RegisterCoalescer.cpp revision 1d4673228143965fafbcb679417f5a9be53d0a2a
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/LiveRangeEdit.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/Passes.h"
30#include "llvm/CodeGen/RegisterClassInfo.h"
31#include "llvm/CodeGen/VirtRegMap.h"
32#include "llvm/IR/Value.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetSubtargetInfo.h"
43#include <algorithm>
44#include <cmath>
45using namespace llvm;
46
47STATISTIC(numJoins    , "Number of interval joins performed");
48STATISTIC(numCrossRCs , "Number of cross class joins performed");
49STATISTIC(numCommutes , "Number of instruction commuting performed");
50STATISTIC(numExtends  , "Number of copies extended");
51STATISTIC(NumReMats   , "Number of instructions re-materialized");
52STATISTIC(NumInflated , "Number of register classes inflated");
53STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
54STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
55
56static cl::opt<bool>
57EnableJoining("join-liveintervals",
58              cl::desc("Coalesce copies (default=true)"),
59              cl::init(true));
60
61// Temporary flag to test critical edge unsplitting.
62static cl::opt<bool>
63EnableJoinSplits("join-splitedges",
64  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
65
66// Temporary flag to test global copy optimization.
67static cl::opt<cl::boolOrDefault>
68EnableGlobalCopies("join-globalcopies",
69  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
70  cl::init(cl::BOU_UNSET), cl::Hidden);
71
72static cl::opt<bool>
73VerifyCoalescing("verify-coalescing",
74         cl::desc("Verify machine instrs before and after register coalescing"),
75         cl::Hidden);
76
77namespace {
78  class RegisterCoalescer : public MachineFunctionPass,
79                            private LiveRangeEdit::Delegate {
80    MachineFunction* MF;
81    MachineRegisterInfo* MRI;
82    const TargetMachine* TM;
83    const TargetRegisterInfo* TRI;
84    const TargetInstrInfo* TII;
85    LiveIntervals *LIS;
86    const MachineLoopInfo* Loops;
87    AliasAnalysis *AA;
88    RegisterClassInfo RegClassInfo;
89
90    /// \brief True if the coalescer should aggressively coalesce global copies
91    /// in favor of keeping local copies.
92    bool JoinGlobalCopies;
93
94    /// \brief True if the coalescer should aggressively coalesce fall-thru
95    /// blocks exclusively containing copies.
96    bool JoinSplitEdges;
97
98    /// WorkList - Copy instructions yet to be coalesced.
99    SmallVector<MachineInstr*, 8> WorkList;
100    SmallVector<MachineInstr*, 8> LocalWorkList;
101
102    /// ErasedInstrs - Set of instruction pointers that have been erased, and
103    /// that may be present in WorkList.
104    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
105
106    /// Dead instructions that are about to be deleted.
107    SmallVector<MachineInstr*, 8> DeadDefs;
108
109    /// Virtual registers to be considered for register class inflation.
110    SmallVector<unsigned, 8> InflateRegs;
111
112    /// Recursively eliminate dead defs in DeadDefs.
113    void eliminateDeadDefs();
114
115    /// LiveRangeEdit callback.
116    void LRE_WillEraseInstruction(MachineInstr *MI);
117
118    /// coalesceLocals - coalesce the LocalWorkList.
119    void coalesceLocals();
120
121    /// joinAllIntervals - join compatible live intervals
122    void joinAllIntervals();
123
124    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
125    /// copies that cannot yet be coalesced into WorkList.
126    void copyCoalesceInMBB(MachineBasicBlock *MBB);
127
128    /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
129    /// true if any progress was made.
130    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
131
132    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
133    /// which are the src/dst of the copy instruction CopyMI.  This returns
134    /// true if the copy was successfully coalesced away. If it is not
135    /// currently possible to coalesce this interval, but it may be possible if
136    /// other things get coalesced, then it returns true by reference in
137    /// 'Again'.
138    bool joinCopy(MachineInstr *TheCopy, bool &Again);
139
140    /// joinIntervals - Attempt to join these two intervals.  On failure, this
141    /// returns false.  The output "SrcInt" will not have been modified, so we
142    /// can use this information below to update aliases.
143    bool joinIntervals(CoalescerPair &CP);
144
145    /// Attempt joining two virtual registers. Return true on success.
146    bool joinVirtRegs(CoalescerPair &CP);
147
148    /// Attempt joining with a reserved physreg.
149    bool joinReservedPhysReg(CoalescerPair &CP);
150
151    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
152    /// the source value number is defined by a copy from the destination reg
153    /// see if we can merge these two destination reg valno# into a single
154    /// value number, eliminating a copy.
155    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
156
157    /// hasOtherReachingDefs - Return true if there are definitions of IntB
158    /// other than BValNo val# that can reach uses of AValno val# of IntA.
159    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
160                              VNInfo *AValNo, VNInfo *BValNo);
161
162    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
163    /// If the source value number is defined by a commutable instruction and
164    /// its other operand is coalesced to the copy dest register, see if we
165    /// can transform the copy into a noop by commuting the definition.
166    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
167
168    /// reMaterializeTrivialDef - If the source of a copy is defined by a
169    /// trivial computation, replace the copy by rematerialize the definition.
170    bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI);
171
172    /// canJoinPhys - Return true if a physreg copy should be joined.
173    bool canJoinPhys(const CoalescerPair &CP);
174
175    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
176    /// update the subregister number if it is not zero. If DstReg is a
177    /// physical register and the existing subregister number of the def / use
178    /// being updated is not zero, make sure to set it to the correct physical
179    /// subregister.
180    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
181
182    /// eliminateUndefCopy - Handle copies of undef values.
183    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
184
185  public:
186    static char ID; // Class identification, replacement for typeinfo
187    RegisterCoalescer() : MachineFunctionPass(ID) {
188      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
189    }
190
191    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
192
193    virtual void releaseMemory();
194
195    /// runOnMachineFunction - pass entry point
196    virtual bool runOnMachineFunction(MachineFunction&);
197
198    /// print - Implement the dump method.
199    virtual void print(raw_ostream &O, const Module* = 0) const;
200  };
201} /// end anonymous namespace
202
203char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
204
205INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
206                      "Simple Register Coalescing", false, false)
207INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
208INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
209INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
210INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
211INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
212                    "Simple Register Coalescing", false, false)
213
214char RegisterCoalescer::ID = 0;
215
216static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
217                        unsigned &Src, unsigned &Dst,
218                        unsigned &SrcSub, unsigned &DstSub) {
219  if (MI->isCopy()) {
220    Dst = MI->getOperand(0).getReg();
221    DstSub = MI->getOperand(0).getSubReg();
222    Src = MI->getOperand(1).getReg();
223    SrcSub = MI->getOperand(1).getSubReg();
224  } else if (MI->isSubregToReg()) {
225    Dst = MI->getOperand(0).getReg();
226    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
227                                      MI->getOperand(3).getImm());
228    Src = MI->getOperand(2).getReg();
229    SrcSub = MI->getOperand(2).getSubReg();
230  } else
231    return false;
232  return true;
233}
234
235// Return true if this block should be vacated by the coalescer to eliminate
236// branches. The important cases to handle in the coalescer are critical edges
237// split during phi elimination which contain only copies. Simple blocks that
238// contain non-branches should also be vacated, but this can be handled by an
239// earlier pass similar to early if-conversion.
240static bool isSplitEdge(const MachineBasicBlock *MBB) {
241  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
242    return false;
243
244  for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end();
245       MII != E; ++MII) {
246    if (!MII->isCopyLike() && !MII->isUnconditionalBranch())
247      return false;
248  }
249  return true;
250}
251
252bool CoalescerPair::setRegisters(const MachineInstr *MI) {
253  SrcReg = DstReg = 0;
254  SrcIdx = DstIdx = 0;
255  NewRC = 0;
256  Flipped = CrossClass = false;
257
258  unsigned Src, Dst, SrcSub, DstSub;
259  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
260    return false;
261  Partial = SrcSub || DstSub;
262
263  // If one register is a physreg, it must be Dst.
264  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
265    if (TargetRegisterInfo::isPhysicalRegister(Dst))
266      return false;
267    std::swap(Src, Dst);
268    std::swap(SrcSub, DstSub);
269    Flipped = true;
270  }
271
272  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
273
274  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
275    // Eliminate DstSub on a physreg.
276    if (DstSub) {
277      Dst = TRI.getSubReg(Dst, DstSub);
278      if (!Dst) return false;
279      DstSub = 0;
280    }
281
282    // Eliminate SrcSub by picking a corresponding Dst superregister.
283    if (SrcSub) {
284      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
285      if (!Dst) return false;
286      SrcSub = 0;
287    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
288      return false;
289    }
290  } else {
291    // Both registers are virtual.
292    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
293    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
294
295    // Both registers have subreg indices.
296    if (SrcSub && DstSub) {
297      // Copies between different sub-registers are never coalescable.
298      if (Src == Dst && SrcSub != DstSub)
299        return false;
300
301      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
302                                         SrcIdx, DstIdx);
303      if (!NewRC)
304        return false;
305    } else if (DstSub) {
306      // SrcReg will be merged with a sub-register of DstReg.
307      SrcIdx = DstSub;
308      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
309    } else if (SrcSub) {
310      // DstReg will be merged with a sub-register of SrcReg.
311      DstIdx = SrcSub;
312      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
313    } else {
314      // This is a straight copy without sub-registers.
315      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
316    }
317
318    // The combined constraint may be impossible to satisfy.
319    if (!NewRC)
320      return false;
321
322    // Prefer SrcReg to be a sub-register of DstReg.
323    // FIXME: Coalescer should support subregs symmetrically.
324    if (DstIdx && !SrcIdx) {
325      std::swap(Src, Dst);
326      std::swap(SrcIdx, DstIdx);
327      Flipped = !Flipped;
328    }
329
330    CrossClass = NewRC != DstRC || NewRC != SrcRC;
331  }
332  // Check our invariants
333  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
334  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
335         "Cannot have a physical SubIdx");
336  SrcReg = Src;
337  DstReg = Dst;
338  return true;
339}
340
341bool CoalescerPair::flip() {
342  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
343    return false;
344  std::swap(SrcReg, DstReg);
345  std::swap(SrcIdx, DstIdx);
346  Flipped = !Flipped;
347  return true;
348}
349
350bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
351  if (!MI)
352    return false;
353  unsigned Src, Dst, SrcSub, DstSub;
354  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
355    return false;
356
357  // Find the virtual register that is SrcReg.
358  if (Dst == SrcReg) {
359    std::swap(Src, Dst);
360    std::swap(SrcSub, DstSub);
361  } else if (Src != SrcReg) {
362    return false;
363  }
364
365  // Now check that Dst matches DstReg.
366  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
367    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
368      return false;
369    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
370    // DstSub could be set for a physreg from INSERT_SUBREG.
371    if (DstSub)
372      Dst = TRI.getSubReg(Dst, DstSub);
373    // Full copy of Src.
374    if (!SrcSub)
375      return DstReg == Dst;
376    // This is a partial register copy. Check that the parts match.
377    return TRI.getSubReg(DstReg, SrcSub) == Dst;
378  } else {
379    // DstReg is virtual.
380    if (DstReg != Dst)
381      return false;
382    // Registers match, do the subregisters line up?
383    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
384           TRI.composeSubRegIndices(DstIdx, DstSub);
385  }
386}
387
388void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
389  AU.setPreservesCFG();
390  AU.addRequired<AliasAnalysis>();
391  AU.addRequired<LiveIntervals>();
392  AU.addPreserved<LiveIntervals>();
393  AU.addPreserved<SlotIndexes>();
394  AU.addRequired<MachineLoopInfo>();
395  AU.addPreserved<MachineLoopInfo>();
396  AU.addPreservedID(MachineDominatorsID);
397  MachineFunctionPass::getAnalysisUsage(AU);
398}
399
400void RegisterCoalescer::eliminateDeadDefs() {
401  SmallVector<LiveInterval*, 8> NewRegs;
402  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
403}
404
405// Callback from eliminateDeadDefs().
406void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
407  // MI may be in WorkList. Make sure we don't visit it.
408  ErasedInstrs.insert(MI);
409}
410
411/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
412/// being the source and IntB being the dest, thus this defines a value number
413/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
414/// see if we can merge these two pieces of B into a single value number,
415/// eliminating a copy.  For example:
416///
417///  A3 = B0
418///    ...
419///  B1 = A3      <- this copy
420///
421/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
422/// value number to be replaced with B0 (which simplifies the B liveinterval).
423///
424/// This returns true if an interval was modified.
425///
426bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
427                                             MachineInstr *CopyMI) {
428  assert(!CP.isPartial() && "This doesn't work for partial copies.");
429  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
430
431  LiveInterval &IntA =
432    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
433  LiveInterval &IntB =
434    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
435  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
436
437  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
438  // the example above.
439  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
440  if (BLR == IntB.end()) return false;
441  VNInfo *BValNo = BLR->valno;
442
443  // Get the location that B is defined at.  Two options: either this value has
444  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
445  // can't process it.
446  if (BValNo->def != CopyIdx) return false;
447
448  // AValNo is the value number in A that defines the copy, A3 in the example.
449  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
450  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
451  // The live range might not exist after fun with physreg coalescing.
452  if (ALR == IntA.end()) return false;
453  VNInfo *AValNo = ALR->valno;
454
455  // If AValNo is defined as a copy from IntB, we can potentially process this.
456  // Get the instruction that defines this value number.
457  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
458  // Don't allow any partial copies, even if isCoalescable() allows them.
459  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
460    return false;
461
462  // Get the LiveRange in IntB that this value number starts with.
463  LiveInterval::iterator ValLR =
464    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
465  if (ValLR == IntB.end())
466    return false;
467
468  // Make sure that the end of the live range is inside the same block as
469  // CopyMI.
470  MachineInstr *ValLREndInst =
471    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
472  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
473    return false;
474
475  // Okay, we now know that ValLR ends in the same block that the CopyMI
476  // live-range starts.  If there are no intervening live ranges between them in
477  // IntB, we can merge them.
478  if (ValLR+1 != BLR) return false;
479
480  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
481
482  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
483  // We are about to delete CopyMI, so need to remove it as the 'instruction
484  // that defines this value #'. Update the valnum with the new defining
485  // instruction #.
486  BValNo->def = FillerStart;
487
488  // Okay, we can merge them.  We need to insert a new liverange:
489  // [ValLR.end, BLR.begin) of either value number, then we merge the
490  // two value numbers.
491  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
492
493  // Okay, merge "B1" into the same value number as "B0".
494  if (BValNo != ValLR->valno)
495    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
496  DEBUG(dbgs() << "   result = " << IntB << '\n');
497
498  // If the source instruction was killing the source register before the
499  // merge, unset the isKill marker given the live range has been extended.
500  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
501  if (UIdx != -1) {
502    ValLREndInst->getOperand(UIdx).setIsKill(false);
503  }
504
505  // Rewrite the copy. If the copy instruction was killing the destination
506  // register before the merge, find the last use and trim the live range. That
507  // will also add the isKill marker.
508  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
509  if (ALR->end == CopyIdx)
510    LIS->shrinkToUses(&IntA);
511
512  ++numExtends;
513  return true;
514}
515
516/// hasOtherReachingDefs - Return true if there are definitions of IntB
517/// other than BValNo val# that can reach uses of AValno val# of IntA.
518bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
519                                             LiveInterval &IntB,
520                                             VNInfo *AValNo,
521                                             VNInfo *BValNo) {
522  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
523  // the PHI values.
524  if (LIS->hasPHIKill(IntA, AValNo))
525    return true;
526
527  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
528       AI != AE; ++AI) {
529    if (AI->valno != AValNo) continue;
530    LiveInterval::Ranges::iterator BI =
531      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
532    if (BI != IntB.ranges.begin())
533      --BI;
534    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
535      if (BI->valno == BValNo)
536        continue;
537      if (BI->start <= AI->start && BI->end > AI->start)
538        return true;
539      if (BI->start > AI->start && BI->start < AI->end)
540        return true;
541    }
542  }
543  return false;
544}
545
546/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
547/// IntA being the source and IntB being the dest, thus this defines a value
548/// number in IntB.  If the source value number (in IntA) is defined by a
549/// commutable instruction and its other operand is coalesced to the copy dest
550/// register, see if we can transform the copy into a noop by commuting the
551/// definition. For example,
552///
553///  A3 = op A2 B0<kill>
554///    ...
555///  B1 = A3      <- this copy
556///    ...
557///     = op A3   <- more uses
558///
559/// ==>
560///
561///  B2 = op B0 A2<kill>
562///    ...
563///  B1 = B2      <- now an identify copy
564///    ...
565///     = op B2   <- more uses
566///
567/// This returns true if an interval was modified.
568///
569bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
570                                                 MachineInstr *CopyMI) {
571  assert (!CP.isPhys());
572
573  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
574
575  LiveInterval &IntA =
576    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
577  LiveInterval &IntB =
578    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
579
580  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
581  // the example above.
582  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
583  if (!BValNo || BValNo->def != CopyIdx)
584    return false;
585
586  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
587
588  // AValNo is the value number in A that defines the copy, A3 in the example.
589  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
590  assert(AValNo && "COPY source not live");
591  if (AValNo->isPHIDef() || AValNo->isUnused())
592    return false;
593  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
594  if (!DefMI)
595    return false;
596  if (!DefMI->isCommutable())
597    return false;
598  // If DefMI is a two-address instruction then commuting it will change the
599  // destination register.
600  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
601  assert(DefIdx != -1);
602  unsigned UseOpIdx;
603  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
604    return false;
605  unsigned Op1, Op2, NewDstIdx;
606  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
607    return false;
608  if (Op1 == UseOpIdx)
609    NewDstIdx = Op2;
610  else if (Op2 == UseOpIdx)
611    NewDstIdx = Op1;
612  else
613    return false;
614
615  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
616  unsigned NewReg = NewDstMO.getReg();
617  if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
618    return false;
619
620  // Make sure there are no other definitions of IntB that would reach the
621  // uses which the new definition can reach.
622  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
623    return false;
624
625  // If some of the uses of IntA.reg is already coalesced away, return false.
626  // It's not possible to determine whether it's safe to perform the coalescing.
627  for (MachineRegisterInfo::use_nodbg_iterator UI =
628         MRI->use_nodbg_begin(IntA.reg),
629       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
630    MachineInstr *UseMI = &*UI;
631    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
632    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
633    if (ULR == IntA.end() || ULR->valno != AValNo)
634      continue;
635    // If this use is tied to a def, we can't rewrite the register.
636    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
637      return false;
638  }
639
640  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
641               << *DefMI);
642
643  // At this point we have decided that it is legal to do this
644  // transformation.  Start by commuting the instruction.
645  MachineBasicBlock *MBB = DefMI->getParent();
646  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
647  if (!NewMI)
648    return false;
649  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
650      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
651      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
652    return false;
653  if (NewMI != DefMI) {
654    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
655    MachineBasicBlock::iterator Pos = DefMI;
656    MBB->insert(Pos, NewMI);
657    MBB->erase(DefMI);
658  }
659  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
660  NewMI->getOperand(OpIdx).setIsKill();
661
662  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
663  // A = or A, B
664  // ...
665  // B = A
666  // ...
667  // C = A<kill>
668  // ...
669  //   = B
670
671  // Update uses of IntA of the specific Val# with IntB.
672  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
673         UE = MRI->use_end(); UI != UE;) {
674    MachineOperand &UseMO = UI.getOperand();
675    MachineInstr *UseMI = &*UI;
676    ++UI;
677    if (UseMI->isDebugValue()) {
678      // FIXME These don't have an instruction index.  Not clear we have enough
679      // info to decide whether to do this replacement or not.  For now do it.
680      UseMO.setReg(NewReg);
681      continue;
682    }
683    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
684    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
685    if (ULR == IntA.end() || ULR->valno != AValNo)
686      continue;
687    // Kill flags are no longer accurate. They are recomputed after RA.
688    UseMO.setIsKill(false);
689    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
690      UseMO.substPhysReg(NewReg, *TRI);
691    else
692      UseMO.setReg(NewReg);
693    if (UseMI == CopyMI)
694      continue;
695    if (!UseMI->isCopy())
696      continue;
697    if (UseMI->getOperand(0).getReg() != IntB.reg ||
698        UseMI->getOperand(0).getSubReg())
699      continue;
700
701    // This copy will become a noop. If it's defining a new val#, merge it into
702    // BValNo.
703    SlotIndex DefIdx = UseIdx.getRegSlot();
704    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
705    if (!DVNI)
706      continue;
707    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
708    assert(DVNI->def == DefIdx);
709    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
710    ErasedInstrs.insert(UseMI);
711    LIS->RemoveMachineInstrFromMaps(UseMI);
712    UseMI->eraseFromParent();
713  }
714
715  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
716  // is updated.
717  VNInfo *ValNo = BValNo;
718  ValNo->def = AValNo->def;
719  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
720       AI != AE; ++AI) {
721    if (AI->valno != AValNo) continue;
722    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
723  }
724  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
725
726  IntA.removeValNo(AValNo);
727  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
728  ++numCommutes;
729  return true;
730}
731
732/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
733/// computation, replace the copy by rematerialize the definition.
734bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
735                                                MachineInstr *CopyMI) {
736  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
737  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
738  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
739    return false;
740
741  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
742  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
743  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
744  assert(SrcLR != SrcInt.end() && "Live range not found!");
745  VNInfo *ValNo = SrcLR->valno;
746  if (ValNo->isPHIDef() || ValNo->isUnused())
747    return false;
748  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
749  if (!DefMI)
750    return false;
751  assert(DefMI && "Defining instruction disappeared");
752  if (!DefMI->isAsCheapAsAMove())
753    return false;
754  if (!TII->isTriviallyReMaterializable(DefMI, AA))
755    return false;
756  bool SawStore = false;
757  if (!DefMI->isSafeToMove(TII, AA, SawStore))
758    return false;
759  const MCInstrDesc &MCID = DefMI->getDesc();
760  if (MCID.getNumDefs() != 1)
761    return false;
762  // Only support subregister destinations when the def is read-undef.
763  MachineOperand &DstOperand = CopyMI->getOperand(0);
764  if (DstOperand.getSubReg() && !DstOperand.isUndef())
765    return false;
766  if (!DefMI->isImplicitDef()) {
767    // Make sure the copy destination register class fits the instruction
768    // definition register class. The mismatch can happen as a result of earlier
769    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
770    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
771    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
772      if (MRI->getRegClass(DstReg) != RC)
773        return false;
774    } else if (!RC->contains(DstReg))
775      return false;
776  }
777
778  MachineBasicBlock *MBB = CopyMI->getParent();
779  MachineBasicBlock::iterator MII =
780    llvm::next(MachineBasicBlock::iterator(CopyMI));
781  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
782  MachineInstr *NewMI = prior(MII);
783
784  // The original DefMI may have been a subregister def, but the full register
785  // class of its destination matches the destination of CopyMI, and CopyMI is
786  // either a full register def or is read-undef. Therefore we can clear the
787  // subregister index on the rematerialized instruction.
788  NewMI->getOperand(0).setSubReg(0);
789
790  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
791  // We need to remember these so we can add intervals once we insert
792  // NewMI into SlotIndexes.
793  SmallVector<unsigned, 4> NewMIImplDefs;
794  for (unsigned i = NewMI->getDesc().getNumOperands(),
795         e = NewMI->getNumOperands(); i != e; ++i) {
796    MachineOperand &MO = NewMI->getOperand(i);
797    if (MO.isReg()) {
798      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
799             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
800      NewMIImplDefs.push_back(MO.getReg());
801    }
802  }
803
804  // CopyMI may have implicit operands, transfer them over to the newly
805  // rematerialized instruction. And update implicit def interval valnos.
806  for (unsigned i = CopyMI->getDesc().getNumOperands(),
807         e = CopyMI->getNumOperands(); i != e; ++i) {
808    MachineOperand &MO = CopyMI->getOperand(i);
809    if (MO.isReg()) {
810      assert(MO.isImplicit() && "No explicit operands after implict operands.");
811      // Discard VReg implicit defs.
812      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
813        NewMI->addOperand(MO);
814      }
815    }
816  }
817
818  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
819
820  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
821  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
822    unsigned Reg = NewMIImplDefs[i];
823    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
824      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
825        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
826  }
827
828  CopyMI->eraseFromParent();
829  ErasedInstrs.insert(CopyMI);
830  DEBUG(dbgs() << "Remat: " << *NewMI);
831  ++NumReMats;
832
833  // The source interval can become smaller because we removed a use.
834  LIS->shrinkToUses(&SrcInt, &DeadDefs);
835  if (!DeadDefs.empty())
836    eliminateDeadDefs();
837
838  return true;
839}
840
841/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
842/// values, it only removes local variables. When we have a copy like:
843///
844///   %vreg1 = COPY %vreg2<undef>
845///
846/// We delete the copy and remove the corresponding value number from %vreg1.
847/// Any uses of that value number are marked as <undef>.
848bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
849                                           const CoalescerPair &CP) {
850  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
851  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
852  if (SrcInt->liveAt(Idx))
853    return false;
854  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
855  if (DstInt->liveAt(Idx))
856    return false;
857
858  // No intervals are live-in to CopyMI - it is undef.
859  if (CP.isFlipped())
860    DstInt = SrcInt;
861  SrcInt = 0;
862
863  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
864  assert(DeadVNI && "No value defined in DstInt");
865  DstInt->removeValNo(DeadVNI);
866
867  // Find new undef uses.
868  for (MachineRegisterInfo::reg_nodbg_iterator
869         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
870       I != E; ++I) {
871    MachineOperand &MO = I.getOperand();
872    if (MO.isDef() || MO.isUndef())
873      continue;
874    MachineInstr *MI = MO.getParent();
875    SlotIndex Idx = LIS->getInstructionIndex(MI);
876    if (DstInt->liveAt(Idx))
877      continue;
878    MO.setIsUndef(true);
879    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
880  }
881  return true;
882}
883
884/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
885/// update the subregister number if it is not zero. If DstReg is a
886/// physical register and the existing subregister number of the def / use
887/// being updated is not zero, make sure to set it to the correct physical
888/// subregister.
889void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
890                                          unsigned DstReg,
891                                          unsigned SubIdx) {
892  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
893  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
894
895  SmallPtrSet<MachineInstr*, 8> Visited;
896  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
897       MachineInstr *UseMI = I.skipInstruction();) {
898    // Each instruction can only be rewritten once because sub-register
899    // composition is not always idempotent. When SrcReg != DstReg, rewriting
900    // the UseMI operands removes them from the SrcReg use-def chain, but when
901    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
902    // operands mentioning the virtual register.
903    if (SrcReg == DstReg && !Visited.insert(UseMI))
904      continue;
905
906    SmallVector<unsigned,8> Ops;
907    bool Reads, Writes;
908    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
909
910    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
911    // because SrcReg is a sub-register.
912    if (DstInt && !Reads && SubIdx)
913      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
914
915    // Replace SrcReg with DstReg in all UseMI operands.
916    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
917      MachineOperand &MO = UseMI->getOperand(Ops[i]);
918
919      // Adjust <undef> flags in case of sub-register joins. We don't want to
920      // turn a full def into a read-modify-write sub-register def and vice
921      // versa.
922      if (SubIdx && MO.isDef())
923        MO.setIsUndef(!Reads);
924
925      if (DstIsPhys)
926        MO.substPhysReg(DstReg, *TRI);
927      else
928        MO.substVirtReg(DstReg, SubIdx, *TRI);
929    }
930
931    DEBUG({
932        dbgs() << "\t\tupdated: ";
933        if (!UseMI->isDebugValue())
934          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
935        dbgs() << *UseMI;
936      });
937  }
938}
939
940/// canJoinPhys - Return true if a copy involving a physreg should be joined.
941bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
942  /// Always join simple intervals that are defined by a single copy from a
943  /// reserved register. This doesn't increase register pressure, so it is
944  /// always beneficial.
945  if (!MRI->isReserved(CP.getDstReg())) {
946    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
947    return false;
948  }
949
950  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
951  if (CP.isFlipped() && JoinVInt.containsOneValue())
952    return true;
953
954  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
955  return false;
956}
957
958/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
959/// which are the src/dst of the copy instruction CopyMI.  This returns true
960/// if the copy was successfully coalesced away. If it is not currently
961/// possible to coalesce this interval, but it may be possible if other
962/// things get coalesced, then it returns true by reference in 'Again'.
963bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
964
965  Again = false;
966  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
967
968  CoalescerPair CP(*TRI);
969  if (!CP.setRegisters(CopyMI)) {
970    DEBUG(dbgs() << "\tNot coalescable.\n");
971    return false;
972  }
973
974  // Dead code elimination. This really should be handled by MachineDCE, but
975  // sometimes dead copies slip through, and we can't generate invalid live
976  // ranges.
977  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
978    DEBUG(dbgs() << "\tCopy is dead.\n");
979    DeadDefs.push_back(CopyMI);
980    eliminateDeadDefs();
981    return true;
982  }
983
984  // Eliminate undefs.
985  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
986    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
987    LIS->RemoveMachineInstrFromMaps(CopyMI);
988    CopyMI->eraseFromParent();
989    return false;  // Not coalescable.
990  }
991
992  // Coalesced copies are normally removed immediately, but transformations
993  // like removeCopyByCommutingDef() can inadvertently create identity copies.
994  // When that happens, just join the values and remove the copy.
995  if (CP.getSrcReg() == CP.getDstReg()) {
996    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
997    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
998    LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
999    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1000      VNInfo *ReadVNI = LRQ.valueIn();
1001      assert(ReadVNI && "No value before copy and no <undef> flag.");
1002      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1003      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1004      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1005    }
1006    LIS->RemoveMachineInstrFromMaps(CopyMI);
1007    CopyMI->eraseFromParent();
1008    return true;
1009  }
1010
1011  // Enforce policies.
1012  if (CP.isPhys()) {
1013    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1014                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1015                 << '\n');
1016    if (!canJoinPhys(CP)) {
1017      // Before giving up coalescing, if definition of source is defined by
1018      // trivial computation, try rematerializing it.
1019      if (reMaterializeTrivialDef(CP, CopyMI))
1020        return true;
1021      return false;
1022    }
1023  } else {
1024    DEBUG({
1025      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1026             << " with ";
1027      if (CP.getDstIdx() && CP.getSrcIdx())
1028        dbgs() << PrintReg(CP.getDstReg()) << " in "
1029               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1030               << PrintReg(CP.getSrcReg()) << " in "
1031               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1032      else
1033        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1034               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1035    });
1036
1037    // When possible, let DstReg be the larger interval.
1038    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1039                           LIS->getInterval(CP.getDstReg()).ranges.size())
1040      CP.flip();
1041  }
1042
1043  // Okay, attempt to join these two intervals.  On failure, this returns false.
1044  // Otherwise, if one of the intervals being joined is a physreg, this method
1045  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1046  // been modified, so we can use this information below to update aliases.
1047  if (!joinIntervals(CP)) {
1048    // Coalescing failed.
1049
1050    // If definition of source is defined by trivial computation, try
1051    // rematerializing it.
1052    if (reMaterializeTrivialDef(CP, CopyMI))
1053      return true;
1054
1055    // If we can eliminate the copy without merging the live ranges, do so now.
1056    if (!CP.isPartial() && !CP.isPhys()) {
1057      if (adjustCopiesBackFrom(CP, CopyMI) ||
1058          removeCopyByCommutingDef(CP, CopyMI)) {
1059        LIS->RemoveMachineInstrFromMaps(CopyMI);
1060        CopyMI->eraseFromParent();
1061        DEBUG(dbgs() << "\tTrivial!\n");
1062        return true;
1063      }
1064    }
1065
1066    // Otherwise, we are unable to join the intervals.
1067    DEBUG(dbgs() << "\tInterference!\n");
1068    Again = true;  // May be possible to coalesce later.
1069    return false;
1070  }
1071
1072  // Coalescing to a virtual register that is of a sub-register class of the
1073  // other. Make sure the resulting register is set to the right register class.
1074  if (CP.isCrossClass()) {
1075    ++numCrossRCs;
1076    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1077  }
1078
1079  // Removing sub-register copies can ease the register class constraints.
1080  // Make sure we attempt to inflate the register class of DstReg.
1081  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1082    InflateRegs.push_back(CP.getDstReg());
1083
1084  // CopyMI has been erased by joinIntervals at this point. Remove it from
1085  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1086  // to the work list. This keeps ErasedInstrs from growing needlessly.
1087  ErasedInstrs.erase(CopyMI);
1088
1089  // Rewrite all SrcReg operands to DstReg.
1090  // Also update DstReg operands to include DstIdx if it is set.
1091  if (CP.getDstIdx())
1092    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1093  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1094
1095  // SrcReg is guaranteed to be the register whose live interval that is
1096  // being merged.
1097  LIS->removeInterval(CP.getSrcReg());
1098
1099  // Update regalloc hint.
1100  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1101
1102  DEBUG({
1103    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
1104    if (!CP.isPhys())
1105      dbgs() << LIS->getInterval(CP.getDstReg());
1106     dbgs() << '\n';
1107  });
1108
1109  ++numJoins;
1110  return true;
1111}
1112
1113/// Attempt joining with a reserved physreg.
1114bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1115  assert(CP.isPhys() && "Must be a physreg copy");
1116  assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
1117  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1118  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1119               << '\n');
1120
1121  assert(CP.isFlipped() && RHS.containsOneValue() &&
1122         "Invalid join with reserved register");
1123
1124  // Optimization for reserved registers like ESP. We can only merge with a
1125  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1126  // The live range of the reserved register will look like a set of dead defs
1127  // - we don't properly track the live range of reserved registers.
1128
1129  // Deny any overlapping intervals.  This depends on all the reserved
1130  // register live ranges to look like dead defs.
1131  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1132    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1133      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1134      return false;
1135    }
1136
1137  // Skip any value computations, we are not adding new values to the
1138  // reserved register.  Also skip merging the live ranges, the reserved
1139  // register live range doesn't need to be accurate as long as all the
1140  // defs are there.
1141
1142  // Delete the identity copy.
1143  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
1144  LIS->RemoveMachineInstrFromMaps(CopyMI);
1145  CopyMI->eraseFromParent();
1146
1147  // We don't track kills for reserved registers.
1148  MRI->clearKillFlags(CP.getSrcReg());
1149
1150  return true;
1151}
1152
1153//===----------------------------------------------------------------------===//
1154//                 Interference checking and interval joining
1155//===----------------------------------------------------------------------===//
1156//
1157// In the easiest case, the two live ranges being joined are disjoint, and
1158// there is no interference to consider. It is quite common, though, to have
1159// overlapping live ranges, and we need to check if the interference can be
1160// resolved.
1161//
1162// The live range of a single SSA value forms a sub-tree of the dominator tree.
1163// This means that two SSA values overlap if and only if the def of one value
1164// is contained in the live range of the other value. As a special case, the
1165// overlapping values can be defined at the same index.
1166//
1167// The interference from an overlapping def can be resolved in these cases:
1168//
1169// 1. Coalescable copies. The value is defined by a copy that would become an
1170//    identity copy after joining SrcReg and DstReg. The copy instruction will
1171//    be removed, and the value will be merged with the source value.
1172//
1173//    There can be several copies back and forth, causing many values to be
1174//    merged into one. We compute a list of ultimate values in the joined live
1175//    range as well as a mappings from the old value numbers.
1176//
1177// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1178//    predecessors have a live out value. It doesn't cause real interference,
1179//    and can be merged into the value it overlaps. Like a coalescable copy, it
1180//    can be erased after joining.
1181//
1182// 3. Copy of external value. The overlapping def may be a copy of a value that
1183//    is already in the other register. This is like a coalescable copy, but
1184//    the live range of the source register must be trimmed after erasing the
1185//    copy instruction:
1186//
1187//      %src = COPY %ext
1188//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1189//
1190// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1191//    defining one lane at a time:
1192//
1193//      %dst:ssub0<def,read-undef> = FOO
1194//      %src = BAR
1195//      %dst:ssub1<def> = COPY %src
1196//
1197//    The live range of %src overlaps the %dst value defined by FOO, but
1198//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1199//    which was undef anyway.
1200//
1201//    The value mapping is more complicated in this case. The final live range
1202//    will have different value numbers for both FOO and BAR, but there is no
1203//    simple mapping from old to new values. It may even be necessary to add
1204//    new PHI values.
1205//
1206// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1207//    is live, but never read. This can happen because we don't compute
1208//    individual live ranges per lane.
1209//
1210//      %dst<def> = FOO
1211//      %src = BAR
1212//      %dst:ssub1<def> = COPY %src
1213//
1214//    This kind of interference is only resolved locally. If the clobbered
1215//    lane value escapes the block, the join is aborted.
1216
1217namespace {
1218/// Track information about values in a single virtual register about to be
1219/// joined. Objects of this class are always created in pairs - one for each
1220/// side of the CoalescerPair.
1221class JoinVals {
1222  LiveInterval &LI;
1223
1224  // Location of this register in the final joined register.
1225  // Either CP.DstIdx or CP.SrcIdx.
1226  unsigned SubIdx;
1227
1228  // Values that will be present in the final live range.
1229  SmallVectorImpl<VNInfo*> &NewVNInfo;
1230
1231  const CoalescerPair &CP;
1232  LiveIntervals *LIS;
1233  SlotIndexes *Indexes;
1234  const TargetRegisterInfo *TRI;
1235
1236  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
1237  // This is suitable for passing to LiveInterval::join().
1238  SmallVector<int, 8> Assignments;
1239
1240  // Conflict resolution for overlapping values.
1241  enum ConflictResolution {
1242    // No overlap, simply keep this value.
1243    CR_Keep,
1244
1245    // Merge this value into OtherVNI and erase the defining instruction.
1246    // Used for IMPLICIT_DEF, coalescable copies, and copies from external
1247    // values.
1248    CR_Erase,
1249
1250    // Merge this value into OtherVNI but keep the defining instruction.
1251    // This is for the special case where OtherVNI is defined by the same
1252    // instruction.
1253    CR_Merge,
1254
1255    // Keep this value, and have it replace OtherVNI where possible. This
1256    // complicates value mapping since OtherVNI maps to two different values
1257    // before and after this def.
1258    // Used when clobbering undefined or dead lanes.
1259    CR_Replace,
1260
1261    // Unresolved conflict. Visit later when all values have been mapped.
1262    CR_Unresolved,
1263
1264    // Unresolvable conflict. Abort the join.
1265    CR_Impossible
1266  };
1267
1268  // Per-value info for LI. The lane bit masks are all relative to the final
1269  // joined register, so they can be compared directly between SrcReg and
1270  // DstReg.
1271  struct Val {
1272    ConflictResolution Resolution;
1273
1274    // Lanes written by this def, 0 for unanalyzed values.
1275    unsigned WriteLanes;
1276
1277    // Lanes with defined values in this register. Other lanes are undef and
1278    // safe to clobber.
1279    unsigned ValidLanes;
1280
1281    // Value in LI being redefined by this def.
1282    VNInfo *RedefVNI;
1283
1284    // Value in the other live range that overlaps this def, if any.
1285    VNInfo *OtherVNI;
1286
1287    // Is this value an IMPLICIT_DEF that can be erased?
1288    //
1289    // IMPLICIT_DEF values should only exist at the end of a basic block that
1290    // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1291    // safely erased if they are overlapping a live value in the other live
1292    // interval.
1293    //
1294    // Weird control flow graphs and incomplete PHI handling in
1295    // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1296    // longer live ranges. Such IMPLICIT_DEF values should be treated like
1297    // normal values.
1298    bool ErasableImplicitDef;
1299
1300    // True when the live range of this value will be pruned because of an
1301    // overlapping CR_Replace value in the other live range.
1302    bool Pruned;
1303
1304    // True once Pruned above has been computed.
1305    bool PrunedComputed;
1306
1307    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1308            RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false),
1309            Pruned(false), PrunedComputed(false) {}
1310
1311    bool isAnalyzed() const { return WriteLanes != 0; }
1312  };
1313
1314  // One entry per value number in LI.
1315  SmallVector<Val, 8> Vals;
1316
1317  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
1318  VNInfo *stripCopies(VNInfo *VNI);
1319  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1320  void computeAssignment(unsigned ValNo, JoinVals &Other);
1321  bool taintExtent(unsigned, unsigned, JoinVals&,
1322                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1323  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
1324  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1325
1326public:
1327  JoinVals(LiveInterval &li, unsigned subIdx,
1328           SmallVectorImpl<VNInfo*> &newVNInfo,
1329           const CoalescerPair &cp,
1330           LiveIntervals *lis,
1331           const TargetRegisterInfo *tri)
1332    : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
1333      Indexes(LIS->getSlotIndexes()), TRI(tri),
1334      Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
1335  {}
1336
1337  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
1338  /// Returns false if any conflicts were impossible to resolve.
1339  bool mapValues(JoinVals &Other);
1340
1341  /// Try to resolve conflicts that require all values to be mapped.
1342  /// Returns false if any conflicts were impossible to resolve.
1343  bool resolveConflicts(JoinVals &Other);
1344
1345  /// Prune the live range of values in Other.LI where they would conflict with
1346  /// CR_Replace values in LI. Collect end points for restoring the live range
1347  /// after joining.
1348  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
1349
1350  /// Erase any machine instructions that have been coalesced away.
1351  /// Add erased instructions to ErasedInstrs.
1352  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1353  /// the erased instrs.
1354  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1355                   SmallVectorImpl<unsigned> &ShrinkRegs);
1356
1357  /// Get the value assignments suitable for passing to LiveInterval::join.
1358  const int *getAssignments() const { return Assignments.data(); }
1359};
1360} // end anonymous namespace
1361
1362/// Compute the bitmask of lanes actually written by DefMI.
1363/// Set Redef if there are any partial register definitions that depend on the
1364/// previous value of the register.
1365unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
1366  unsigned L = 0;
1367  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
1368    if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
1369      continue;
1370    L |= TRI->getSubRegIndexLaneMask(
1371           TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
1372    if (MO->readsReg())
1373      Redef = true;
1374  }
1375  return L;
1376}
1377
1378/// Find the ultimate value that VNI was copied from.
1379VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
1380  while (!VNI->isPHIDef()) {
1381    MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
1382    assert(MI && "No defining instruction");
1383    if (!MI->isFullCopy())
1384      break;
1385    unsigned Reg = MI->getOperand(1).getReg();
1386    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1387      break;
1388    LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
1389    if (!LRQ.valueIn())
1390      break;
1391    VNI = LRQ.valueIn();
1392  }
1393  return VNI;
1394}
1395
1396/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1397/// Return a conflict resolution when possible, but leave the hard cases as
1398/// CR_Unresolved.
1399/// Recursively calls computeAssignment() on this and Other, guaranteeing that
1400/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1401/// The recursion always goes upwards in the dominator tree, making loops
1402/// impossible.
1403JoinVals::ConflictResolution
1404JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1405  Val &V = Vals[ValNo];
1406  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1407  VNInfo *VNI = LI.getValNumInfo(ValNo);
1408  if (VNI->isUnused()) {
1409    V.WriteLanes = ~0u;
1410    return CR_Keep;
1411  }
1412
1413  // Get the instruction defining this value, compute the lanes written.
1414  const MachineInstr *DefMI = 0;
1415  if (VNI->isPHIDef()) {
1416    // Conservatively assume that all lanes in a PHI are valid.
1417    V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1418  } else {
1419    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1420    bool Redef = false;
1421    V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1422
1423    // If this is a read-modify-write instruction, there may be more valid
1424    // lanes than the ones written by this instruction.
1425    // This only covers partial redef operands. DefMI may have normal use
1426    // operands reading the register. They don't contribute valid lanes.
1427    //
1428    // This adds ssub1 to the set of valid lanes in %src:
1429    //
1430    //   %src:ssub1<def> = FOO
1431    //
1432    // This leaves only ssub1 valid, making any other lanes undef:
1433    //
1434    //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1435    //
1436    // The <read-undef> flag on the def operand means that old lane values are
1437    // not important.
1438    if (Redef) {
1439      V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
1440      assert(V.RedefVNI && "Instruction is reading nonexistent value");
1441      computeAssignment(V.RedefVNI->id, Other);
1442      V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1443    }
1444
1445    // An IMPLICIT_DEF writes undef values.
1446    if (DefMI->isImplicitDef()) {
1447      // We normally expect IMPLICIT_DEF values to be live only until the end
1448      // of their block. If the value is really live longer and gets pruned in
1449      // another block, this flag is cleared again.
1450      V.ErasableImplicitDef = true;
1451      V.ValidLanes &= ~V.WriteLanes;
1452    }
1453  }
1454
1455  // Find the value in Other that overlaps VNI->def, if any.
1456  LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
1457
1458  // It is possible that both values are defined by the same instruction, or
1459  // the values are PHIs defined in the same block. When that happens, the two
1460  // values should be merged into one, but not into any preceding value.
1461  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1462  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1463    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1464
1465    // One value stays, the other is merged. Keep the earlier one, or the first
1466    // one we see.
1467    if (OtherVNI->def < VNI->def)
1468      Other.computeAssignment(OtherVNI->id, *this);
1469    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1470      // This is an early-clobber def overlapping a live-in value in the other
1471      // register. Not mergeable.
1472      V.OtherVNI = OtherLRQ.valueIn();
1473      return CR_Impossible;
1474    }
1475    V.OtherVNI = OtherVNI;
1476    Val &OtherV = Other.Vals[OtherVNI->id];
1477    // Keep this value, check for conflicts when analyzing OtherVNI.
1478    if (!OtherV.isAnalyzed())
1479      return CR_Keep;
1480    // Both sides have been analyzed now.
1481    // Allow overlapping PHI values. Any real interference would show up in a
1482    // predecessor, the PHI itself can't introduce any conflicts.
1483    if (VNI->isPHIDef())
1484      return CR_Merge;
1485    if (V.ValidLanes & OtherV.ValidLanes)
1486      // Overlapping lanes can't be resolved.
1487      return CR_Impossible;
1488    else
1489      return CR_Merge;
1490  }
1491
1492  // No simultaneous def. Is Other live at the def?
1493  V.OtherVNI = OtherLRQ.valueIn();
1494  if (!V.OtherVNI)
1495    // No overlap, no conflict.
1496    return CR_Keep;
1497
1498  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
1499
1500  // We have overlapping values, or possibly a kill of Other.
1501  // Recursively compute assignments up the dominator tree.
1502  Other.computeAssignment(V.OtherVNI->id, *this);
1503  Val &OtherV = Other.Vals[V.OtherVNI->id];
1504
1505  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
1506  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
1507  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
1508  // technically.
1509  //
1510  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
1511  // to erase the IMPLICIT_DEF instruction.
1512  if (OtherV.ErasableImplicitDef && DefMI &&
1513      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
1514    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
1515                 << " extends into BB#" << DefMI->getParent()->getNumber()
1516                 << ", keeping it.\n");
1517    OtherV.ErasableImplicitDef = false;
1518  }
1519
1520  // Allow overlapping PHI values. Any real interference would show up in a
1521  // predecessor, the PHI itself can't introduce any conflicts.
1522  if (VNI->isPHIDef())
1523    return CR_Replace;
1524
1525  // Check for simple erasable conflicts.
1526  if (DefMI->isImplicitDef())
1527    return CR_Erase;
1528
1529  // Include the non-conflict where DefMI is a coalescable copy that kills
1530  // OtherVNI. We still want the copy erased and value numbers merged.
1531  if (CP.isCoalescable(DefMI)) {
1532    // Some of the lanes copied from OtherVNI may be undef, making them undef
1533    // here too.
1534    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
1535    return CR_Erase;
1536  }
1537
1538  // This may not be a real conflict if DefMI simply kills Other and defines
1539  // VNI.
1540  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
1541    return CR_Keep;
1542
1543  // Handle the case where VNI and OtherVNI can be proven to be identical:
1544  //
1545  //   %other = COPY %ext
1546  //   %this  = COPY %ext <-- Erase this copy
1547  //
1548  if (DefMI->isFullCopy() && !CP.isPartial() &&
1549      stripCopies(VNI) == stripCopies(V.OtherVNI))
1550    return CR_Erase;
1551
1552  // If the lanes written by this instruction were all undef in OtherVNI, it is
1553  // still safe to join the live ranges. This can't be done with a simple value
1554  // mapping, though - OtherVNI will map to multiple values:
1555  //
1556  //   1 %dst:ssub0 = FOO                <-- OtherVNI
1557  //   2 %src = BAR                      <-- VNI
1558  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
1559  //   4 BAZ %dst<kill>
1560  //   5 QUUX %src<kill>
1561  //
1562  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
1563  // handles this complex value mapping.
1564  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
1565    return CR_Replace;
1566
1567  // If the other live range is killed by DefMI and the live ranges are still
1568  // overlapping, it must be because we're looking at an early clobber def:
1569  //
1570  //   %dst<def,early-clobber> = ASM %src<kill>
1571  //
1572  // In this case, it is illegal to merge the two live ranges since the early
1573  // clobber def would clobber %src before it was read.
1574  if (OtherLRQ.isKill()) {
1575    // This case where the def doesn't overlap the kill is handled above.
1576    assert(VNI->def.isEarlyClobber() &&
1577           "Only early clobber defs can overlap a kill");
1578    return CR_Impossible;
1579  }
1580
1581  // VNI is clobbering live lanes in OtherVNI, but there is still the
1582  // possibility that no instructions actually read the clobbered lanes.
1583  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
1584  // Otherwise Other.LI wouldn't be live here.
1585  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
1586    return CR_Impossible;
1587
1588  // We need to verify that no instructions are reading the clobbered lanes. To
1589  // save compile time, we'll only check that locally. Don't allow the tainted
1590  // value to escape the basic block.
1591  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1592  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
1593    return CR_Impossible;
1594
1595  // There are still some things that could go wrong besides clobbered lanes
1596  // being read, for example OtherVNI may be only partially redefined in MBB,
1597  // and some clobbered lanes could escape the block. Save this analysis for
1598  // resolveConflicts() when all values have been mapped. We need to know
1599  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
1600  // that now - the recursive analyzeValue() calls must go upwards in the
1601  // dominator tree.
1602  return CR_Unresolved;
1603}
1604
1605/// Compute the value assignment for ValNo in LI.
1606/// This may be called recursively by analyzeValue(), but never for a ValNo on
1607/// the stack.
1608void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
1609  Val &V = Vals[ValNo];
1610  if (V.isAnalyzed()) {
1611    // Recursion should always move up the dominator tree, so ValNo is not
1612    // supposed to reappear before it has been assigned.
1613    assert(Assignments[ValNo] != -1 && "Bad recursion?");
1614    return;
1615  }
1616  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
1617  case CR_Erase:
1618  case CR_Merge:
1619    // Merge this ValNo into OtherVNI.
1620    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
1621    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
1622    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
1623    DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
1624                 << LI.getValNumInfo(ValNo)->def << " into "
1625                 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
1626                 << V.OtherVNI->def << " --> @"
1627                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
1628    break;
1629  case CR_Replace:
1630  case CR_Unresolved:
1631    // The other value is going to be pruned if this join is successful.
1632    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
1633    Other.Vals[V.OtherVNI->id].Pruned = true;
1634    // Fall through.
1635  default:
1636    // This value number needs to go in the final joined live range.
1637    Assignments[ValNo] = NewVNInfo.size();
1638    NewVNInfo.push_back(LI.getValNumInfo(ValNo));
1639    break;
1640  }
1641}
1642
1643bool JoinVals::mapValues(JoinVals &Other) {
1644  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1645    computeAssignment(i, Other);
1646    if (Vals[i].Resolution == CR_Impossible) {
1647      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
1648                   << '@' << LI.getValNumInfo(i)->def << '\n');
1649      return false;
1650    }
1651  }
1652  return true;
1653}
1654
1655/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
1656/// the extent of the tainted lanes in the block.
1657///
1658/// Multiple values in Other.LI can be affected since partial redefinitions can
1659/// preserve previously tainted lanes.
1660///
1661///   1 %dst = VLOAD           <-- Define all lanes in %dst
1662///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1663///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1664///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1665///
1666/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1667/// entry to TaintedVals.
1668///
1669/// Returns false if the tainted lanes extend beyond the basic block.
1670bool JoinVals::
1671taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
1672            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
1673  VNInfo *VNI = LI.getValNumInfo(ValNo);
1674  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1675  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
1676
1677  // Scan Other.LI from VNI.def to MBBEnd.
1678  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
1679  assert(OtherI != Other.LI.end() && "No conflict?");
1680  do {
1681    // OtherI is pointing to a tainted value. Abort the join if the tainted
1682    // lanes escape the block.
1683    SlotIndex End = OtherI->end;
1684    if (End >= MBBEnd) {
1685      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
1686                   << OtherI->valno->id << '@' << OtherI->start << '\n');
1687      return false;
1688    }
1689    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
1690                 << OtherI->valno->id << '@' << OtherI->start
1691                 << " to " << End << '\n');
1692    // A dead def is not a problem.
1693    if (End.isDead())
1694      break;
1695    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
1696
1697    // Check for another def in the MBB.
1698    if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
1699      break;
1700
1701    // Lanes written by the new def are no longer tainted.
1702    const Val &OV = Other.Vals[OtherI->valno->id];
1703    TaintedLanes &= ~OV.WriteLanes;
1704    if (!OV.RedefVNI)
1705      break;
1706  } while (TaintedLanes);
1707  return true;
1708}
1709
1710/// Return true if MI uses any of the given Lanes from Reg.
1711/// This does not include partial redefinitions of Reg.
1712bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
1713                         unsigned Lanes) {
1714  if (MI->isDebugValue())
1715    return false;
1716  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
1717    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
1718      continue;
1719    if (!MO->readsReg())
1720      continue;
1721    if (Lanes & TRI->getSubRegIndexLaneMask(
1722                  TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
1723      return true;
1724  }
1725  return false;
1726}
1727
1728bool JoinVals::resolveConflicts(JoinVals &Other) {
1729  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1730    Val &V = Vals[i];
1731    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
1732    if (V.Resolution != CR_Unresolved)
1733      continue;
1734    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
1735                 << '@' << LI.getValNumInfo(i)->def << '\n');
1736    ++NumLaneConflicts;
1737    assert(V.OtherVNI && "Inconsistent conflict resolution.");
1738    VNInfo *VNI = LI.getValNumInfo(i);
1739    const Val &OtherV = Other.Vals[V.OtherVNI->id];
1740
1741    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
1742    // join, those lanes will be tainted with a wrong value. Get the extent of
1743    // the tainted lanes.
1744    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
1745    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
1746    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
1747      // Tainted lanes would extend beyond the basic block.
1748      return false;
1749
1750    assert(!TaintExtent.empty() && "There should be at least one conflict.");
1751
1752    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
1753    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1754    MachineBasicBlock::iterator MI = MBB->begin();
1755    if (!VNI->isPHIDef()) {
1756      MI = Indexes->getInstructionFromIndex(VNI->def);
1757      // No need to check the instruction defining VNI for reads.
1758      ++MI;
1759    }
1760    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
1761           "Interference ends on VNI->def. Should have been handled earlier");
1762    MachineInstr *LastMI =
1763      Indexes->getInstructionFromIndex(TaintExtent.front().first);
1764    assert(LastMI && "Range must end at a proper instruction");
1765    unsigned TaintNum = 0;
1766    for(;;) {
1767      assert(MI != MBB->end() && "Bad LastMI");
1768      if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
1769        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
1770        return false;
1771      }
1772      // LastMI is the last instruction to use the current value.
1773      if (&*MI == LastMI) {
1774        if (++TaintNum == TaintExtent.size())
1775          break;
1776        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
1777        assert(LastMI && "Range must end at a proper instruction");
1778        TaintedLanes = TaintExtent[TaintNum].second;
1779      }
1780      ++MI;
1781    }
1782
1783    // The tainted lanes are unused.
1784    V.Resolution = CR_Replace;
1785    ++NumLaneResolves;
1786  }
1787  return true;
1788}
1789
1790// Determine if ValNo is a copy of a value number in LI or Other.LI that will
1791// be pruned:
1792//
1793//   %dst = COPY %src
1794//   %src = COPY %dst  <-- This value to be pruned.
1795//   %dst = COPY %src  <-- This value is a copy of a pruned value.
1796//
1797bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
1798  Val &V = Vals[ValNo];
1799  if (V.Pruned || V.PrunedComputed)
1800    return V.Pruned;
1801
1802  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
1803    return V.Pruned;
1804
1805  // Follow copies up the dominator tree and check if any intermediate value
1806  // has been pruned.
1807  V.PrunedComputed = true;
1808  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
1809  return V.Pruned;
1810}
1811
1812void JoinVals::pruneValues(JoinVals &Other,
1813                           SmallVectorImpl<SlotIndex> &EndPoints) {
1814  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1815    SlotIndex Def = LI.getValNumInfo(i)->def;
1816    switch (Vals[i].Resolution) {
1817    case CR_Keep:
1818      break;
1819    case CR_Replace: {
1820      // This value takes precedence over the value in Other.LI.
1821      LIS->pruneValue(&Other.LI, Def, &EndPoints);
1822      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
1823      // instructions are only inserted to provide a live-out value for PHI
1824      // predecessors, so the instruction should simply go away once its value
1825      // has been replaced.
1826      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
1827      bool EraseImpDef = OtherV.ErasableImplicitDef &&
1828                         OtherV.Resolution == CR_Keep;
1829      if (!Def.isBlock()) {
1830        // Remove <def,read-undef> flags. This def is now a partial redef.
1831        // Also remove <def,dead> flags since the joined live range will
1832        // continue past this instruction.
1833        for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
1834             MO.isValid(); ++MO)
1835          if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
1836            MO->setIsUndef(EraseImpDef);
1837            MO->setIsDead(false);
1838          }
1839        // This value will reach instructions below, but we need to make sure
1840        // the live range also reaches the instruction at Def.
1841        if (!EraseImpDef)
1842          EndPoints.push_back(Def);
1843      }
1844      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
1845                   << ": " << Other.LI << '\n');
1846      break;
1847    }
1848    case CR_Erase:
1849    case CR_Merge:
1850      if (isPrunedValue(i, Other)) {
1851        // This value is ultimately a copy of a pruned value in LI or Other.LI.
1852        // We can no longer trust the value mapping computed by
1853        // computeAssignment(), the value that was originally copied could have
1854        // been replaced.
1855        LIS->pruneValue(&LI, Def, &EndPoints);
1856        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
1857                     << Def << ": " << LI << '\n');
1858      }
1859      break;
1860    case CR_Unresolved:
1861    case CR_Impossible:
1862      llvm_unreachable("Unresolved conflicts");
1863    }
1864  }
1865}
1866
1867void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1868                           SmallVectorImpl<unsigned> &ShrinkRegs) {
1869  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1870    // Get the def location before markUnused() below invalidates it.
1871    SlotIndex Def = LI.getValNumInfo(i)->def;
1872    switch (Vals[i].Resolution) {
1873    case CR_Keep:
1874      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
1875      // longer. The IMPLICIT_DEF instructions are only inserted by
1876      // PHIElimination to guarantee that all PHI predecessors have a value.
1877      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
1878        break;
1879      // Remove value number i from LI. Note that this VNInfo is still present
1880      // in NewVNInfo, so it will appear as an unused value number in the final
1881      // joined interval.
1882      LI.getValNumInfo(i)->markUnused();
1883      LI.removeValNo(LI.getValNumInfo(i));
1884      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
1885      // FALL THROUGH.
1886
1887    case CR_Erase: {
1888      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1889      assert(MI && "No instruction to erase");
1890      if (MI->isCopy()) {
1891        unsigned Reg = MI->getOperand(1).getReg();
1892        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
1893            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
1894          ShrinkRegs.push_back(Reg);
1895      }
1896      ErasedInstrs.insert(MI);
1897      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
1898      LIS->RemoveMachineInstrFromMaps(MI);
1899      MI->eraseFromParent();
1900      break;
1901    }
1902    default:
1903      break;
1904    }
1905  }
1906}
1907
1908bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
1909  SmallVector<VNInfo*, 16> NewVNInfo;
1910  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1911  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
1912  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
1913  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
1914
1915  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1916               << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
1917               << '\n');
1918
1919  // First compute NewVNInfo and the simple value mappings.
1920  // Detect impossible conflicts early.
1921  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
1922    return false;
1923
1924  // Some conflicts can only be resolved after all values have been mapped.
1925  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
1926    return false;
1927
1928  // All clear, the live ranges can be merged.
1929
1930  // The merging algorithm in LiveInterval::join() can't handle conflicting
1931  // value mappings, so we need to remove any live ranges that overlap a
1932  // CR_Replace resolution. Collect a set of end points that can be used to
1933  // restore the live range after joining.
1934  SmallVector<SlotIndex, 8> EndPoints;
1935  LHSVals.pruneValues(RHSVals, EndPoints);
1936  RHSVals.pruneValues(LHSVals, EndPoints);
1937
1938  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
1939  // registers to require trimming.
1940  SmallVector<unsigned, 8> ShrinkRegs;
1941  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1942  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1943  while (!ShrinkRegs.empty())
1944    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
1945
1946  // Join RHS into LHS.
1947  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo,
1948           MRI);
1949
1950  // Kill flags are going to be wrong if the live ranges were overlapping.
1951  // Eventually, we should simply clear all kill flags when computing live
1952  // ranges. They are reinserted after register allocation.
1953  MRI->clearKillFlags(LHS.reg);
1954  MRI->clearKillFlags(RHS.reg);
1955
1956  if (EndPoints.empty())
1957    return true;
1958
1959  // Recompute the parts of the live range we had to remove because of
1960  // CR_Replace conflicts.
1961  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
1962               << " points: " << LHS << '\n');
1963  LIS->extendToIndices(&LHS, EndPoints);
1964  return true;
1965}
1966
1967/// joinIntervals - Attempt to join these two intervals.  On failure, this
1968/// returns false.
1969bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
1970  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
1971}
1972
1973namespace {
1974// Information concerning MBB coalescing priority.
1975struct MBBPriorityInfo {
1976  MachineBasicBlock *MBB;
1977  unsigned Depth;
1978  bool IsSplit;
1979
1980  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
1981    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
1982};
1983}
1984
1985// C-style comparator that sorts first based on the loop depth of the basic
1986// block (the unsigned), and then on the MBB number.
1987//
1988// EnableGlobalCopies assumes that the primary sort key is loop depth.
1989static int compareMBBPriority(const void *L, const void *R) {
1990  const MBBPriorityInfo *LHS = static_cast<const MBBPriorityInfo*>(L);
1991  const MBBPriorityInfo *RHS = static_cast<const MBBPriorityInfo*>(R);
1992  // Deeper loops first
1993  if (LHS->Depth != RHS->Depth)
1994    return LHS->Depth > RHS->Depth ? -1 : 1;
1995
1996  // Try to unsplit critical edges next.
1997  if (LHS->IsSplit != RHS->IsSplit)
1998    return LHS->IsSplit ? -1 : 1;
1999
2000  // Prefer blocks that are more connected in the CFG. This takes care of
2001  // the most difficult copies first while intervals are short.
2002  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2003  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2004  if (cl != cr)
2005    return cl > cr ? -1 : 1;
2006
2007  // As a last resort, sort by block number.
2008  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2009}
2010
2011/// \returns true if the given copy uses or defines a local live range.
2012static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2013  if (!Copy->isCopy())
2014    return false;
2015
2016  unsigned SrcReg = Copy->getOperand(1).getReg();
2017  unsigned DstReg = Copy->getOperand(0).getReg();
2018  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2019      || TargetRegisterInfo::isPhysicalRegister(DstReg))
2020    return false;
2021
2022  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2023    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2024}
2025
2026// Try joining WorkList copies starting from index From.
2027// Null out any successful joins.
2028bool RegisterCoalescer::
2029copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2030  bool Progress = false;
2031  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2032    if (!CurrList[i])
2033      continue;
2034    // Skip instruction pointers that have already been erased, for example by
2035    // dead code elimination.
2036    if (ErasedInstrs.erase(CurrList[i])) {
2037      CurrList[i] = 0;
2038      continue;
2039    }
2040    bool Again = false;
2041    bool Success = joinCopy(CurrList[i], Again);
2042    Progress |= Success;
2043    if (Success || !Again)
2044      CurrList[i] = 0;
2045  }
2046  return Progress;
2047}
2048
2049void
2050RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2051  DEBUG(dbgs() << MBB->getName() << ":\n");
2052
2053  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2054  // yet, it might invalidate the iterator.
2055  const unsigned PrevSize = WorkList.size();
2056  if (JoinGlobalCopies) {
2057    // Coalesce copies bottom-up to coalesce local defs before local uses. They
2058    // are not inherently easier to resolve, but slightly preferable until we
2059    // have local live range splitting. In particular this is required by
2060    // cmp+jmp macro fusion.
2061    for (MachineBasicBlock::reverse_iterator
2062           MII = MBB->rbegin(), E = MBB->rend(); MII != E; ++MII) {
2063      if (!MII->isCopyLike())
2064        continue;
2065      if (isLocalCopy(&(*MII), LIS))
2066        LocalWorkList.push_back(&(*MII));
2067      else
2068        WorkList.push_back(&(*MII));
2069    }
2070  }
2071  else {
2072     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2073          MII != E; ++MII)
2074       if (MII->isCopyLike())
2075         WorkList.push_back(MII);
2076  }
2077  // Try coalescing the collected copies immediately, and remove the nulls.
2078  // This prevents the WorkList from getting too large since most copies are
2079  // joinable on the first attempt.
2080  MutableArrayRef<MachineInstr*>
2081    CurrList(WorkList.begin() + PrevSize, WorkList.end());
2082  if (copyCoalesceWorkList(CurrList))
2083    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2084                               (MachineInstr*)0), WorkList.end());
2085}
2086
2087void RegisterCoalescer::coalesceLocals() {
2088  copyCoalesceWorkList(LocalWorkList);
2089  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2090    if (LocalWorkList[j])
2091      WorkList.push_back(LocalWorkList[j]);
2092  }
2093  LocalWorkList.clear();
2094}
2095
2096void RegisterCoalescer::joinAllIntervals() {
2097  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2098  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2099
2100  std::vector<MBBPriorityInfo> MBBs;
2101  MBBs.reserve(MF->size());
2102  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2103    MachineBasicBlock *MBB = I;
2104    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2105                                   JoinSplitEdges && isSplitEdge(MBB)));
2106  }
2107  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2108
2109  // Coalesce intervals in MBB priority order.
2110  unsigned CurrDepth = UINT_MAX;
2111  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2112    // Try coalescing the collected local copies for deeper loops.
2113    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2114      coalesceLocals();
2115      CurrDepth = MBBs[i].Depth;
2116    }
2117    copyCoalesceInMBB(MBBs[i].MBB);
2118  }
2119  coalesceLocals();
2120
2121  // Joining intervals can allow other intervals to be joined.  Iteratively join
2122  // until we make no progress.
2123  while (copyCoalesceWorkList(WorkList))
2124    /* empty */ ;
2125}
2126
2127void RegisterCoalescer::releaseMemory() {
2128  ErasedInstrs.clear();
2129  WorkList.clear();
2130  DeadDefs.clear();
2131  InflateRegs.clear();
2132}
2133
2134bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2135  MF = &fn;
2136  MRI = &fn.getRegInfo();
2137  TM = &fn.getTarget();
2138  TRI = TM->getRegisterInfo();
2139  TII = TM->getInstrInfo();
2140  LIS = &getAnalysis<LiveIntervals>();
2141  AA = &getAnalysis<AliasAnalysis>();
2142  Loops = &getAnalysis<MachineLoopInfo>();
2143
2144  const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
2145  if (EnableGlobalCopies == cl::BOU_UNSET)
2146    JoinGlobalCopies = ST.enableMachineScheduler();
2147  else
2148    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2149
2150  // The MachineScheduler does not currently require JoinSplitEdges. This will
2151  // either be enabled unconditionally or replaced by a more general live range
2152  // splitting optimization.
2153  JoinSplitEdges = EnableJoinSplits;
2154
2155  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2156               << "********** Function: " << MF->getName() << '\n');
2157
2158  if (VerifyCoalescing)
2159    MF->verify(this, "Before register coalescing");
2160
2161  RegClassInfo.runOnMachineFunction(fn);
2162
2163  // Join (coalesce) intervals if requested.
2164  if (EnableJoining)
2165    joinAllIntervals();
2166
2167  // After deleting a lot of copies, register classes may be less constrained.
2168  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2169  // DPR inflation.
2170  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2171  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2172                    InflateRegs.end());
2173  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2174  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2175    unsigned Reg = InflateRegs[i];
2176    if (MRI->reg_nodbg_empty(Reg))
2177      continue;
2178    if (MRI->recomputeRegClass(Reg, *TM)) {
2179      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2180                   << MRI->getRegClass(Reg)->getName() << '\n');
2181      ++NumInflated;
2182    }
2183  }
2184
2185  DEBUG(dump());
2186  if (VerifyCoalescing)
2187    MF->verify(this, "After register coalescing");
2188  return true;
2189}
2190
2191/// print - Implement the dump method.
2192void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2193   LIS->print(O, m);
2194}
2195