RegisterCoalescer.cpp revision 0bb5a66b0388d2c52a887eaafe3749aaceb6a754
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/LiveRangeEdit.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/Passes.h"
30#include "llvm/CodeGen/RegisterClassInfo.h"
31#include "llvm/CodeGen/VirtRegMap.h"
32#include "llvm/IR/Value.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include <algorithm>
43#include <cmath>
44using namespace llvm;
45
46STATISTIC(numJoins    , "Number of interval joins performed");
47STATISTIC(numCrossRCs , "Number of cross class joins performed");
48STATISTIC(numCommutes , "Number of instruction commuting performed");
49STATISTIC(numExtends  , "Number of copies extended");
50STATISTIC(NumReMats   , "Number of instructions re-materialized");
51STATISTIC(NumInflated , "Number of register classes inflated");
52STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
54
55static cl::opt<bool>
56EnableJoining("join-liveintervals",
57              cl::desc("Coalesce copies (default=true)"),
58              cl::init(true));
59
60// Temporary flag to test critical edge unsplitting.
61static cl::opt<bool>
62EnableJoinSplits("join-splitedges",
63  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
64
65// Temporary flag to test global copy optimization.
66static cl::opt<cl::boolOrDefault>
67EnableGlobalCopies("join-globalcopies",
68  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
69  cl::init(cl::BOU_UNSET), cl::Hidden);
70
71static cl::opt<bool>
72VerifyCoalescing("verify-coalescing",
73         cl::desc("Verify machine instrs before and after register coalescing"),
74         cl::Hidden);
75
76namespace {
77  class RegisterCoalescer : public MachineFunctionPass,
78                            private LiveRangeEdit::Delegate {
79    MachineFunction* MF;
80    MachineRegisterInfo* MRI;
81    const TargetMachine* TM;
82    const TargetRegisterInfo* TRI;
83    const TargetInstrInfo* TII;
84    LiveIntervals *LIS;
85    const MachineLoopInfo* Loops;
86    AliasAnalysis *AA;
87    RegisterClassInfo RegClassInfo;
88
89    /// \brief True if the coalescer should aggressively coalesce global copies
90    /// in favor of keeping local copies.
91    bool JoinGlobalCopies;
92
93    /// \brief True if the coalescer should aggressively coalesce fall-thru
94    /// blocks exclusively containing copies.
95    bool JoinSplitEdges;
96
97    /// WorkList - Copy instructions yet to be coalesced.
98    SmallVector<MachineInstr*, 8> WorkList;
99    SmallVector<MachineInstr*, 8> LocalWorkList;
100
101    /// ErasedInstrs - Set of instruction pointers that have been erased, and
102    /// that may be present in WorkList.
103    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
104
105    /// Dead instructions that are about to be deleted.
106    SmallVector<MachineInstr*, 8> DeadDefs;
107
108    /// Virtual registers to be considered for register class inflation.
109    SmallVector<unsigned, 8> InflateRegs;
110
111    /// Recursively eliminate dead defs in DeadDefs.
112    void eliminateDeadDefs();
113
114    /// LiveRangeEdit callback.
115    void LRE_WillEraseInstruction(MachineInstr *MI);
116
117    /// coalesceLocals - coalesce the LocalWorkList.
118    void coalesceLocals();
119
120    /// joinAllIntervals - join compatible live intervals
121    void joinAllIntervals();
122
123    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
124    /// copies that cannot yet be coalesced into WorkList.
125    void copyCoalesceInMBB(MachineBasicBlock *MBB);
126
127    /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
128    /// true if any progress was made.
129    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
130
131    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
132    /// which are the src/dst of the copy instruction CopyMI.  This returns
133    /// true if the copy was successfully coalesced away. If it is not
134    /// currently possible to coalesce this interval, but it may be possible if
135    /// other things get coalesced, then it returns true by reference in
136    /// 'Again'.
137    bool joinCopy(MachineInstr *TheCopy, bool &Again);
138
139    /// joinIntervals - Attempt to join these two intervals.  On failure, this
140    /// returns false.  The output "SrcInt" will not have been modified, so we
141    /// can use this information below to update aliases.
142    bool joinIntervals(CoalescerPair &CP);
143
144    /// Attempt joining two virtual registers. Return true on success.
145    bool joinVirtRegs(CoalescerPair &CP);
146
147    /// Attempt joining with a reserved physreg.
148    bool joinReservedPhysReg(CoalescerPair &CP);
149
150    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
151    /// the source value number is defined by a copy from the destination reg
152    /// see if we can merge these two destination reg valno# into a single
153    /// value number, eliminating a copy.
154    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
155
156    /// hasOtherReachingDefs - Return true if there are definitions of IntB
157    /// other than BValNo val# that can reach uses of AValno val# of IntA.
158    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
159                              VNInfo *AValNo, VNInfo *BValNo);
160
161    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
162    /// If the source value number is defined by a commutable instruction and
163    /// its other operand is coalesced to the copy dest register, see if we
164    /// can transform the copy into a noop by commuting the definition.
165    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
166
167    /// reMaterializeTrivialDef - If the source of a copy is defined by a
168    /// trivial computation, replace the copy by rematerialize the definition.
169    bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
170                                 bool &IsDefCopy);
171
172    /// canJoinPhys - Return true if a physreg copy should be joined.
173    bool canJoinPhys(const CoalescerPair &CP);
174
175    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
176    /// update the subregister number if it is not zero. If DstReg is a
177    /// physical register and the existing subregister number of the def / use
178    /// being updated is not zero, make sure to set it to the correct physical
179    /// subregister.
180    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
181
182    /// eliminateUndefCopy - Handle copies of undef values.
183    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
184
185  public:
186    static char ID; // Class identification, replacement for typeinfo
187    RegisterCoalescer() : MachineFunctionPass(ID) {
188      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
189    }
190
191    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
192
193    virtual void releaseMemory();
194
195    /// runOnMachineFunction - pass entry point
196    virtual bool runOnMachineFunction(MachineFunction&);
197
198    /// print - Implement the dump method.
199    virtual void print(raw_ostream &O, const Module* = 0) const;
200  };
201} /// end anonymous namespace
202
203char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
204
205INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
206                      "Simple Register Coalescing", false, false)
207INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
208INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
209INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
210INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
211INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
212                    "Simple Register Coalescing", false, false)
213
214char RegisterCoalescer::ID = 0;
215
216static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
217                        unsigned &Src, unsigned &Dst,
218                        unsigned &SrcSub, unsigned &DstSub) {
219  if (MI->isCopy()) {
220    Dst = MI->getOperand(0).getReg();
221    DstSub = MI->getOperand(0).getSubReg();
222    Src = MI->getOperand(1).getReg();
223    SrcSub = MI->getOperand(1).getSubReg();
224  } else if (MI->isSubregToReg()) {
225    Dst = MI->getOperand(0).getReg();
226    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
227                                      MI->getOperand(3).getImm());
228    Src = MI->getOperand(2).getReg();
229    SrcSub = MI->getOperand(2).getSubReg();
230  } else
231    return false;
232  return true;
233}
234
235// Return true if this block should be vacated by the coalescer to eliminate
236// branches. The important cases to handle in the coalescer are critical edges
237// split during phi elimination which contain only copies. Simple blocks that
238// contain non-branches should also be vacated, but this can be handled by an
239// earlier pass similar to early if-conversion.
240static bool isSplitEdge(const MachineBasicBlock *MBB) {
241  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
242    return false;
243
244  for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end();
245       MII != E; ++MII) {
246    if (!MII->isCopyLike() && !MII->isUnconditionalBranch())
247      return false;
248  }
249  return true;
250}
251
252bool CoalescerPair::setRegisters(const MachineInstr *MI) {
253  SrcReg = DstReg = 0;
254  SrcIdx = DstIdx = 0;
255  NewRC = 0;
256  Flipped = CrossClass = false;
257
258  unsigned Src, Dst, SrcSub, DstSub;
259  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
260    return false;
261  Partial = SrcSub || DstSub;
262
263  // If one register is a physreg, it must be Dst.
264  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
265    if (TargetRegisterInfo::isPhysicalRegister(Dst))
266      return false;
267    std::swap(Src, Dst);
268    std::swap(SrcSub, DstSub);
269    Flipped = true;
270  }
271
272  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
273
274  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
275    // Eliminate DstSub on a physreg.
276    if (DstSub) {
277      Dst = TRI.getSubReg(Dst, DstSub);
278      if (!Dst) return false;
279      DstSub = 0;
280    }
281
282    // Eliminate SrcSub by picking a corresponding Dst superregister.
283    if (SrcSub) {
284      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
285      if (!Dst) return false;
286      SrcSub = 0;
287    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
288      return false;
289    }
290  } else {
291    // Both registers are virtual.
292    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
293    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
294
295    // Both registers have subreg indices.
296    if (SrcSub && DstSub) {
297      // Copies between different sub-registers are never coalescable.
298      if (Src == Dst && SrcSub != DstSub)
299        return false;
300
301      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
302                                         SrcIdx, DstIdx);
303      if (!NewRC)
304        return false;
305    } else if (DstSub) {
306      // SrcReg will be merged with a sub-register of DstReg.
307      SrcIdx = DstSub;
308      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
309    } else if (SrcSub) {
310      // DstReg will be merged with a sub-register of SrcReg.
311      DstIdx = SrcSub;
312      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
313    } else {
314      // This is a straight copy without sub-registers.
315      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
316    }
317
318    // The combined constraint may be impossible to satisfy.
319    if (!NewRC)
320      return false;
321
322    // Prefer SrcReg to be a sub-register of DstReg.
323    // FIXME: Coalescer should support subregs symmetrically.
324    if (DstIdx && !SrcIdx) {
325      std::swap(Src, Dst);
326      std::swap(SrcIdx, DstIdx);
327      Flipped = !Flipped;
328    }
329
330    CrossClass = NewRC != DstRC || NewRC != SrcRC;
331  }
332  // Check our invariants
333  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
334  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
335         "Cannot have a physical SubIdx");
336  SrcReg = Src;
337  DstReg = Dst;
338  return true;
339}
340
341bool CoalescerPair::flip() {
342  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
343    return false;
344  std::swap(SrcReg, DstReg);
345  std::swap(SrcIdx, DstIdx);
346  Flipped = !Flipped;
347  return true;
348}
349
350bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
351  if (!MI)
352    return false;
353  unsigned Src, Dst, SrcSub, DstSub;
354  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
355    return false;
356
357  // Find the virtual register that is SrcReg.
358  if (Dst == SrcReg) {
359    std::swap(Src, Dst);
360    std::swap(SrcSub, DstSub);
361  } else if (Src != SrcReg) {
362    return false;
363  }
364
365  // Now check that Dst matches DstReg.
366  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
367    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
368      return false;
369    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
370    // DstSub could be set for a physreg from INSERT_SUBREG.
371    if (DstSub)
372      Dst = TRI.getSubReg(Dst, DstSub);
373    // Full copy of Src.
374    if (!SrcSub)
375      return DstReg == Dst;
376    // This is a partial register copy. Check that the parts match.
377    return TRI.getSubReg(DstReg, SrcSub) == Dst;
378  } else {
379    // DstReg is virtual.
380    if (DstReg != Dst)
381      return false;
382    // Registers match, do the subregisters line up?
383    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
384           TRI.composeSubRegIndices(DstIdx, DstSub);
385  }
386}
387
388void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
389  AU.setPreservesCFG();
390  AU.addRequired<AliasAnalysis>();
391  AU.addRequired<LiveIntervals>();
392  AU.addPreserved<LiveIntervals>();
393  AU.addPreserved<SlotIndexes>();
394  AU.addRequired<MachineLoopInfo>();
395  AU.addPreserved<MachineLoopInfo>();
396  AU.addPreservedID(MachineDominatorsID);
397  MachineFunctionPass::getAnalysisUsage(AU);
398}
399
400void RegisterCoalescer::eliminateDeadDefs() {
401  SmallVector<unsigned, 8> NewRegs;
402  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
403}
404
405// Callback from eliminateDeadDefs().
406void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
407  // MI may be in WorkList. Make sure we don't visit it.
408  ErasedInstrs.insert(MI);
409}
410
411/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
412/// being the source and IntB being the dest, thus this defines a value number
413/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
414/// see if we can merge these two pieces of B into a single value number,
415/// eliminating a copy.  For example:
416///
417///  A3 = B0
418///    ...
419///  B1 = A3      <- this copy
420///
421/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
422/// value number to be replaced with B0 (which simplifies the B liveinterval).
423///
424/// This returns true if an interval was modified.
425///
426bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
427                                             MachineInstr *CopyMI) {
428  assert(!CP.isPartial() && "This doesn't work for partial copies.");
429  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
430
431  LiveInterval &IntA =
432    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
433  LiveInterval &IntB =
434    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
435  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
436
437  // BValNo is a value number in B that is defined by a copy from A.  'B1' in
438  // the example above.
439  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
440  if (BLR == IntB.end()) return false;
441  VNInfo *BValNo = BLR->valno;
442
443  // Get the location that B is defined at.  Two options: either this value has
444  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
445  // can't process it.
446  if (BValNo->def != CopyIdx) return false;
447
448  // AValNo is the value number in A that defines the copy, A3 in the example.
449  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
450  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
451  // The live range might not exist after fun with physreg coalescing.
452  if (ALR == IntA.end()) return false;
453  VNInfo *AValNo = ALR->valno;
454
455  // If AValNo is defined as a copy from IntB, we can potentially process this.
456  // Get the instruction that defines this value number.
457  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
458  // Don't allow any partial copies, even if isCoalescable() allows them.
459  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
460    return false;
461
462  // Get the LiveRange in IntB that this value number starts with.
463  LiveInterval::iterator ValLR =
464    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
465  if (ValLR == IntB.end())
466    return false;
467
468  // Make sure that the end of the live range is inside the same block as
469  // CopyMI.
470  MachineInstr *ValLREndInst =
471    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
472  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
473    return false;
474
475  // Okay, we now know that ValLR ends in the same block that the CopyMI
476  // live-range starts.  If there are no intervening live ranges between them in
477  // IntB, we can merge them.
478  if (ValLR+1 != BLR) return false;
479
480  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
481
482  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
483  // We are about to delete CopyMI, so need to remove it as the 'instruction
484  // that defines this value #'. Update the valnum with the new defining
485  // instruction #.
486  BValNo->def = FillerStart;
487
488  // Okay, we can merge them.  We need to insert a new liverange:
489  // [ValLR.end, BLR.begin) of either value number, then we merge the
490  // two value numbers.
491  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
492
493  // Okay, merge "B1" into the same value number as "B0".
494  if (BValNo != ValLR->valno)
495    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
496  DEBUG(dbgs() << "   result = " << IntB << '\n');
497
498  // If the source instruction was killing the source register before the
499  // merge, unset the isKill marker given the live range has been extended.
500  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
501  if (UIdx != -1) {
502    ValLREndInst->getOperand(UIdx).setIsKill(false);
503  }
504
505  // Rewrite the copy. If the copy instruction was killing the destination
506  // register before the merge, find the last use and trim the live range. That
507  // will also add the isKill marker.
508  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
509  if (ALR->end == CopyIdx)
510    LIS->shrinkToUses(&IntA);
511
512  ++numExtends;
513  return true;
514}
515
516/// hasOtherReachingDefs - Return true if there are definitions of IntB
517/// other than BValNo val# that can reach uses of AValno val# of IntA.
518bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
519                                             LiveInterval &IntB,
520                                             VNInfo *AValNo,
521                                             VNInfo *BValNo) {
522  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
523  // the PHI values.
524  if (LIS->hasPHIKill(IntA, AValNo))
525    return true;
526
527  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
528       AI != AE; ++AI) {
529    if (AI->valno != AValNo) continue;
530    LiveInterval::iterator BI =
531      std::upper_bound(IntB.begin(), IntB.end(), AI->start);
532    if (BI != IntB.begin())
533      --BI;
534    for (; BI != IntB.end() && AI->end >= BI->start; ++BI) {
535      if (BI->valno == BValNo)
536        continue;
537      if (BI->start <= AI->start && BI->end > AI->start)
538        return true;
539      if (BI->start > AI->start && BI->start < AI->end)
540        return true;
541    }
542  }
543  return false;
544}
545
546/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
547/// IntA being the source and IntB being the dest, thus this defines a value
548/// number in IntB.  If the source value number (in IntA) is defined by a
549/// commutable instruction and its other operand is coalesced to the copy dest
550/// register, see if we can transform the copy into a noop by commuting the
551/// definition. For example,
552///
553///  A3 = op A2 B0<kill>
554///    ...
555///  B1 = A3      <- this copy
556///    ...
557///     = op A3   <- more uses
558///
559/// ==>
560///
561///  B2 = op B0 A2<kill>
562///    ...
563///  B1 = B2      <- now an identify copy
564///    ...
565///     = op B2   <- more uses
566///
567/// This returns true if an interval was modified.
568///
569bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
570                                                 MachineInstr *CopyMI) {
571  assert (!CP.isPhys());
572
573  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
574
575  LiveInterval &IntA =
576    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
577  LiveInterval &IntB =
578    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
579
580  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
581  // the example above.
582  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
583  if (!BValNo || BValNo->def != CopyIdx)
584    return false;
585
586  // AValNo is the value number in A that defines the copy, A3 in the example.
587  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
588  assert(AValNo && "COPY source not live");
589  if (AValNo->isPHIDef() || AValNo->isUnused())
590    return false;
591  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
592  if (!DefMI)
593    return false;
594  if (!DefMI->isCommutable())
595    return false;
596  // If DefMI is a two-address instruction then commuting it will change the
597  // destination register.
598  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
599  assert(DefIdx != -1);
600  unsigned UseOpIdx;
601  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
602    return false;
603  unsigned Op1, Op2, NewDstIdx;
604  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
605    return false;
606  if (Op1 == UseOpIdx)
607    NewDstIdx = Op2;
608  else if (Op2 == UseOpIdx)
609    NewDstIdx = Op1;
610  else
611    return false;
612
613  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
614  unsigned NewReg = NewDstMO.getReg();
615  if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
616    return false;
617
618  // Make sure there are no other definitions of IntB that would reach the
619  // uses which the new definition can reach.
620  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
621    return false;
622
623  // If some of the uses of IntA.reg is already coalesced away, return false.
624  // It's not possible to determine whether it's safe to perform the coalescing.
625  for (MachineRegisterInfo::use_nodbg_iterator UI =
626         MRI->use_nodbg_begin(IntA.reg),
627       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
628    MachineInstr *UseMI = &*UI;
629    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
630    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
631    if (ULR == IntA.end() || ULR->valno != AValNo)
632      continue;
633    // If this use is tied to a def, we can't rewrite the register.
634    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
635      return false;
636  }
637
638  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
639               << *DefMI);
640
641  // At this point we have decided that it is legal to do this
642  // transformation.  Start by commuting the instruction.
643  MachineBasicBlock *MBB = DefMI->getParent();
644  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
645  if (!NewMI)
646    return false;
647  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
648      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
649      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
650    return false;
651  if (NewMI != DefMI) {
652    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
653    MachineBasicBlock::iterator Pos = DefMI;
654    MBB->insert(Pos, NewMI);
655    MBB->erase(DefMI);
656  }
657  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
658  NewMI->getOperand(OpIdx).setIsKill();
659
660  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
661  // A = or A, B
662  // ...
663  // B = A
664  // ...
665  // C = A<kill>
666  // ...
667  //   = B
668
669  // Update uses of IntA of the specific Val# with IntB.
670  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
671         UE = MRI->use_end(); UI != UE;) {
672    MachineOperand &UseMO = UI.getOperand();
673    MachineInstr *UseMI = &*UI;
674    ++UI;
675    if (UseMI->isDebugValue()) {
676      // FIXME These don't have an instruction index.  Not clear we have enough
677      // info to decide whether to do this replacement or not.  For now do it.
678      UseMO.setReg(NewReg);
679      continue;
680    }
681    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
682    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
683    if (ULR == IntA.end() || ULR->valno != AValNo)
684      continue;
685    // Kill flags are no longer accurate. They are recomputed after RA.
686    UseMO.setIsKill(false);
687    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
688      UseMO.substPhysReg(NewReg, *TRI);
689    else
690      UseMO.setReg(NewReg);
691    if (UseMI == CopyMI)
692      continue;
693    if (!UseMI->isCopy())
694      continue;
695    if (UseMI->getOperand(0).getReg() != IntB.reg ||
696        UseMI->getOperand(0).getSubReg())
697      continue;
698
699    // This copy will become a noop. If it's defining a new val#, merge it into
700    // BValNo.
701    SlotIndex DefIdx = UseIdx.getRegSlot();
702    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
703    if (!DVNI)
704      continue;
705    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
706    assert(DVNI->def == DefIdx);
707    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
708    ErasedInstrs.insert(UseMI);
709    LIS->RemoveMachineInstrFromMaps(UseMI);
710    UseMI->eraseFromParent();
711  }
712
713  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
714  // is updated.
715  VNInfo *ValNo = BValNo;
716  ValNo->def = AValNo->def;
717  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
718       AI != AE; ++AI) {
719    if (AI->valno != AValNo) continue;
720    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
721  }
722  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
723
724  IntA.removeValNo(AValNo);
725  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
726  ++numCommutes;
727  return true;
728}
729
730/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
731/// computation, replace the copy by rematerialize the definition.
732bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
733                                                MachineInstr *CopyMI,
734                                                bool &IsDefCopy) {
735  IsDefCopy = false;
736  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
737  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
738  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
739  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
740  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
741    return false;
742
743  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
744  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
745  VNInfo *ValNo = LiveRangeQuery(SrcInt, CopyIdx).valueIn();
746  assert(ValNo && "CopyMI input register not live");
747  if (ValNo->isPHIDef() || ValNo->isUnused())
748    return false;
749  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
750  if (!DefMI)
751    return false;
752  if (DefMI->isCopyLike()) {
753    IsDefCopy = true;
754    return false;
755  }
756  if (!DefMI->isAsCheapAsAMove())
757    return false;
758  if (!TII->isTriviallyReMaterializable(DefMI, AA))
759    return false;
760  bool SawStore = false;
761  if (!DefMI->isSafeToMove(TII, AA, SawStore))
762    return false;
763  const MCInstrDesc &MCID = DefMI->getDesc();
764  if (MCID.getNumDefs() != 1)
765    return false;
766  // Only support subregister destinations when the def is read-undef.
767  MachineOperand &DstOperand = CopyMI->getOperand(0);
768  unsigned CopyDstReg = DstOperand.getReg();
769  if (DstOperand.getSubReg() && !DstOperand.isUndef())
770    return false;
771
772  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
773  if (!DefMI->isImplicitDef()) {
774    if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
775      unsigned NewDstReg = DstReg;
776
777      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
778                                              DefMI->getOperand(0).getSubReg());
779      if (NewDstIdx)
780        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
781
782      // Finally, make sure that the physical subregister that will be
783      // constructed later is permitted for the instruction.
784      if (!DefRC->contains(NewDstReg))
785        return false;
786    } else {
787      // Theoretically, some stack frame reference could exist. Just make sure
788      // it hasn't actually happened.
789      assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
790             "Only expect to deal with virtual or physical registers");
791    }
792  }
793
794  MachineBasicBlock *MBB = CopyMI->getParent();
795  MachineBasicBlock::iterator MII =
796    llvm::next(MachineBasicBlock::iterator(CopyMI));
797  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
798  MachineInstr *NewMI = prior(MII);
799
800  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
801  CopyMI->eraseFromParent();
802  ErasedInstrs.insert(CopyMI);
803
804  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
805  // We need to remember these so we can add intervals once we insert
806  // NewMI into SlotIndexes.
807  SmallVector<unsigned, 4> NewMIImplDefs;
808  for (unsigned i = NewMI->getDesc().getNumOperands(),
809         e = NewMI->getNumOperands(); i != e; ++i) {
810    MachineOperand &MO = NewMI->getOperand(i);
811    if (MO.isReg()) {
812      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
813             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
814      NewMIImplDefs.push_back(MO.getReg());
815    }
816  }
817
818  if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
819    unsigned NewIdx = NewMI->getOperand(0).getSubReg();
820    const TargetRegisterClass *RCForInst;
821    if (NewIdx)
822      RCForInst = TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg), DefRC,
823                                                NewIdx);
824
825    if (MRI->constrainRegClass(DstReg, DefRC)) {
826      // The materialized instruction is quite capable of setting DstReg
827      // directly, but it may still have a now-trivial subregister index which
828      // we should clear.
829      NewMI->getOperand(0).setSubReg(0);
830    } else if (NewIdx && RCForInst) {
831      // The subreg index on NewMI is essential; we still have to make sure
832      // DstReg:idx is in a class that NewMI can use.
833      MRI->constrainRegClass(DstReg, RCForInst);
834    } else {
835      // DstReg is actually incompatible with NewMI, we have to move to a
836      // super-reg's class. This could come from a sequence like:
837      //     GR32 = MOV32r0
838      //     GR8 = COPY GR32:sub_8
839      MRI->setRegClass(DstReg, CP.getNewRC());
840      updateRegDefsUses(DstReg, DstReg, DstIdx);
841      NewMI->getOperand(0).setSubReg(
842          TRI->composeSubRegIndices(SrcIdx, DefMI->getOperand(0).getSubReg()));
843    }
844  } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
845    // The New instruction may be defining a sub-register of what's actually
846    // been asked for. If so it must implicitly define the whole thing.
847    assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
848           "Only expect virtual or physical registers in remat");
849    NewMI->getOperand(0).setIsDead(true);
850    NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
851                                                true  /*IsDef*/,
852                                                true  /*IsImp*/,
853                                                false /*IsKill*/));
854  }
855
856  if (NewMI->getOperand(0).getSubReg())
857    NewMI->getOperand(0).setIsUndef();
858
859  // CopyMI may have implicit operands, transfer them over to the newly
860  // rematerialized instruction. And update implicit def interval valnos.
861  for (unsigned i = CopyMI->getDesc().getNumOperands(),
862         e = CopyMI->getNumOperands(); i != e; ++i) {
863    MachineOperand &MO = CopyMI->getOperand(i);
864    if (MO.isReg()) {
865      assert(MO.isImplicit() && "No explicit operands after implict operands.");
866      // Discard VReg implicit defs.
867      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
868        NewMI->addOperand(MO);
869      }
870    }
871  }
872
873  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
874  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
875    unsigned Reg = NewMIImplDefs[i];
876    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
877      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
878        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
879  }
880
881  DEBUG(dbgs() << "Remat: " << *NewMI);
882  ++NumReMats;
883
884  // The source interval can become smaller because we removed a use.
885  LIS->shrinkToUses(&SrcInt, &DeadDefs);
886  if (!DeadDefs.empty())
887    eliminateDeadDefs();
888
889  return true;
890}
891
892/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
893/// values, it only removes local variables. When we have a copy like:
894///
895///   %vreg1 = COPY %vreg2<undef>
896///
897/// We delete the copy and remove the corresponding value number from %vreg1.
898/// Any uses of that value number are marked as <undef>.
899bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
900                                           const CoalescerPair &CP) {
901  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
902  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
903  if (SrcInt->liveAt(Idx))
904    return false;
905  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
906  if (DstInt->liveAt(Idx))
907    return false;
908
909  // No intervals are live-in to CopyMI - it is undef.
910  if (CP.isFlipped())
911    DstInt = SrcInt;
912  SrcInt = 0;
913
914  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
915  assert(DeadVNI && "No value defined in DstInt");
916  DstInt->removeValNo(DeadVNI);
917
918  // Find new undef uses.
919  for (MachineRegisterInfo::reg_nodbg_iterator
920         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
921       I != E; ++I) {
922    MachineOperand &MO = I.getOperand();
923    if (MO.isDef() || MO.isUndef())
924      continue;
925    MachineInstr *MI = MO.getParent();
926    SlotIndex Idx = LIS->getInstructionIndex(MI);
927    if (DstInt->liveAt(Idx))
928      continue;
929    MO.setIsUndef(true);
930    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
931  }
932  return true;
933}
934
935/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
936/// update the subregister number if it is not zero. If DstReg is a
937/// physical register and the existing subregister number of the def / use
938/// being updated is not zero, make sure to set it to the correct physical
939/// subregister.
940void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
941                                          unsigned DstReg,
942                                          unsigned SubIdx) {
943  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
944  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
945
946  SmallPtrSet<MachineInstr*, 8> Visited;
947  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
948       MachineInstr *UseMI = I.skipInstruction();) {
949    // Each instruction can only be rewritten once because sub-register
950    // composition is not always idempotent. When SrcReg != DstReg, rewriting
951    // the UseMI operands removes them from the SrcReg use-def chain, but when
952    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
953    // operands mentioning the virtual register.
954    if (SrcReg == DstReg && !Visited.insert(UseMI))
955      continue;
956
957    SmallVector<unsigned,8> Ops;
958    bool Reads, Writes;
959    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
960
961    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
962    // because SrcReg is a sub-register.
963    if (DstInt && !Reads && SubIdx)
964      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
965
966    // Replace SrcReg with DstReg in all UseMI operands.
967    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
968      MachineOperand &MO = UseMI->getOperand(Ops[i]);
969
970      // Adjust <undef> flags in case of sub-register joins. We don't want to
971      // turn a full def into a read-modify-write sub-register def and vice
972      // versa.
973      if (SubIdx && MO.isDef())
974        MO.setIsUndef(!Reads);
975
976      if (DstIsPhys)
977        MO.substPhysReg(DstReg, *TRI);
978      else
979        MO.substVirtReg(DstReg, SubIdx, *TRI);
980    }
981
982    DEBUG({
983        dbgs() << "\t\tupdated: ";
984        if (!UseMI->isDebugValue())
985          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
986        dbgs() << *UseMI;
987      });
988  }
989}
990
991/// canJoinPhys - Return true if a copy involving a physreg should be joined.
992bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
993  /// Always join simple intervals that are defined by a single copy from a
994  /// reserved register. This doesn't increase register pressure, so it is
995  /// always beneficial.
996  if (!MRI->isReserved(CP.getDstReg())) {
997    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
998    return false;
999  }
1000
1001  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1002  if (CP.isFlipped() && JoinVInt.containsOneValue())
1003    return true;
1004
1005  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
1006  return false;
1007}
1008
1009/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1010/// which are the src/dst of the copy instruction CopyMI.  This returns true
1011/// if the copy was successfully coalesced away. If it is not currently
1012/// possible to coalesce this interval, but it may be possible if other
1013/// things get coalesced, then it returns true by reference in 'Again'.
1014bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1015
1016  Again = false;
1017  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1018
1019  CoalescerPair CP(*TRI);
1020  if (!CP.setRegisters(CopyMI)) {
1021    DEBUG(dbgs() << "\tNot coalescable.\n");
1022    return false;
1023  }
1024
1025  // Dead code elimination. This really should be handled by MachineDCE, but
1026  // sometimes dead copies slip through, and we can't generate invalid live
1027  // ranges.
1028  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1029    DEBUG(dbgs() << "\tCopy is dead.\n");
1030    DeadDefs.push_back(CopyMI);
1031    eliminateDeadDefs();
1032    return true;
1033  }
1034
1035  // Eliminate undefs.
1036  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1037    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1038    LIS->RemoveMachineInstrFromMaps(CopyMI);
1039    CopyMI->eraseFromParent();
1040    return false;  // Not coalescable.
1041  }
1042
1043  // Coalesced copies are normally removed immediately, but transformations
1044  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1045  // When that happens, just join the values and remove the copy.
1046  if (CP.getSrcReg() == CP.getDstReg()) {
1047    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1048    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1049    LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
1050    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1051      VNInfo *ReadVNI = LRQ.valueIn();
1052      assert(ReadVNI && "No value before copy and no <undef> flag.");
1053      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1054      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1055      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1056    }
1057    LIS->RemoveMachineInstrFromMaps(CopyMI);
1058    CopyMI->eraseFromParent();
1059    return true;
1060  }
1061
1062  // Enforce policies.
1063  if (CP.isPhys()) {
1064    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1065                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1066                 << '\n');
1067    if (!canJoinPhys(CP)) {
1068      // Before giving up coalescing, if definition of source is defined by
1069      // trivial computation, try rematerializing it.
1070      bool IsDefCopy;
1071      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1072        return true;
1073      if (IsDefCopy)
1074        Again = true;  // May be possible to coalesce later.
1075      return false;
1076    }
1077  } else {
1078    DEBUG({
1079      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1080             << " with ";
1081      if (CP.getDstIdx() && CP.getSrcIdx())
1082        dbgs() << PrintReg(CP.getDstReg()) << " in "
1083               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1084               << PrintReg(CP.getSrcReg()) << " in "
1085               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1086      else
1087        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1088               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1089    });
1090
1091    // When possible, let DstReg be the larger interval.
1092    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1093                           LIS->getInterval(CP.getDstReg()).size())
1094      CP.flip();
1095  }
1096
1097  // Okay, attempt to join these two intervals.  On failure, this returns false.
1098  // Otherwise, if one of the intervals being joined is a physreg, this method
1099  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1100  // been modified, so we can use this information below to update aliases.
1101  if (!joinIntervals(CP)) {
1102    // Coalescing failed.
1103
1104    // If definition of source is defined by trivial computation, try
1105    // rematerializing it.
1106    bool IsDefCopy;
1107    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1108      return true;
1109
1110    // If we can eliminate the copy without merging the live ranges, do so now.
1111    if (!CP.isPartial() && !CP.isPhys()) {
1112      if (adjustCopiesBackFrom(CP, CopyMI) ||
1113          removeCopyByCommutingDef(CP, CopyMI)) {
1114        LIS->RemoveMachineInstrFromMaps(CopyMI);
1115        CopyMI->eraseFromParent();
1116        DEBUG(dbgs() << "\tTrivial!\n");
1117        return true;
1118      }
1119    }
1120
1121    // Otherwise, we are unable to join the intervals.
1122    DEBUG(dbgs() << "\tInterference!\n");
1123    Again = true;  // May be possible to coalesce later.
1124    return false;
1125  }
1126
1127  // Coalescing to a virtual register that is of a sub-register class of the
1128  // other. Make sure the resulting register is set to the right register class.
1129  if (CP.isCrossClass()) {
1130    ++numCrossRCs;
1131    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1132  }
1133
1134  // Removing sub-register copies can ease the register class constraints.
1135  // Make sure we attempt to inflate the register class of DstReg.
1136  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1137    InflateRegs.push_back(CP.getDstReg());
1138
1139  // CopyMI has been erased by joinIntervals at this point. Remove it from
1140  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1141  // to the work list. This keeps ErasedInstrs from growing needlessly.
1142  ErasedInstrs.erase(CopyMI);
1143
1144  // Rewrite all SrcReg operands to DstReg.
1145  // Also update DstReg operands to include DstIdx if it is set.
1146  if (CP.getDstIdx())
1147    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1148  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1149
1150  // SrcReg is guaranteed to be the register whose live interval that is
1151  // being merged.
1152  LIS->removeInterval(CP.getSrcReg());
1153
1154  // Update regalloc hint.
1155  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1156
1157  DEBUG({
1158    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
1159    if (!CP.isPhys())
1160      dbgs() << LIS->getInterval(CP.getDstReg());
1161     dbgs() << '\n';
1162  });
1163
1164  ++numJoins;
1165  return true;
1166}
1167
1168/// Attempt joining with a reserved physreg.
1169bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1170  assert(CP.isPhys() && "Must be a physreg copy");
1171  assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
1172  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1173  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1174               << '\n');
1175
1176  assert(CP.isFlipped() && RHS.containsOneValue() &&
1177         "Invalid join with reserved register");
1178
1179  // Optimization for reserved registers like ESP. We can only merge with a
1180  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1181  // The live range of the reserved register will look like a set of dead defs
1182  // - we don't properly track the live range of reserved registers.
1183
1184  // Deny any overlapping intervals.  This depends on all the reserved
1185  // register live ranges to look like dead defs.
1186  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1187    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1188      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1189      return false;
1190    }
1191
1192  // Skip any value computations, we are not adding new values to the
1193  // reserved register.  Also skip merging the live ranges, the reserved
1194  // register live range doesn't need to be accurate as long as all the
1195  // defs are there.
1196
1197  // Delete the identity copy.
1198  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
1199  LIS->RemoveMachineInstrFromMaps(CopyMI);
1200  CopyMI->eraseFromParent();
1201
1202  // We don't track kills for reserved registers.
1203  MRI->clearKillFlags(CP.getSrcReg());
1204
1205  return true;
1206}
1207
1208//===----------------------------------------------------------------------===//
1209//                 Interference checking and interval joining
1210//===----------------------------------------------------------------------===//
1211//
1212// In the easiest case, the two live ranges being joined are disjoint, and
1213// there is no interference to consider. It is quite common, though, to have
1214// overlapping live ranges, and we need to check if the interference can be
1215// resolved.
1216//
1217// The live range of a single SSA value forms a sub-tree of the dominator tree.
1218// This means that two SSA values overlap if and only if the def of one value
1219// is contained in the live range of the other value. As a special case, the
1220// overlapping values can be defined at the same index.
1221//
1222// The interference from an overlapping def can be resolved in these cases:
1223//
1224// 1. Coalescable copies. The value is defined by a copy that would become an
1225//    identity copy after joining SrcReg and DstReg. The copy instruction will
1226//    be removed, and the value will be merged with the source value.
1227//
1228//    There can be several copies back and forth, causing many values to be
1229//    merged into one. We compute a list of ultimate values in the joined live
1230//    range as well as a mappings from the old value numbers.
1231//
1232// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1233//    predecessors have a live out value. It doesn't cause real interference,
1234//    and can be merged into the value it overlaps. Like a coalescable copy, it
1235//    can be erased after joining.
1236//
1237// 3. Copy of external value. The overlapping def may be a copy of a value that
1238//    is already in the other register. This is like a coalescable copy, but
1239//    the live range of the source register must be trimmed after erasing the
1240//    copy instruction:
1241//
1242//      %src = COPY %ext
1243//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1244//
1245// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1246//    defining one lane at a time:
1247//
1248//      %dst:ssub0<def,read-undef> = FOO
1249//      %src = BAR
1250//      %dst:ssub1<def> = COPY %src
1251//
1252//    The live range of %src overlaps the %dst value defined by FOO, but
1253//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1254//    which was undef anyway.
1255//
1256//    The value mapping is more complicated in this case. The final live range
1257//    will have different value numbers for both FOO and BAR, but there is no
1258//    simple mapping from old to new values. It may even be necessary to add
1259//    new PHI values.
1260//
1261// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1262//    is live, but never read. This can happen because we don't compute
1263//    individual live ranges per lane.
1264//
1265//      %dst<def> = FOO
1266//      %src = BAR
1267//      %dst:ssub1<def> = COPY %src
1268//
1269//    This kind of interference is only resolved locally. If the clobbered
1270//    lane value escapes the block, the join is aborted.
1271
1272namespace {
1273/// Track information about values in a single virtual register about to be
1274/// joined. Objects of this class are always created in pairs - one for each
1275/// side of the CoalescerPair.
1276class JoinVals {
1277  LiveInterval &LI;
1278
1279  // Location of this register in the final joined register.
1280  // Either CP.DstIdx or CP.SrcIdx.
1281  unsigned SubIdx;
1282
1283  // Values that will be present in the final live range.
1284  SmallVectorImpl<VNInfo*> &NewVNInfo;
1285
1286  const CoalescerPair &CP;
1287  LiveIntervals *LIS;
1288  SlotIndexes *Indexes;
1289  const TargetRegisterInfo *TRI;
1290
1291  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
1292  // This is suitable for passing to LiveInterval::join().
1293  SmallVector<int, 8> Assignments;
1294
1295  // Conflict resolution for overlapping values.
1296  enum ConflictResolution {
1297    // No overlap, simply keep this value.
1298    CR_Keep,
1299
1300    // Merge this value into OtherVNI and erase the defining instruction.
1301    // Used for IMPLICIT_DEF, coalescable copies, and copies from external
1302    // values.
1303    CR_Erase,
1304
1305    // Merge this value into OtherVNI but keep the defining instruction.
1306    // This is for the special case where OtherVNI is defined by the same
1307    // instruction.
1308    CR_Merge,
1309
1310    // Keep this value, and have it replace OtherVNI where possible. This
1311    // complicates value mapping since OtherVNI maps to two different values
1312    // before and after this def.
1313    // Used when clobbering undefined or dead lanes.
1314    CR_Replace,
1315
1316    // Unresolved conflict. Visit later when all values have been mapped.
1317    CR_Unresolved,
1318
1319    // Unresolvable conflict. Abort the join.
1320    CR_Impossible
1321  };
1322
1323  // Per-value info for LI. The lane bit masks are all relative to the final
1324  // joined register, so they can be compared directly between SrcReg and
1325  // DstReg.
1326  struct Val {
1327    ConflictResolution Resolution;
1328
1329    // Lanes written by this def, 0 for unanalyzed values.
1330    unsigned WriteLanes;
1331
1332    // Lanes with defined values in this register. Other lanes are undef and
1333    // safe to clobber.
1334    unsigned ValidLanes;
1335
1336    // Value in LI being redefined by this def.
1337    VNInfo *RedefVNI;
1338
1339    // Value in the other live range that overlaps this def, if any.
1340    VNInfo *OtherVNI;
1341
1342    // Is this value an IMPLICIT_DEF that can be erased?
1343    //
1344    // IMPLICIT_DEF values should only exist at the end of a basic block that
1345    // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1346    // safely erased if they are overlapping a live value in the other live
1347    // interval.
1348    //
1349    // Weird control flow graphs and incomplete PHI handling in
1350    // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1351    // longer live ranges. Such IMPLICIT_DEF values should be treated like
1352    // normal values.
1353    bool ErasableImplicitDef;
1354
1355    // True when the live range of this value will be pruned because of an
1356    // overlapping CR_Replace value in the other live range.
1357    bool Pruned;
1358
1359    // True once Pruned above has been computed.
1360    bool PrunedComputed;
1361
1362    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1363            RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false),
1364            Pruned(false), PrunedComputed(false) {}
1365
1366    bool isAnalyzed() const { return WriteLanes != 0; }
1367  };
1368
1369  // One entry per value number in LI.
1370  SmallVector<Val, 8> Vals;
1371
1372  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
1373  VNInfo *stripCopies(VNInfo *VNI);
1374  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1375  void computeAssignment(unsigned ValNo, JoinVals &Other);
1376  bool taintExtent(unsigned, unsigned, JoinVals&,
1377                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1378  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
1379  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1380
1381public:
1382  JoinVals(LiveInterval &li, unsigned subIdx,
1383           SmallVectorImpl<VNInfo*> &newVNInfo,
1384           const CoalescerPair &cp,
1385           LiveIntervals *lis,
1386           const TargetRegisterInfo *tri)
1387    : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
1388      Indexes(LIS->getSlotIndexes()), TRI(tri),
1389      Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
1390  {}
1391
1392  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
1393  /// Returns false if any conflicts were impossible to resolve.
1394  bool mapValues(JoinVals &Other);
1395
1396  /// Try to resolve conflicts that require all values to be mapped.
1397  /// Returns false if any conflicts were impossible to resolve.
1398  bool resolveConflicts(JoinVals &Other);
1399
1400  /// Prune the live range of values in Other.LI where they would conflict with
1401  /// CR_Replace values in LI. Collect end points for restoring the live range
1402  /// after joining.
1403  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
1404
1405  /// Erase any machine instructions that have been coalesced away.
1406  /// Add erased instructions to ErasedInstrs.
1407  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1408  /// the erased instrs.
1409  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1410                   SmallVectorImpl<unsigned> &ShrinkRegs);
1411
1412  /// Get the value assignments suitable for passing to LiveInterval::join.
1413  const int *getAssignments() const { return Assignments.data(); }
1414};
1415} // end anonymous namespace
1416
1417/// Compute the bitmask of lanes actually written by DefMI.
1418/// Set Redef if there are any partial register definitions that depend on the
1419/// previous value of the register.
1420unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
1421  unsigned L = 0;
1422  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
1423    if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
1424      continue;
1425    L |= TRI->getSubRegIndexLaneMask(
1426           TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
1427    if (MO->readsReg())
1428      Redef = true;
1429  }
1430  return L;
1431}
1432
1433/// Find the ultimate value that VNI was copied from.
1434VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
1435  while (!VNI->isPHIDef()) {
1436    MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
1437    assert(MI && "No defining instruction");
1438    if (!MI->isFullCopy())
1439      break;
1440    unsigned Reg = MI->getOperand(1).getReg();
1441    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1442      break;
1443    LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
1444    if (!LRQ.valueIn())
1445      break;
1446    VNI = LRQ.valueIn();
1447  }
1448  return VNI;
1449}
1450
1451/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1452/// Return a conflict resolution when possible, but leave the hard cases as
1453/// CR_Unresolved.
1454/// Recursively calls computeAssignment() on this and Other, guaranteeing that
1455/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1456/// The recursion always goes upwards in the dominator tree, making loops
1457/// impossible.
1458JoinVals::ConflictResolution
1459JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1460  Val &V = Vals[ValNo];
1461  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1462  VNInfo *VNI = LI.getValNumInfo(ValNo);
1463  if (VNI->isUnused()) {
1464    V.WriteLanes = ~0u;
1465    return CR_Keep;
1466  }
1467
1468  // Get the instruction defining this value, compute the lanes written.
1469  const MachineInstr *DefMI = 0;
1470  if (VNI->isPHIDef()) {
1471    // Conservatively assume that all lanes in a PHI are valid.
1472    V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1473  } else {
1474    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1475    bool Redef = false;
1476    V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1477
1478    // If this is a read-modify-write instruction, there may be more valid
1479    // lanes than the ones written by this instruction.
1480    // This only covers partial redef operands. DefMI may have normal use
1481    // operands reading the register. They don't contribute valid lanes.
1482    //
1483    // This adds ssub1 to the set of valid lanes in %src:
1484    //
1485    //   %src:ssub1<def> = FOO
1486    //
1487    // This leaves only ssub1 valid, making any other lanes undef:
1488    //
1489    //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1490    //
1491    // The <read-undef> flag on the def operand means that old lane values are
1492    // not important.
1493    if (Redef) {
1494      V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
1495      assert(V.RedefVNI && "Instruction is reading nonexistent value");
1496      computeAssignment(V.RedefVNI->id, Other);
1497      V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1498    }
1499
1500    // An IMPLICIT_DEF writes undef values.
1501    if (DefMI->isImplicitDef()) {
1502      // We normally expect IMPLICIT_DEF values to be live only until the end
1503      // of their block. If the value is really live longer and gets pruned in
1504      // another block, this flag is cleared again.
1505      V.ErasableImplicitDef = true;
1506      V.ValidLanes &= ~V.WriteLanes;
1507    }
1508  }
1509
1510  // Find the value in Other that overlaps VNI->def, if any.
1511  LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
1512
1513  // It is possible that both values are defined by the same instruction, or
1514  // the values are PHIs defined in the same block. When that happens, the two
1515  // values should be merged into one, but not into any preceding value.
1516  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1517  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1518    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1519
1520    // One value stays, the other is merged. Keep the earlier one, or the first
1521    // one we see.
1522    if (OtherVNI->def < VNI->def)
1523      Other.computeAssignment(OtherVNI->id, *this);
1524    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1525      // This is an early-clobber def overlapping a live-in value in the other
1526      // register. Not mergeable.
1527      V.OtherVNI = OtherLRQ.valueIn();
1528      return CR_Impossible;
1529    }
1530    V.OtherVNI = OtherVNI;
1531    Val &OtherV = Other.Vals[OtherVNI->id];
1532    // Keep this value, check for conflicts when analyzing OtherVNI.
1533    if (!OtherV.isAnalyzed())
1534      return CR_Keep;
1535    // Both sides have been analyzed now.
1536    // Allow overlapping PHI values. Any real interference would show up in a
1537    // predecessor, the PHI itself can't introduce any conflicts.
1538    if (VNI->isPHIDef())
1539      return CR_Merge;
1540    if (V.ValidLanes & OtherV.ValidLanes)
1541      // Overlapping lanes can't be resolved.
1542      return CR_Impossible;
1543    else
1544      return CR_Merge;
1545  }
1546
1547  // No simultaneous def. Is Other live at the def?
1548  V.OtherVNI = OtherLRQ.valueIn();
1549  if (!V.OtherVNI)
1550    // No overlap, no conflict.
1551    return CR_Keep;
1552
1553  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
1554
1555  // We have overlapping values, or possibly a kill of Other.
1556  // Recursively compute assignments up the dominator tree.
1557  Other.computeAssignment(V.OtherVNI->id, *this);
1558  Val &OtherV = Other.Vals[V.OtherVNI->id];
1559
1560  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
1561  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
1562  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
1563  // technically.
1564  //
1565  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
1566  // to erase the IMPLICIT_DEF instruction.
1567  if (OtherV.ErasableImplicitDef && DefMI &&
1568      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
1569    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
1570                 << " extends into BB#" << DefMI->getParent()->getNumber()
1571                 << ", keeping it.\n");
1572    OtherV.ErasableImplicitDef = false;
1573  }
1574
1575  // Allow overlapping PHI values. Any real interference would show up in a
1576  // predecessor, the PHI itself can't introduce any conflicts.
1577  if (VNI->isPHIDef())
1578    return CR_Replace;
1579
1580  // Check for simple erasable conflicts.
1581  if (DefMI->isImplicitDef())
1582    return CR_Erase;
1583
1584  // Include the non-conflict where DefMI is a coalescable copy that kills
1585  // OtherVNI. We still want the copy erased and value numbers merged.
1586  if (CP.isCoalescable(DefMI)) {
1587    // Some of the lanes copied from OtherVNI may be undef, making them undef
1588    // here too.
1589    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
1590    return CR_Erase;
1591  }
1592
1593  // This may not be a real conflict if DefMI simply kills Other and defines
1594  // VNI.
1595  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
1596    return CR_Keep;
1597
1598  // Handle the case where VNI and OtherVNI can be proven to be identical:
1599  //
1600  //   %other = COPY %ext
1601  //   %this  = COPY %ext <-- Erase this copy
1602  //
1603  if (DefMI->isFullCopy() && !CP.isPartial() &&
1604      stripCopies(VNI) == stripCopies(V.OtherVNI))
1605    return CR_Erase;
1606
1607  // If the lanes written by this instruction were all undef in OtherVNI, it is
1608  // still safe to join the live ranges. This can't be done with a simple value
1609  // mapping, though - OtherVNI will map to multiple values:
1610  //
1611  //   1 %dst:ssub0 = FOO                <-- OtherVNI
1612  //   2 %src = BAR                      <-- VNI
1613  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
1614  //   4 BAZ %dst<kill>
1615  //   5 QUUX %src<kill>
1616  //
1617  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
1618  // handles this complex value mapping.
1619  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
1620    return CR_Replace;
1621
1622  // If the other live range is killed by DefMI and the live ranges are still
1623  // overlapping, it must be because we're looking at an early clobber def:
1624  //
1625  //   %dst<def,early-clobber> = ASM %src<kill>
1626  //
1627  // In this case, it is illegal to merge the two live ranges since the early
1628  // clobber def would clobber %src before it was read.
1629  if (OtherLRQ.isKill()) {
1630    // This case where the def doesn't overlap the kill is handled above.
1631    assert(VNI->def.isEarlyClobber() &&
1632           "Only early clobber defs can overlap a kill");
1633    return CR_Impossible;
1634  }
1635
1636  // VNI is clobbering live lanes in OtherVNI, but there is still the
1637  // possibility that no instructions actually read the clobbered lanes.
1638  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
1639  // Otherwise Other.LI wouldn't be live here.
1640  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
1641    return CR_Impossible;
1642
1643  // We need to verify that no instructions are reading the clobbered lanes. To
1644  // save compile time, we'll only check that locally. Don't allow the tainted
1645  // value to escape the basic block.
1646  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1647  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
1648    return CR_Impossible;
1649
1650  // There are still some things that could go wrong besides clobbered lanes
1651  // being read, for example OtherVNI may be only partially redefined in MBB,
1652  // and some clobbered lanes could escape the block. Save this analysis for
1653  // resolveConflicts() when all values have been mapped. We need to know
1654  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
1655  // that now - the recursive analyzeValue() calls must go upwards in the
1656  // dominator tree.
1657  return CR_Unresolved;
1658}
1659
1660/// Compute the value assignment for ValNo in LI.
1661/// This may be called recursively by analyzeValue(), but never for a ValNo on
1662/// the stack.
1663void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
1664  Val &V = Vals[ValNo];
1665  if (V.isAnalyzed()) {
1666    // Recursion should always move up the dominator tree, so ValNo is not
1667    // supposed to reappear before it has been assigned.
1668    assert(Assignments[ValNo] != -1 && "Bad recursion?");
1669    return;
1670  }
1671  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
1672  case CR_Erase:
1673  case CR_Merge:
1674    // Merge this ValNo into OtherVNI.
1675    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
1676    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
1677    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
1678    DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
1679                 << LI.getValNumInfo(ValNo)->def << " into "
1680                 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
1681                 << V.OtherVNI->def << " --> @"
1682                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
1683    break;
1684  case CR_Replace:
1685  case CR_Unresolved:
1686    // The other value is going to be pruned if this join is successful.
1687    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
1688    Other.Vals[V.OtherVNI->id].Pruned = true;
1689    // Fall through.
1690  default:
1691    // This value number needs to go in the final joined live range.
1692    Assignments[ValNo] = NewVNInfo.size();
1693    NewVNInfo.push_back(LI.getValNumInfo(ValNo));
1694    break;
1695  }
1696}
1697
1698bool JoinVals::mapValues(JoinVals &Other) {
1699  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1700    computeAssignment(i, Other);
1701    if (Vals[i].Resolution == CR_Impossible) {
1702      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
1703                   << '@' << LI.getValNumInfo(i)->def << '\n');
1704      return false;
1705    }
1706  }
1707  return true;
1708}
1709
1710/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
1711/// the extent of the tainted lanes in the block.
1712///
1713/// Multiple values in Other.LI can be affected since partial redefinitions can
1714/// preserve previously tainted lanes.
1715///
1716///   1 %dst = VLOAD           <-- Define all lanes in %dst
1717///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1718///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1719///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1720///
1721/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1722/// entry to TaintedVals.
1723///
1724/// Returns false if the tainted lanes extend beyond the basic block.
1725bool JoinVals::
1726taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
1727            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
1728  VNInfo *VNI = LI.getValNumInfo(ValNo);
1729  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1730  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
1731
1732  // Scan Other.LI from VNI.def to MBBEnd.
1733  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
1734  assert(OtherI != Other.LI.end() && "No conflict?");
1735  do {
1736    // OtherI is pointing to a tainted value. Abort the join if the tainted
1737    // lanes escape the block.
1738    SlotIndex End = OtherI->end;
1739    if (End >= MBBEnd) {
1740      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
1741                   << OtherI->valno->id << '@' << OtherI->start << '\n');
1742      return false;
1743    }
1744    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
1745                 << OtherI->valno->id << '@' << OtherI->start
1746                 << " to " << End << '\n');
1747    // A dead def is not a problem.
1748    if (End.isDead())
1749      break;
1750    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
1751
1752    // Check for another def in the MBB.
1753    if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
1754      break;
1755
1756    // Lanes written by the new def are no longer tainted.
1757    const Val &OV = Other.Vals[OtherI->valno->id];
1758    TaintedLanes &= ~OV.WriteLanes;
1759    if (!OV.RedefVNI)
1760      break;
1761  } while (TaintedLanes);
1762  return true;
1763}
1764
1765/// Return true if MI uses any of the given Lanes from Reg.
1766/// This does not include partial redefinitions of Reg.
1767bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
1768                         unsigned Lanes) {
1769  if (MI->isDebugValue())
1770    return false;
1771  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
1772    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
1773      continue;
1774    if (!MO->readsReg())
1775      continue;
1776    if (Lanes & TRI->getSubRegIndexLaneMask(
1777                  TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
1778      return true;
1779  }
1780  return false;
1781}
1782
1783bool JoinVals::resolveConflicts(JoinVals &Other) {
1784  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1785    Val &V = Vals[i];
1786    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
1787    if (V.Resolution != CR_Unresolved)
1788      continue;
1789    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
1790                 << '@' << LI.getValNumInfo(i)->def << '\n');
1791    ++NumLaneConflicts;
1792    assert(V.OtherVNI && "Inconsistent conflict resolution.");
1793    VNInfo *VNI = LI.getValNumInfo(i);
1794    const Val &OtherV = Other.Vals[V.OtherVNI->id];
1795
1796    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
1797    // join, those lanes will be tainted with a wrong value. Get the extent of
1798    // the tainted lanes.
1799    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
1800    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
1801    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
1802      // Tainted lanes would extend beyond the basic block.
1803      return false;
1804
1805    assert(!TaintExtent.empty() && "There should be at least one conflict.");
1806
1807    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
1808    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1809    MachineBasicBlock::iterator MI = MBB->begin();
1810    if (!VNI->isPHIDef()) {
1811      MI = Indexes->getInstructionFromIndex(VNI->def);
1812      // No need to check the instruction defining VNI for reads.
1813      ++MI;
1814    }
1815    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
1816           "Interference ends on VNI->def. Should have been handled earlier");
1817    MachineInstr *LastMI =
1818      Indexes->getInstructionFromIndex(TaintExtent.front().first);
1819    assert(LastMI && "Range must end at a proper instruction");
1820    unsigned TaintNum = 0;
1821    for(;;) {
1822      assert(MI != MBB->end() && "Bad LastMI");
1823      if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
1824        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
1825        return false;
1826      }
1827      // LastMI is the last instruction to use the current value.
1828      if (&*MI == LastMI) {
1829        if (++TaintNum == TaintExtent.size())
1830          break;
1831        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
1832        assert(LastMI && "Range must end at a proper instruction");
1833        TaintedLanes = TaintExtent[TaintNum].second;
1834      }
1835      ++MI;
1836    }
1837
1838    // The tainted lanes are unused.
1839    V.Resolution = CR_Replace;
1840    ++NumLaneResolves;
1841  }
1842  return true;
1843}
1844
1845// Determine if ValNo is a copy of a value number in LI or Other.LI that will
1846// be pruned:
1847//
1848//   %dst = COPY %src
1849//   %src = COPY %dst  <-- This value to be pruned.
1850//   %dst = COPY %src  <-- This value is a copy of a pruned value.
1851//
1852bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
1853  Val &V = Vals[ValNo];
1854  if (V.Pruned || V.PrunedComputed)
1855    return V.Pruned;
1856
1857  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
1858    return V.Pruned;
1859
1860  // Follow copies up the dominator tree and check if any intermediate value
1861  // has been pruned.
1862  V.PrunedComputed = true;
1863  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
1864  return V.Pruned;
1865}
1866
1867void JoinVals::pruneValues(JoinVals &Other,
1868                           SmallVectorImpl<SlotIndex> &EndPoints) {
1869  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1870    SlotIndex Def = LI.getValNumInfo(i)->def;
1871    switch (Vals[i].Resolution) {
1872    case CR_Keep:
1873      break;
1874    case CR_Replace: {
1875      // This value takes precedence over the value in Other.LI.
1876      LIS->pruneValue(&Other.LI, Def, &EndPoints);
1877      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
1878      // instructions are only inserted to provide a live-out value for PHI
1879      // predecessors, so the instruction should simply go away once its value
1880      // has been replaced.
1881      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
1882      bool EraseImpDef = OtherV.ErasableImplicitDef &&
1883                         OtherV.Resolution == CR_Keep;
1884      if (!Def.isBlock()) {
1885        // Remove <def,read-undef> flags. This def is now a partial redef.
1886        // Also remove <def,dead> flags since the joined live range will
1887        // continue past this instruction.
1888        for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
1889             MO.isValid(); ++MO)
1890          if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
1891            MO->setIsUndef(EraseImpDef);
1892            MO->setIsDead(false);
1893          }
1894        // This value will reach instructions below, but we need to make sure
1895        // the live range also reaches the instruction at Def.
1896        if (!EraseImpDef)
1897          EndPoints.push_back(Def);
1898      }
1899      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
1900                   << ": " << Other.LI << '\n');
1901      break;
1902    }
1903    case CR_Erase:
1904    case CR_Merge:
1905      if (isPrunedValue(i, Other)) {
1906        // This value is ultimately a copy of a pruned value in LI or Other.LI.
1907        // We can no longer trust the value mapping computed by
1908        // computeAssignment(), the value that was originally copied could have
1909        // been replaced.
1910        LIS->pruneValue(&LI, Def, &EndPoints);
1911        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
1912                     << Def << ": " << LI << '\n');
1913      }
1914      break;
1915    case CR_Unresolved:
1916    case CR_Impossible:
1917      llvm_unreachable("Unresolved conflicts");
1918    }
1919  }
1920}
1921
1922void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1923                           SmallVectorImpl<unsigned> &ShrinkRegs) {
1924  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1925    // Get the def location before markUnused() below invalidates it.
1926    SlotIndex Def = LI.getValNumInfo(i)->def;
1927    switch (Vals[i].Resolution) {
1928    case CR_Keep:
1929      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
1930      // longer. The IMPLICIT_DEF instructions are only inserted by
1931      // PHIElimination to guarantee that all PHI predecessors have a value.
1932      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
1933        break;
1934      // Remove value number i from LI. Note that this VNInfo is still present
1935      // in NewVNInfo, so it will appear as an unused value number in the final
1936      // joined interval.
1937      LI.getValNumInfo(i)->markUnused();
1938      LI.removeValNo(LI.getValNumInfo(i));
1939      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
1940      // FALL THROUGH.
1941
1942    case CR_Erase: {
1943      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1944      assert(MI && "No instruction to erase");
1945      if (MI->isCopy()) {
1946        unsigned Reg = MI->getOperand(1).getReg();
1947        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
1948            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
1949          ShrinkRegs.push_back(Reg);
1950      }
1951      ErasedInstrs.insert(MI);
1952      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
1953      LIS->RemoveMachineInstrFromMaps(MI);
1954      MI->eraseFromParent();
1955      break;
1956    }
1957    default:
1958      break;
1959    }
1960  }
1961}
1962
1963bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
1964  SmallVector<VNInfo*, 16> NewVNInfo;
1965  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1966  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
1967  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
1968  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
1969
1970  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1971               << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
1972               << '\n');
1973
1974  // First compute NewVNInfo and the simple value mappings.
1975  // Detect impossible conflicts early.
1976  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
1977    return false;
1978
1979  // Some conflicts can only be resolved after all values have been mapped.
1980  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
1981    return false;
1982
1983  // All clear, the live ranges can be merged.
1984
1985  // The merging algorithm in LiveInterval::join() can't handle conflicting
1986  // value mappings, so we need to remove any live ranges that overlap a
1987  // CR_Replace resolution. Collect a set of end points that can be used to
1988  // restore the live range after joining.
1989  SmallVector<SlotIndex, 8> EndPoints;
1990  LHSVals.pruneValues(RHSVals, EndPoints);
1991  RHSVals.pruneValues(LHSVals, EndPoints);
1992
1993  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
1994  // registers to require trimming.
1995  SmallVector<unsigned, 8> ShrinkRegs;
1996  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1997  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1998  while (!ShrinkRegs.empty())
1999    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2000
2001  // Join RHS into LHS.
2002  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2003
2004  // Kill flags are going to be wrong if the live ranges were overlapping.
2005  // Eventually, we should simply clear all kill flags when computing live
2006  // ranges. They are reinserted after register allocation.
2007  MRI->clearKillFlags(LHS.reg);
2008  MRI->clearKillFlags(RHS.reg);
2009
2010  if (EndPoints.empty())
2011    return true;
2012
2013  // Recompute the parts of the live range we had to remove because of
2014  // CR_Replace conflicts.
2015  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2016               << " points: " << LHS << '\n');
2017  LIS->extendToIndices(&LHS, EndPoints);
2018  return true;
2019}
2020
2021/// joinIntervals - Attempt to join these two intervals.  On failure, this
2022/// returns false.
2023bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2024  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2025}
2026
2027namespace {
2028// Information concerning MBB coalescing priority.
2029struct MBBPriorityInfo {
2030  MachineBasicBlock *MBB;
2031  unsigned Depth;
2032  bool IsSplit;
2033
2034  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2035    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2036};
2037}
2038
2039// C-style comparator that sorts first based on the loop depth of the basic
2040// block (the unsigned), and then on the MBB number.
2041//
2042// EnableGlobalCopies assumes that the primary sort key is loop depth.
2043static int compareMBBPriority(const MBBPriorityInfo *LHS,
2044                              const MBBPriorityInfo *RHS) {
2045  // Deeper loops first
2046  if (LHS->Depth != RHS->Depth)
2047    return LHS->Depth > RHS->Depth ? -1 : 1;
2048
2049  // Try to unsplit critical edges next.
2050  if (LHS->IsSplit != RHS->IsSplit)
2051    return LHS->IsSplit ? -1 : 1;
2052
2053  // Prefer blocks that are more connected in the CFG. This takes care of
2054  // the most difficult copies first while intervals are short.
2055  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2056  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2057  if (cl != cr)
2058    return cl > cr ? -1 : 1;
2059
2060  // As a last resort, sort by block number.
2061  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2062}
2063
2064/// \returns true if the given copy uses or defines a local live range.
2065static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2066  if (!Copy->isCopy())
2067    return false;
2068
2069  if (Copy->getOperand(1).isUndef())
2070    return false;
2071
2072  unsigned SrcReg = Copy->getOperand(1).getReg();
2073  unsigned DstReg = Copy->getOperand(0).getReg();
2074  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2075      || TargetRegisterInfo::isPhysicalRegister(DstReg))
2076    return false;
2077
2078  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2079    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2080}
2081
2082// Try joining WorkList copies starting from index From.
2083// Null out any successful joins.
2084bool RegisterCoalescer::
2085copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2086  bool Progress = false;
2087  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2088    if (!CurrList[i])
2089      continue;
2090    // Skip instruction pointers that have already been erased, for example by
2091    // dead code elimination.
2092    if (ErasedInstrs.erase(CurrList[i])) {
2093      CurrList[i] = 0;
2094      continue;
2095    }
2096    bool Again = false;
2097    bool Success = joinCopy(CurrList[i], Again);
2098    Progress |= Success;
2099    if (Success || !Again)
2100      CurrList[i] = 0;
2101  }
2102  return Progress;
2103}
2104
2105void
2106RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2107  DEBUG(dbgs() << MBB->getName() << ":\n");
2108
2109  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2110  // yet, it might invalidate the iterator.
2111  const unsigned PrevSize = WorkList.size();
2112  if (JoinGlobalCopies) {
2113    // Coalesce copies bottom-up to coalesce local defs before local uses. They
2114    // are not inherently easier to resolve, but slightly preferable until we
2115    // have local live range splitting. In particular this is required by
2116    // cmp+jmp macro fusion.
2117    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2118         MII != E; ++MII) {
2119      if (!MII->isCopyLike())
2120        continue;
2121      if (isLocalCopy(&(*MII), LIS))
2122        LocalWorkList.push_back(&(*MII));
2123      else
2124        WorkList.push_back(&(*MII));
2125    }
2126  }
2127  else {
2128     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2129          MII != E; ++MII)
2130       if (MII->isCopyLike())
2131         WorkList.push_back(MII);
2132  }
2133  // Try coalescing the collected copies immediately, and remove the nulls.
2134  // This prevents the WorkList from getting too large since most copies are
2135  // joinable on the first attempt.
2136  MutableArrayRef<MachineInstr*>
2137    CurrList(WorkList.begin() + PrevSize, WorkList.end());
2138  if (copyCoalesceWorkList(CurrList))
2139    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2140                               (MachineInstr*)0), WorkList.end());
2141}
2142
2143void RegisterCoalescer::coalesceLocals() {
2144  copyCoalesceWorkList(LocalWorkList);
2145  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2146    if (LocalWorkList[j])
2147      WorkList.push_back(LocalWorkList[j]);
2148  }
2149  LocalWorkList.clear();
2150}
2151
2152void RegisterCoalescer::joinAllIntervals() {
2153  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2154  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2155
2156  std::vector<MBBPriorityInfo> MBBs;
2157  MBBs.reserve(MF->size());
2158  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2159    MachineBasicBlock *MBB = I;
2160    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2161                                   JoinSplitEdges && isSplitEdge(MBB)));
2162  }
2163  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2164
2165  // Coalesce intervals in MBB priority order.
2166  unsigned CurrDepth = UINT_MAX;
2167  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2168    // Try coalescing the collected local copies for deeper loops.
2169    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2170      coalesceLocals();
2171      CurrDepth = MBBs[i].Depth;
2172    }
2173    copyCoalesceInMBB(MBBs[i].MBB);
2174  }
2175  coalesceLocals();
2176
2177  // Joining intervals can allow other intervals to be joined.  Iteratively join
2178  // until we make no progress.
2179  while (copyCoalesceWorkList(WorkList))
2180    /* empty */ ;
2181}
2182
2183void RegisterCoalescer::releaseMemory() {
2184  ErasedInstrs.clear();
2185  WorkList.clear();
2186  DeadDefs.clear();
2187  InflateRegs.clear();
2188}
2189
2190bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2191  MF = &fn;
2192  MRI = &fn.getRegInfo();
2193  TM = &fn.getTarget();
2194  TRI = TM->getRegisterInfo();
2195  TII = TM->getInstrInfo();
2196  LIS = &getAnalysis<LiveIntervals>();
2197  AA = &getAnalysis<AliasAnalysis>();
2198  Loops = &getAnalysis<MachineLoopInfo>();
2199
2200  const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
2201  if (EnableGlobalCopies == cl::BOU_UNSET)
2202    JoinGlobalCopies = ST.useMachineScheduler();
2203  else
2204    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2205
2206  // The MachineScheduler does not currently require JoinSplitEdges. This will
2207  // either be enabled unconditionally or replaced by a more general live range
2208  // splitting optimization.
2209  JoinSplitEdges = EnableJoinSplits;
2210
2211  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2212               << "********** Function: " << MF->getName() << '\n');
2213
2214  if (VerifyCoalescing)
2215    MF->verify(this, "Before register coalescing");
2216
2217  RegClassInfo.runOnMachineFunction(fn);
2218
2219  // Join (coalesce) intervals if requested.
2220  if (EnableJoining)
2221    joinAllIntervals();
2222
2223  // After deleting a lot of copies, register classes may be less constrained.
2224  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2225  // DPR inflation.
2226  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2227  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2228                    InflateRegs.end());
2229  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2230  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2231    unsigned Reg = InflateRegs[i];
2232    if (MRI->reg_nodbg_empty(Reg))
2233      continue;
2234    if (MRI->recomputeRegClass(Reg, *TM)) {
2235      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2236                   << MRI->getRegClass(Reg)->getName() << '\n');
2237      ++NumInflated;
2238    }
2239  }
2240
2241  DEBUG(dump());
2242  if (VerifyCoalescing)
2243    MF->verify(this, "After register coalescing");
2244  return true;
2245}
2246
2247/// print - Implement the dump method.
2248void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2249   LIS->print(O, m);
2250}
2251