1517
1518  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1519  if (Uses.size() <= 1)
1520    return 0;
1521
1522  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1523
1524  const TargetRegisterClass *SuperRC = TRI->getLargestLegalSuperClass(CurRC);
1525  unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1526  // Split around every non-copy instruction if this split will relax
1527  // the constraints on the virtual register.
1528  // Otherwise, splitting just inserts uncoalescable copies that do not help
1529  // the allocation.
1530  for (unsigned i = 0; i != Uses.size(); ++i) {
1531    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1532      if (MI->isFullCopy() ||
1533          SuperRCNumAllocatableRegs ==
1534              getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1535                                                  TRI, RCI)) {
1536        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1537        continue;
1538      }
1539    SE->openIntv();
1540    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1541    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1542    SE->useIntv(SegStart, SegStop);
1543  }
1544
1545  if (LREdit.empty()) {
1546    DEBUG(dbgs() << "All uses were copies.\n");
1547    return 0;
1548  }
1549
1550  SmallVector<unsigned, 8> IntvMap;
1551  SE->finish(&IntvMap);
1552  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1553  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1554
1555  // Assign all new registers to RS_Spill. This was the last chance.
1556  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1557  return 0;
1558}
1559
1560
1561//===----------------------------------------------------------------------===//
1562//                             Local Splitting
1563//===----------------------------------------------------------------------===//
1564
1565
1566/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1567/// in order to use PhysReg between two entries in SA->UseSlots.
1568///
1569/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1570///
1571void RAGreedy::calcGapWeights(unsigned PhysReg,
1572                              SmallVectorImpl<float> &GapWeight) {
1573  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1574  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1575  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1576  const unsigned NumGaps = Uses.size()-1;
1577
1578  // Start and end points for the interference check.
1579  SlotIndex StartIdx =
1580    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1581  SlotIndex StopIdx =
1582    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1583
1584  GapWeight.assign(NumGaps, 0.0f);
1585
1586  // Add interference from each overlapping register.
1587  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1588    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1589          .checkInterference())
1590      continue;
1591
1592    // We know that VirtReg is a continuous interval from FirstInstr to
1593    // LastInstr, so we don't need InterferenceQuery.
1594    //
1595    // Interference that overlaps an instruction is counted in both gaps
1596    // surrounding the instruction. The exception is interference before
1597    // StartIdx and after StopIdx.
1598    //
1599    LiveIntervalUnion::SegmentIter IntI =
1600      Matrix->getLiveUnions()[*Units] .find(StartIdx);
1601    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1602      // Skip the gaps before IntI.
1603      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1604        if (++Gap == NumGaps)
1605          break;
1606      if (Gap == NumGaps)
1607        break;
1608
1609      // Update the gaps covered by IntI.
1610      const float weight = IntI.value()->weight;
1611      for (; Gap != NumGaps; ++Gap) {
1612        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1613        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1614          break;
1615      }
1616      if (Gap == NumGaps)
1617        break;
1618    }
1619  }
1620
1621  // Add fixed interference.
1622  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1623    const LiveRange &LR = LIS->getRegUnit(*Units);
1624    LiveRange::const_iterator I = LR.find(StartIdx);
1625    LiveRange::const_iterator E = LR.end();
1626
1627    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1628    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1629      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1630        if (++Gap == NumGaps)
1631          break;
1632      if (Gap == NumGaps)
1633        break;
1634
1635      for (; Gap != NumGaps; ++Gap) {
1636        GapWeight[Gap] = llvm::huge_valf;
1637        if (Uses[Gap+1].getBaseIndex() >= I->end)
1638          break;
1639      }
1640      if (Gap == NumGaps)
1641        break;
1642    }
1643  }
1644}
1645
1646/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1647/// basic block.
1648///
1649unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1650                                 SmallVectorImpl<unsigned> &NewVRegs) {
1651  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1652  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1653
1654  // Note that it is possible to have an interval that is live-in or live-out
1655  // while only covering a single block - A phi-def can use undef values from
1656  // predecessors, and the block could be a single-block loop.
1657  // We don't bother doing anything clever about such a case, we simply assume
1658  // that the interval is continuous from FirstInstr to LastInstr. We should
1659  // make sure that we don't do anything illegal to such an interval, though.
1660
1661  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1662  if (Uses.size() <= 2)
1663    return 0;
1664  const unsigned NumGaps = Uses.size()-1;
1665
1666  DEBUG({
1667    dbgs() << "tryLocalSplit: ";
1668    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1669      dbgs() << ' ' << Uses[i];
1670    dbgs() << '\n';
1671  });
1672
1673  // If VirtReg is live across any register mask operands, compute a list of
1674  // gaps with register masks.
1675  SmallVector<unsigned, 8> RegMaskGaps;
1676  if (Matrix->checkRegMaskInterference(VirtReg)) {
1677    // Get regmask slots for the whole block.
1678    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1679    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1680    // Constrain to VirtReg's live range.
1681    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1682                                   Uses.front().getRegSlot()) - RMS.begin();
1683    unsigned re = RMS.size();
1684    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1685      // Look for Uses[i] <= RMS <= Uses[i+1].
1686      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1687      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1688        continue;
1689      // Skip a regmask on the same instruction as the last use. It doesn't
1690      // overlap the live range.
1691      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1692        break;
1693      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1694      RegMaskGaps.push_back(i);
1695      // Advance ri to the next gap. A regmask on one of the uses counts in
1696      // both gaps.
1697      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1698        ++ri;
1699    }
1700    DEBUG(dbgs() << '\n');
1701  }
1702
1703  // Since we allow local split results to be split again, there is a risk of
1704  // creating infinite loops. It is tempting to require that the new live
1705  // ranges have less instructions than the original. That would guarantee
1706  // convergence, but it is too strict. A live range with 3 instructions can be
1707  // split 2+3 (including the COPY), and we want to allow that.
1708  //
1709  // Instead we use these rules:
1710  //
1711  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1712  //    noop split, of course).
1713  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1714  //    the new ranges must have fewer instructions than before the split.
1715  // 3. New ranges with the same number of instructions are marked RS_Split2,
1716  //    smaller ranges are marked RS_New.
1717  //
1718  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1719  // excessive splitting and infinite loops.
1720  //
1721  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1722
1723  // Best split candidate.
1724  unsigned BestBefore = NumGaps;
1725  unsigned BestAfter = 0;
1726  float BestDiff = 0;
1727
1728  const float blockFreq =
1729    SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1730    (1.0f / MBFI->getEntryFreq());
1731  SmallVector<float, 8> GapWeight;
1732
1733  Order.rewind();
1734  while (unsigned PhysReg = Order.next()) {
1735    // Keep track of the largest spill weight that would need to be evicted in
1736    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1737    calcGapWeights(PhysReg, GapWeight);
1738
1739    // Remove any gaps with regmask clobbers.
1740    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1741      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1742        GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1743
1744    // Try to find the best sequence of gaps to close.
1745    // The new spill weight must be larger than any gap interference.
1746
1747    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1748    unsigned SplitBefore = 0, SplitAfter = 1;
1749
1750    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1751    // It is the spill weight that needs to be evicted.
1752    float MaxGap = GapWeight[0];
1753
1754    for (;;) {
1755      // Live before/after split?
1756      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1757      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1758
1759      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1760                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1761                   << " i=" << MaxGap);
1762
1763      // Stop before the interval gets so big we wouldn't be making progress.
1764      if (!LiveBefore && !LiveAfter) {
1765        DEBUG(dbgs() << " all\n");
1766        break;
1767      }
1768      // Should the interval be extended or shrunk?
1769      bool Shrink = true;
1770
1771      // How many gaps would the new range have?
1772      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1773
1774      // Legally, without causing looping?
1775      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1776
1777      if (Legal && MaxGap < llvm::huge_valf) {
1778        // Estimate the new spill weight. Each instruction reads or writes the
1779        // register. Conservatively assume there are no read-modify-write
1780        // instructions.
1781        //
1782        // Try to guess the size of the new interval.
1783        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1784                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1785                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1786        // Would this split be possible to allocate?
1787        // Never allocate all gaps, we wouldn't be making progress.
1788        DEBUG(dbgs() << " w=" << EstWeight);
1789        if (EstWeight * Hysteresis >= MaxGap) {
1790          Shrink = false;
1791          float Diff = EstWeight - MaxGap;
1792          if (Diff > BestDiff) {
1793            DEBUG(dbgs() << " (best)");
1794            BestDiff = Hysteresis * Diff;
1795            BestBefore = SplitBefore;
1796            BestAfter = SplitAfter;
1797          }
1798        }
1799      }
1800
1801      // Try to shrink.
1802      if (Shrink) {
1803        if (++SplitBefore < SplitAfter) {
1804          DEBUG(dbgs() << " shrink\n");
1805          // Recompute the max when necessary.
1806          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1807            MaxGap = GapWeight[SplitBefore];
1808            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1809              MaxGap = std::max(MaxGap, GapWeight[i]);
1810          }
1811          continue;
1812        }
1813        MaxGap = 0;
1814      }
1815
1816      // Try to extend the interval.
1817      if (SplitAfter >= NumGaps) {
1818        DEBUG(dbgs() << " end\n");
1819        break;
1820      }
1821
1822      DEBUG(dbgs() << " extend\n");
1823      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1824    }
1825  }
1826
1827  // Didn't find any candidates?
1828  if (BestBefore == NumGaps)
1829    return 0;
1830
1831  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1832               << '-' << Uses[BestAfter] << ", " << BestDiff
1833               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1834
1835  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1836  SE->reset(LREdit);
1837
1838  SE->openIntv();
1839  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1840  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1841  SE->useIntv(SegStart, SegStop);
1842  SmallVector<unsigned, 8> IntvMap;
1843  SE->finish(&IntvMap);
1844  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1845
1846  // If the new range has the same number of instructions as before, mark it as
1847  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1848  // leave the new intervals as RS_New so they can compete.
1849  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1850  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1851  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1852  if (NewGaps >= NumGaps) {
1853    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1854    assert(!ProgressRequired && "Didn't make progress when it was required.");
1855    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1856      if (IntvMap[i] == 1) {
1857        setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1858        DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1859      }
1860    DEBUG(dbgs() << '\n');
1861  }
1862  ++NumLocalSplits;
1863
1864  return 0;
1865}
1866
1867//===----------------------------------------------------------------------===//
1868//                          Live Range Splitting
1869//===----------------------------------------------------------------------===//
1870
1871/// trySplit - Try to split VirtReg or one of its interferences, making it
1872/// assignable.
1873/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1874unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1875                            SmallVectorImpl<unsigned>&NewVRegs) {
1876  // Ranges must be Split2 or less.
1877  if (getStage(VirtReg) >= RS_Spill)
1878    return 0;
1879
1880  // Local intervals are handled separately.
1881  if (LIS->intervalIsInOneMBB(VirtReg)) {
1882    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1883    SA->analyze(&VirtReg);
1884    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1885    if (PhysReg || !NewVRegs.empty())
1886      return PhysReg;
1887    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1888  }
1889
1890  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1891
1892  SA->analyze(&VirtReg);
1893
1894  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1895  // coalescer. That may cause the range to become allocatable which means that
1896  // tryRegionSplit won't be making progress. This check should be replaced with
1897  // an assertion when the coalescer is fixed.
1898  if (SA->didRepairRange()) {
1899    // VirtReg has changed, so all cached queries are invalid.
1900    Matrix->invalidateVirtRegs();
1901    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1902      return PhysReg;
1903  }
1904
1905  // First try to split around a region spanning multiple blocks. RS_Split2
1906  // ranges already made dubious progress with region splitting, so they go
1907  // straight to single block splitting.
1908  if (getStage(VirtReg) < RS_Split2) {
1909    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1910    if (PhysReg || !NewVRegs.empty())
1911      return PhysReg;
1912  }
1913
1914  // Then isolate blocks.
1915  return tryBlockSplit(VirtReg, Order, NewVRegs);
1916}
1917
1918//===----------------------------------------------------------------------===//
1919//                          Last Chance Recoloring
1920//===----------------------------------------------------------------------===//
1921
1922/// mayRecolorAllInterferences - Check if the virtual registers that
1923/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1924/// recolored to free \p PhysReg.
1925/// When true is returned, \p RecoloringCandidates has been augmented with all
1926/// the live intervals that need to be recolored in order to free \p PhysReg
1927/// for \p VirtReg.
1928/// \p FixedRegisters contains all the virtual registers that cannot be
1929/// recolored.
1930bool
1931RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
1932                                     SmallLISet &RecoloringCandidates,
1933                                     const SmallVirtRegSet &FixedRegisters) {
1934  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1935
1936  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1937    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1938    // If there is LastChanceRecoloringMaxInterference or more interferences,
1939    // chances are one would not be recolorable.
1940    if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
1941        LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
1942      DEBUG(dbgs() << "Early abort: too many interferences.\n");
1943      CutOffInfo |= CO_Interf;
1944      return false;
1945    }
1946    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
1947      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
1948      // If Intf is done and sit on the same register class as VirtReg,
1949      // it would not be recolorable as it is in the same state as VirtReg.
1950      if ((getStage(*Intf) == RS_Done &&
1951           MRI->getRegClass(Intf->reg) == CurRC) ||
1952          FixedRegisters.count(Intf->reg)) {
1953        DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
1954        return false;
1955      }
1956      RecoloringCandidates.insert(Intf);
1957    }
1958  }
1959  return true;
1960}
1961
1962/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1963/// its interferences.
1964/// Last chance recoloring chooses a color for \p VirtReg and recolors every
1965/// virtual register that was using it. The recoloring process may recursively
1966/// use the last chance recoloring. Therefore, when a virtual register has been
1967/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1968/// be last-chance-recolored again during this recoloring "session".
1969/// E.g.,
1970/// Let
1971/// vA can use {R1, R2    }
1972/// vB can use {    R2, R3}
1973/// vC can use {R1        }
1974/// Where vA, vB, and vC cannot be split anymore (they are reloads for
1975/// instance) and they all interfere.
1976///
1977/// vA is assigned R1
1978/// vB is assigned R2
1979/// vC tries to evict vA but vA is already done.
1980/// Regular register allocation fails.
1981///
1982/// Last chance recoloring kicks in:
1983/// vC does as if vA was evicted => vC uses R1.
1984/// vC is marked as fixed.
1985/// vA needs to find a color.
1986/// None are available.
1987/// vA cannot evict vC: vC is a fixed virtual register now.
1988/// vA does as if vB was evicted => vA uses R2.
1989/// vB needs to find a color.
1990/// R3 is available.
1991/// Recoloring => vC = R1, vA = R2, vB = R3
1992///
1993/// \p Order defines the preferred allocation order for \p VirtReg.
1994/// \p NewRegs will contain any new virtual register that have been created
1995/// (split, spill) during the process and that must be assigned.
1996/// \p FixedRegisters contains all the virtual registers that cannot be
1997/// recolored.
1998/// \p Depth gives the current depth of the last chance recoloring.
1999/// \return a physical register that can be used for VirtReg or ~0u if none
2000/// exists.
2001unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2002                                           AllocationOrder &Order,
2003                                           SmallVectorImpl<unsigned> &NewVRegs,
2004                                           SmallVirtRegSet &FixedRegisters,
2005                                           unsigned Depth) {
2006  DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2007  // Ranges must be Done.
2008  assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2009         "Last chance recoloring should really be last chance");
2010  // Set the max depth to LastChanceRecoloringMaxDepth.
2011  // We may want to reconsider that if we end up with a too large search space
2012  // for target with hundreds of registers.
2013  // Indeed, in that case we may want to cut the search space earlier.
2014  if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2015    DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2016    CutOffInfo |= CO_Depth;
2017    return ~0u;
2018  }
2019
2020  // Set of Live intervals that will need to be recolored.
2021  SmallLISet RecoloringCandidates;
2022  // Record the original mapping virtual register to physical register in case
2023  // the recoloring fails.
2024  DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2025  // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2026  // this recoloring "session".
2027  FixedRegisters.insert(VirtReg.reg);
2028
2029  Order.rewind();
2030  while (unsigned PhysReg = Order.next()) {
2031    DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2032                 << PrintReg(PhysReg, TRI) << '\n');
2033    RecoloringCandidates.clear();
2034    VirtRegToPhysReg.clear();
2035
2036    // It is only possible to recolor virtual register interference.
2037    if (Matrix->checkInterference(VirtReg, PhysReg) >
2038        LiveRegMatrix::IK_VirtReg) {
2039      DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
2040
2041      continue;
2042    }
2043
2044    // Early give up on this PhysReg if it is obvious we cannot recolor all
2045    // the interferences.
2046    if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2047                                    FixedRegisters)) {
2048      DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
2049      continue;
2050    }
2051
2052    // RecoloringCandidates contains all the virtual registers that interfer
2053    // with VirtReg on PhysReg (or one of its aliases).
2054    // Enqueue them for recoloring and perform the actual recoloring.
2055    PQueue RecoloringQueue;
2056    for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2057                              EndIt = RecoloringCandidates.end();
2058         It != EndIt; ++It) {
2059      unsigned ItVirtReg = (*It)->reg;
2060      enqueue(RecoloringQueue, *It);
2061      assert(VRM->hasPhys(ItVirtReg) &&
2062             "Interferences are supposed to be with allocated vairables");
2063
2064      // Record the current allocation.
2065      VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2066      // unset the related struct.
2067      Matrix->unassign(**It);
2068    }
2069
2070    // Do as if VirtReg was assigned to PhysReg so that the underlying
2071    // recoloring has the right information about the interferes and
2072    // available colors.
2073    Matrix->assign(VirtReg, PhysReg);
2074
2075    // Save the current recoloring state.
2076    // If we cannot recolor all the interferences, we will have to start again
2077    // at this point for the next physical register.
2078    SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2079    if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
2080                                Depth)) {
2081      // Do not mess up with the global assignment process.
2082      // I.e., VirtReg must be unassigned.
2083      Matrix->unassign(VirtReg);
2084      return PhysReg;
2085    }
2086
2087    DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2088                 << PrintReg(PhysReg, TRI) << '\n');
2089
2090    // The recoloring attempt failed, undo the changes.
2091    FixedRegisters = SaveFixedRegisters;
2092    Matrix->unassign(VirtReg);
2093
2094    for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2095                              EndIt = RecoloringCandidates.end();
2096         It != EndIt; ++It) {
2097      unsigned ItVirtReg = (*It)->reg;
2098      if (VRM->hasPhys(ItVirtReg))
2099        Matrix->unassign(**It);
2100      Matrix->assign(**It, VirtRegToPhysReg[ItVirtReg]);
2101    }
2102  }
2103
2104  // Last chance recoloring did not worked either, give up.
2105  return ~0u;
2106}
2107
2108/// tryRecoloringCandidates - Try to assign a new color to every register
2109/// in \RecoloringQueue.
2110/// \p NewRegs will contain any new virtual register created during the
2111/// recoloring process.
2112/// \p FixedRegisters[in/out] contains all the registers that have been
2113/// recolored.
2114/// \return true if all virtual registers in RecoloringQueue were successfully
2115/// recolored, false otherwise.
2116bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2117                                       SmallVectorImpl<unsigned> &NewVRegs,
2118                                       SmallVirtRegSet &FixedRegisters,
2119                                       unsigned Depth) {
2120  while (!RecoloringQueue.empty()) {
2121    LiveInterval *LI = dequeue(RecoloringQueue);
2122    DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2123    unsigned PhysReg;
2124    PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2125    if (PhysReg == ~0u || !PhysReg)
2126      return false;
2127    DEBUG(dbgs() << "Recoloring of " << *LI
2128                 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2129    Matrix->assign(*LI, PhysReg);
2130    FixedRegisters.insert(LI->reg);
2131  }
2132  return true;
2133}
2134
2135//===----------------------------------------------------------------------===//
2136//                            Main Entry Point
2137//===----------------------------------------------------------------------===//
2138
2139unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2140                                 SmallVectorImpl<unsigned> &NewVRegs) {
2141  CutOffInfo = CO_None;
2142  LLVMContext &Ctx = MF->getFunction()->getContext();
2143  SmallVirtRegSet FixedRegisters;
2144  unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2145  if (Reg == ~0U && (CutOffInfo != CO_None)) {
2146    uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2147    if (CutOffEncountered == CO_Depth)
2148      Ctx.emitError("register allocation failed: maximum depth for recoloring "
2149                    "reached. Use -fexhaustive-register-search to skip "
2150                    "cutoffs");
2151    else if (CutOffEncountered == CO_Interf)
2152      Ctx.emitError("register allocation failed: maximum interference for "
2153                    "recoloring reached. Use -fexhaustive-register-search "
2154                    "to skip cutoffs");
2155    else if (CutOffEncountered == (CO_Depth | CO_Interf))
2156      Ctx.emitError("register allocation failed: maximum interference and "
2157                    "depth for recoloring reached. Use "
2158                    "-fexhaustive-register-search to skip cutoffs");
2159  }
2160  return Reg;
2161}
2162
2163/// Using a CSR for the first time has a cost because it causes push|pop
2164/// to be added to prologue|epilogue. Splitting a cold section of the live
2165/// range can have lower cost than using the CSR for the first time;
2166/// Spilling a live range in the cold path can have lower cost than using
2167/// the CSR for the first time. Returns the physical register if we decide
2168/// to use the CSR; otherwise return 0.
2169unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2170                                         AllocationOrder &Order,
2171                                         unsigned PhysReg,
2172                                         unsigned &CostPerUseLimit,
2173                                         SmallVectorImpl<unsigned> &NewVRegs) {
2174  if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2175    // We choose spill over using the CSR for the first time if the spill cost
2176    // is lower than CSRCost.
2177    SA->analyze(&VirtReg);
2178    if (calcSpillCost() >= CSRCost)
2179      return PhysReg;
2180
2181    // We are going to spill, set CostPerUseLimit to 1 to make sure that
2182    // we will not use a callee-saved register in tryEvict.
2183    CostPerUseLimit = 1;
2184    return 0;
2185  }
2186  if (getStage(VirtReg) < RS_Split) {
2187    // We choose pre-splitting over using the CSR for the first time if
2188    // the cost of splitting is lower than CSRCost.
2189    SA->analyze(&VirtReg);
2190    unsigned NumCands = 0;
2191    BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2192    unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2193                                                 NumCands, true /*IgnoreCSR*/);
2194    if (BestCand == NoCand)
2195      // Use the CSR if we can't find a region split below CSRCost.
2196      return PhysReg;
2197
2198    // Perform the actual pre-splitting.
2199    doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2200    return 0;
2201  }
2202  return PhysReg;
2203}
2204
2205void RAGreedy::initializeCSRCost() {
2206  // We use the larger one out of the command-line option and the value report
2207  // by TRI.
2208  CSRCost = BlockFrequency(
2209      std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2210  if (!CSRCost.getFrequency())
2211    return;
2212
2213  // Raw cost is relative to Entry == 2^14; scale it appropriately.
2214  uint64_t ActualEntry = MBFI->getEntryFreq();
2215  if (!ActualEntry) {
2216    CSRCost = 0;
2217    return;
2218  }
2219  uint64_t FixedEntry = 1 << 14;
2220  if (ActualEntry < FixedEntry)
2221    CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2222  else if (ActualEntry <= UINT32_MAX)
2223    // Invert the fraction and divide.
2224    CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2225  else
2226    // Can't use BranchProbability in general, since it takes 32-bit numbers.
2227    CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2228}
2229
2230unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2231                                     SmallVectorImpl<unsigned> &NewVRegs,
2232                                     SmallVirtRegSet &FixedRegisters,
2233                                     unsigned Depth) {
2234  unsigned CostPerUseLimit = ~0u;
2235  // First try assigning a free register.
2236  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
2237  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2238    // We check other options if we are using a CSR for the first time.
2239    bool CSRFirstUse = false;
2240    if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
2241      if (!MRI->isPhysRegUsed(CSR))
2242        CSRFirstUse = true;
2243
2244    // When NewVRegs is not empty, we may have made decisions such as evicting
2245    // a virtual register, go with the earlier decisions and use the physical
2246    // register.
2247    if (CSRCost.getFrequency() && CSRFirstUse && NewVRegs.empty()) {
2248      unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2249                                              CostPerUseLimit, NewVRegs);
2250      if (CSRReg || !NewVRegs.empty())
2251        // Return now if we decide to use a CSR or create new vregs due to
2252        // pre-splitting.
2253        return CSRReg;
2254    } else
2255      return PhysReg;
2256  }
2257
2258  LiveRangeStage Stage = getStage(VirtReg);
2259  DEBUG(dbgs() << StageName[Stage]
2260               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2261
2262  // Try to evict a less worthy live range, but only for ranges from the primary
2263  // queue. The RS_Split ranges already failed to do this, and they should not
2264  // get a second chance until they have been split.
2265  if (Stage != RS_Split)
2266    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit))
2267      return PhysReg;
2268
2269  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
2270
2271  // The first time we see a live range, don't try to split or spill.
2272  // Wait until the second time, when all smaller ranges have been allocated.
2273  // This gives a better picture of the interference to split around.
2274  if (Stage < RS_Split) {
2275    setStage(VirtReg, RS_Split);
2276    DEBUG(dbgs() << "wait for second round\n");
2277    NewVRegs.push_back(VirtReg.reg);
2278    return 0;
2279  }
2280
2281  // If we couldn't allocate a register from spilling, there is probably some
2282  // invalid inline assembly. The base class wil report it.
2283  if (Stage >= RS_Done || !VirtReg.isSpillable())
2284    return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2285                                   Depth);
2286
2287  // Try splitting VirtReg or interferences.
2288  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2289  if (PhysReg || !NewVRegs.empty())
2290    return PhysReg;
2291
2292  // Finally spill VirtReg itself.
2293  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
2294  LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
2295  spiller().spill(LRE);
2296  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2297
2298  if (VerifyEnabled)
2299    MF->verify(this, "After spilling");
2300
2301  // The live virtual register requesting allocation was spilled, so tell
2302  // the caller not to allocate anything during this round.
2303  return 0;
2304}
2305
2306bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2307  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2308               << "********** Function: " << mf.getName() << '\n');
2309
2310  MF = &mf;
2311  TRI = MF->getTarget().getRegisterInfo();
2312  TII = MF->getTarget().getInstrInfo();
2313  RCI.runOnMachineFunction(mf);
2314  if (VerifyEnabled)
2315    MF->verify(this, "Before greedy register allocator");
2316
2317  RegAllocBase::init(getAnalysis<VirtRegMap>(),
2318                     getAnalysis<LiveIntervals>(),
2319                     getAnalysis<LiveRegMatrix>());
2320  Indexes = &getAnalysis<SlotIndexes>();
2321  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2322  DomTree = &getAnalysis<MachineDominatorTree>();
2323  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2324  Loops = &getAnalysis<MachineLoopInfo>();
2325  Bundles = &getAnalysis<EdgeBundles>();
2326  SpillPlacer = &getAnalysis<SpillPlacement>();
2327  DebugVars = &getAnalysis<LiveDebugVariables>();
2328
2329  initializeCSRCost();
2330
2331  calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
2332
2333  DEBUG(LIS->dump());
2334
2335  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2336  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
2337  ExtraRegInfo.clear();
2338  ExtraRegInfo.resize(MRI->getNumVirtRegs());
2339  NextCascade = 1;
2340  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2341  GlobalCand.resize(32);  // This will grow as needed.
2342
2343  allocatePhysRegs();
2344  releaseMemory();
2345  return true;
2346}
2347