RegisterCoalescer.cpp revision 4991de8fe1e72230cf714378b96411f1b59f6b77
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "RegisterClassInfo.h"
20#include "VirtRegMap.h"
21
22#include "llvm/Pass.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/OwningPtr.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/CodeGen/LiveIntervalAnalysis.h"
31#include "llvm/CodeGen/LiveRangeEdit.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineInstr.h"
35#include "llvm/CodeGen/MachineLoopInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include <algorithm>
49#include <cmath>
50using namespace llvm;
51
52STATISTIC(numJoins    , "Number of interval joins performed");
53STATISTIC(numCrossRCs , "Number of cross class joins performed");
54STATISTIC(numCommutes , "Number of instruction commuting performed");
55STATISTIC(numExtends  , "Number of copies extended");
56STATISTIC(NumReMats   , "Number of instructions re-materialized");
57STATISTIC(NumInflated , "Number of register classes inflated");
58
59static cl::opt<bool>
60EnableJoining("join-liveintervals",
61              cl::desc("Coalesce copies (default=true)"),
62              cl::init(true));
63
64static cl::opt<bool>
65VerifyCoalescing("verify-coalescing",
66         cl::desc("Verify machine instrs before and after register coalescing"),
67         cl::Hidden);
68
69namespace {
70  class RegisterCoalescer : public MachineFunctionPass,
71                            private LiveRangeEdit::Delegate {
72    MachineFunction* MF;
73    MachineRegisterInfo* MRI;
74    const TargetMachine* TM;
75    const TargetRegisterInfo* TRI;
76    const TargetInstrInfo* TII;
77    LiveIntervals *LIS;
78    LiveDebugVariables *LDV;
79    const MachineLoopInfo* Loops;
80    AliasAnalysis *AA;
81    RegisterClassInfo RegClassInfo;
82
83    /// WorkList - Copy instructions yet to be coalesced.
84    SmallVector<MachineInstr*, 8> WorkList;
85
86    /// ErasedInstrs - Set of instruction pointers that have been erased, and
87    /// that may be present in WorkList.
88    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
89
90    /// Dead instructions that are about to be deleted.
91    SmallVector<MachineInstr*, 8> DeadDefs;
92
93    /// Virtual registers to be considered for register class inflation.
94    SmallVector<unsigned, 8> InflateRegs;
95
96    /// Recursively eliminate dead defs in DeadDefs.
97    void eliminateDeadDefs();
98
99    /// LiveRangeEdit callback.
100    void LRE_WillEraseInstruction(MachineInstr *MI);
101
102    /// joinAllIntervals - join compatible live intervals
103    void joinAllIntervals();
104
105    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
106    /// copies that cannot yet be coalesced into WorkList.
107    void copyCoalesceInMBB(MachineBasicBlock *MBB);
108
109    /// copyCoalesceWorkList - Try to coalesce all copies in WorkList after
110    /// position From. Return true if any progress was made.
111    bool copyCoalesceWorkList(unsigned From = 0);
112
113    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
114    /// which are the src/dst of the copy instruction CopyMI.  This returns
115    /// true if the copy was successfully coalesced away. If it is not
116    /// currently possible to coalesce this interval, but it may be possible if
117    /// other things get coalesced, then it returns true by reference in
118    /// 'Again'.
119    bool joinCopy(MachineInstr *TheCopy, bool &Again);
120
121    /// joinIntervals - Attempt to join these two intervals.  On failure, this
122    /// returns false.  The output "SrcInt" will not have been modified, so we
123    /// can use this information below to update aliases.
124    bool joinIntervals(CoalescerPair &CP);
125
126    /// Attempt joining with a reserved physreg.
127    bool joinReservedPhysReg(CoalescerPair &CP);
128
129    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
130    /// the source value number is defined by a copy from the destination reg
131    /// see if we can merge these two destination reg valno# into a single
132    /// value number, eliminating a copy.
133    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
134
135    /// hasOtherReachingDefs - Return true if there are definitions of IntB
136    /// other than BValNo val# that can reach uses of AValno val# of IntA.
137    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
138                              VNInfo *AValNo, VNInfo *BValNo);
139
140    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
141    /// If the source value number is defined by a commutable instruction and
142    /// its other operand is coalesced to the copy dest register, see if we
143    /// can transform the copy into a noop by commuting the definition.
144    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
145
146    /// reMaterializeTrivialDef - If the source of a copy is defined by a
147    /// trivial computation, replace the copy by rematerialize the definition.
148    bool reMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg,
149                                 MachineInstr *CopyMI);
150
151    /// canJoinPhys - Return true if a physreg copy should be joined.
152    bool canJoinPhys(CoalescerPair &CP);
153
154    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
155    /// update the subregister number if it is not zero. If DstReg is a
156    /// physical register and the existing subregister number of the def / use
157    /// being updated is not zero, make sure to set it to the correct physical
158    /// subregister.
159    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
160
161    /// eliminateUndefCopy - Handle copies of undef values.
162    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
163
164  public:
165    static char ID; // Class identification, replacement for typeinfo
166    RegisterCoalescer() : MachineFunctionPass(ID) {
167      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
168    }
169
170    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
171
172    virtual void releaseMemory();
173
174    /// runOnMachineFunction - pass entry point
175    virtual bool runOnMachineFunction(MachineFunction&);
176
177    /// print - Implement the dump method.
178    virtual void print(raw_ostream &O, const Module* = 0) const;
179  };
180} /// end anonymous namespace
181
182char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
183
184INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
185                      "Simple Register Coalescing", false, false)
186INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
187INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
188INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
189INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
191INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
192                    "Simple Register Coalescing", false, false)
193
194char RegisterCoalescer::ID = 0;
195
196static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
197  if (!a) return b;
198  if (!b) return a;
199  return tri.composeSubRegIndices(a, b);
200}
201
202static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
203                        unsigned &Src, unsigned &Dst,
204                        unsigned &SrcSub, unsigned &DstSub) {
205  if (MI->isCopy()) {
206    Dst = MI->getOperand(0).getReg();
207    DstSub = MI->getOperand(0).getSubReg();
208    Src = MI->getOperand(1).getReg();
209    SrcSub = MI->getOperand(1).getSubReg();
210  } else if (MI->isSubregToReg()) {
211    Dst = MI->getOperand(0).getReg();
212    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
213                     MI->getOperand(3).getImm());
214    Src = MI->getOperand(2).getReg();
215    SrcSub = MI->getOperand(2).getSubReg();
216  } else
217    return false;
218  return true;
219}
220
221bool CoalescerPair::setRegisters(const MachineInstr *MI) {
222  SrcReg = DstReg = 0;
223  SrcIdx = DstIdx = 0;
224  NewRC = 0;
225  Flipped = CrossClass = false;
226
227  unsigned Src, Dst, SrcSub, DstSub;
228  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
229    return false;
230  Partial = SrcSub || DstSub;
231
232  // If one register is a physreg, it must be Dst.
233  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
234    if (TargetRegisterInfo::isPhysicalRegister(Dst))
235      return false;
236    std::swap(Src, Dst);
237    std::swap(SrcSub, DstSub);
238    Flipped = true;
239  }
240
241  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
242
243  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
244    // Eliminate DstSub on a physreg.
245    if (DstSub) {
246      Dst = TRI.getSubReg(Dst, DstSub);
247      if (!Dst) return false;
248      DstSub = 0;
249    }
250
251    // Eliminate SrcSub by picking a corresponding Dst superregister.
252    if (SrcSub) {
253      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
254      if (!Dst) return false;
255      SrcSub = 0;
256    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
257      return false;
258    }
259  } else {
260    // Both registers are virtual.
261    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
262    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
263
264    // Both registers have subreg indices.
265    if (SrcSub && DstSub) {
266      // Copies between different sub-registers are never coalescable.
267      if (Src == Dst && SrcSub != DstSub)
268        return false;
269
270      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
271                                         SrcIdx, DstIdx);
272      if (!NewRC)
273        return false;
274    } else if (DstSub) {
275      // SrcReg will be merged with a sub-register of DstReg.
276      SrcIdx = DstSub;
277      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
278    } else if (SrcSub) {
279      // DstReg will be merged with a sub-register of SrcReg.
280      DstIdx = SrcSub;
281      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
282    } else {
283      // This is a straight copy without sub-registers.
284      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
285    }
286
287    // The combined constraint may be impossible to satisfy.
288    if (!NewRC)
289      return false;
290
291    // Prefer SrcReg to be a sub-register of DstReg.
292    // FIXME: Coalescer should support subregs symmetrically.
293    if (DstIdx && !SrcIdx) {
294      std::swap(Src, Dst);
295      std::swap(SrcIdx, DstIdx);
296      Flipped = !Flipped;
297    }
298
299    CrossClass = NewRC != DstRC || NewRC != SrcRC;
300  }
301  // Check our invariants
302  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
303  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
304         "Cannot have a physical SubIdx");
305  SrcReg = Src;
306  DstReg = Dst;
307  return true;
308}
309
310bool CoalescerPair::flip() {
311  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
312    return false;
313  std::swap(SrcReg, DstReg);
314  std::swap(SrcIdx, DstIdx);
315  Flipped = !Flipped;
316  return true;
317}
318
319bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
320  if (!MI)
321    return false;
322  unsigned Src, Dst, SrcSub, DstSub;
323  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
324    return false;
325
326  // Find the virtual register that is SrcReg.
327  if (Dst == SrcReg) {
328    std::swap(Src, Dst);
329    std::swap(SrcSub, DstSub);
330  } else if (Src != SrcReg) {
331    return false;
332  }
333
334  // Now check that Dst matches DstReg.
335  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
336    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
337      return false;
338    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
339    // DstSub could be set for a physreg from INSERT_SUBREG.
340    if (DstSub)
341      Dst = TRI.getSubReg(Dst, DstSub);
342    // Full copy of Src.
343    if (!SrcSub)
344      return DstReg == Dst;
345    // This is a partial register copy. Check that the parts match.
346    return TRI.getSubReg(DstReg, SrcSub) == Dst;
347  } else {
348    // DstReg is virtual.
349    if (DstReg != Dst)
350      return false;
351    // Registers match, do the subregisters line up?
352    return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub);
353  }
354}
355
356void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
357  AU.setPreservesCFG();
358  AU.addRequired<AliasAnalysis>();
359  AU.addRequired<LiveIntervals>();
360  AU.addPreserved<LiveIntervals>();
361  AU.addRequired<LiveDebugVariables>();
362  AU.addPreserved<LiveDebugVariables>();
363  AU.addPreserved<SlotIndexes>();
364  AU.addRequired<MachineLoopInfo>();
365  AU.addPreserved<MachineLoopInfo>();
366  AU.addPreservedID(MachineDominatorsID);
367  MachineFunctionPass::getAnalysisUsage(AU);
368}
369
370void RegisterCoalescer::eliminateDeadDefs() {
371  SmallVector<LiveInterval*, 8> NewRegs;
372  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
373}
374
375// Callback from eliminateDeadDefs().
376void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
377  // MI may be in WorkList. Make sure we don't visit it.
378  ErasedInstrs.insert(MI);
379}
380
381/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
382/// being the source and IntB being the dest, thus this defines a value number
383/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
384/// see if we can merge these two pieces of B into a single value number,
385/// eliminating a copy.  For example:
386///
387///  A3 = B0
388///    ...
389///  B1 = A3      <- this copy
390///
391/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
392/// value number to be replaced with B0 (which simplifies the B liveinterval).
393///
394/// This returns true if an interval was modified.
395///
396bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
397                                             MachineInstr *CopyMI) {
398  assert(!CP.isPartial() && "This doesn't work for partial copies.");
399
400  // Bail if there is no dst interval - can happen when merging physical subreg
401  // operations.
402  if (!LIS->hasInterval(CP.getDstReg()))
403    return false;
404
405  LiveInterval &IntA =
406    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
407  LiveInterval &IntB =
408    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
409  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
410
411  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
412  // the example above.
413  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
414  if (BLR == IntB.end()) return false;
415  VNInfo *BValNo = BLR->valno;
416
417  // Get the location that B is defined at.  Two options: either this value has
418  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
419  // can't process it.
420  if (BValNo->def != CopyIdx) return false;
421
422  // AValNo is the value number in A that defines the copy, A3 in the example.
423  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
424  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
425  // The live range might not exist after fun with physreg coalescing.
426  if (ALR == IntA.end()) return false;
427  VNInfo *AValNo = ALR->valno;
428
429  // If AValNo is defined as a copy from IntB, we can potentially process this.
430  // Get the instruction that defines this value number.
431  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
432  if (!CP.isCoalescable(ACopyMI))
433    return false;
434
435  // Get the LiveRange in IntB that this value number starts with.
436  LiveInterval::iterator ValLR =
437    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
438  if (ValLR == IntB.end())
439    return false;
440
441  // Make sure that the end of the live range is inside the same block as
442  // CopyMI.
443  MachineInstr *ValLREndInst =
444    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
445  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
446    return false;
447
448  // Okay, we now know that ValLR ends in the same block that the CopyMI
449  // live-range starts.  If there are no intervening live ranges between them in
450  // IntB, we can merge them.
451  if (ValLR+1 != BLR) return false;
452
453  // If a live interval is a physical register, conservatively check if any
454  // of its aliases is overlapping the live interval of the virtual register.
455  // If so, do not coalesce.
456  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
457    for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
458      if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
459        DEBUG({
460            dbgs() << "\t\tInterfere with alias ";
461            LIS->getInterval(*AS).print(dbgs(), TRI);
462          });
463        return false;
464      }
465  }
466
467  DEBUG({
468      dbgs() << "Extending: ";
469      IntB.print(dbgs(), TRI);
470    });
471
472  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
473  // We are about to delete CopyMI, so need to remove it as the 'instruction
474  // that defines this value #'. Update the valnum with the new defining
475  // instruction #.
476  BValNo->def = FillerStart;
477
478  // Okay, we can merge them.  We need to insert a new liverange:
479  // [ValLR.end, BLR.begin) of either value number, then we merge the
480  // two value numbers.
481  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
482
483  // If the IntB live range is assigned to a physical register, and if that
484  // physreg has sub-registers, update their live intervals as well.
485  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
486    for (const uint16_t *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
487      if (!LIS->hasInterval(*SR))
488        continue;
489      LiveInterval &SRLI = LIS->getInterval(*SR);
490      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
491                              SRLI.getNextValue(FillerStart,
492                                                LIS->getVNInfoAllocator())));
493    }
494  }
495
496  // Okay, merge "B1" into the same value number as "B0".
497  if (BValNo != ValLR->valno) {
498    // If B1 is killed by a PHI, then the merged live range must also be killed
499    // by the same PHI, as B0 and B1 can not overlap.
500    bool HasPHIKill = BValNo->hasPHIKill();
501    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
502    if (HasPHIKill)
503      ValLR->valno->setHasPHIKill(true);
504  }
505  DEBUG({
506      dbgs() << "   result = ";
507      IntB.print(dbgs(), TRI);
508      dbgs() << "\n";
509    });
510
511  // If the source instruction was killing the source register before the
512  // merge, unset the isKill marker given the live range has been extended.
513  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
514  if (UIdx != -1) {
515    ValLREndInst->getOperand(UIdx).setIsKill(false);
516  }
517
518  // Rewrite the copy. If the copy instruction was killing the destination
519  // register before the merge, find the last use and trim the live range. That
520  // will also add the isKill marker.
521  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
522  if (ALR->end == CopyIdx)
523    LIS->shrinkToUses(&IntA);
524
525  ++numExtends;
526  return true;
527}
528
529/// hasOtherReachingDefs - Return true if there are definitions of IntB
530/// other than BValNo val# that can reach uses of AValno val# of IntA.
531bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
532                                             LiveInterval &IntB,
533                                             VNInfo *AValNo,
534                                             VNInfo *BValNo) {
535  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
536       AI != AE; ++AI) {
537    if (AI->valno != AValNo) continue;
538    LiveInterval::Ranges::iterator BI =
539      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
540    if (BI != IntB.ranges.begin())
541      --BI;
542    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
543      if (BI->valno == BValNo)
544        continue;
545      if (BI->start <= AI->start && BI->end > AI->start)
546        return true;
547      if (BI->start > AI->start && BI->start < AI->end)
548        return true;
549    }
550  }
551  return false;
552}
553
554/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
555/// IntA being the source and IntB being the dest, thus this defines a value
556/// number in IntB.  If the source value number (in IntA) is defined by a
557/// commutable instruction and its other operand is coalesced to the copy dest
558/// register, see if we can transform the copy into a noop by commuting the
559/// definition. For example,
560///
561///  A3 = op A2 B0<kill>
562///    ...
563///  B1 = A3      <- this copy
564///    ...
565///     = op A3   <- more uses
566///
567/// ==>
568///
569///  B2 = op B0 A2<kill>
570///    ...
571///  B1 = B2      <- now an identify copy
572///    ...
573///     = op B2   <- more uses
574///
575/// This returns true if an interval was modified.
576///
577bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
578                                                 MachineInstr *CopyMI) {
579  // FIXME: For now, only eliminate the copy by commuting its def when the
580  // source register is a virtual register. We want to guard against cases
581  // where the copy is a back edge copy and commuting the def lengthen the
582  // live interval of the source register to the entire loop.
583  if (CP.isPhys() && CP.isFlipped())
584    return false;
585
586  // Bail if there is no dst interval.
587  if (!LIS->hasInterval(CP.getDstReg()))
588    return false;
589
590  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
591
592  LiveInterval &IntA =
593    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
594  LiveInterval &IntB =
595    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
596
597  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
598  // the example above.
599  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
600  if (!BValNo || BValNo->def != CopyIdx)
601    return false;
602
603  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
604
605  // AValNo is the value number in A that defines the copy, A3 in the example.
606  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
607  assert(AValNo && "COPY source not live");
608
609  // If other defs can reach uses of this def, then it's not safe to perform
610  // the optimization.
611  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
612    return false;
613  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
614  if (!DefMI)
615    return false;
616  if (!DefMI->isCommutable())
617    return false;
618  // If DefMI is a two-address instruction then commuting it will change the
619  // destination register.
620  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
621  assert(DefIdx != -1);
622  unsigned UseOpIdx;
623  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
624    return false;
625  unsigned Op1, Op2, NewDstIdx;
626  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
627    return false;
628  if (Op1 == UseOpIdx)
629    NewDstIdx = Op2;
630  else if (Op2 == UseOpIdx)
631    NewDstIdx = Op1;
632  else
633    return false;
634
635  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
636  unsigned NewReg = NewDstMO.getReg();
637  if (NewReg != IntB.reg || !NewDstMO.isKill())
638    return false;
639
640  // Make sure there are no other definitions of IntB that would reach the
641  // uses which the new definition can reach.
642  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
643    return false;
644
645  // Abort if the aliases of IntB.reg have values that are not simply the
646  // clobbers from the superreg.
647  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
648    for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
649      if (LIS->hasInterval(*AS) &&
650          hasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
651        return false;
652
653  // If some of the uses of IntA.reg is already coalesced away, return false.
654  // It's not possible to determine whether it's safe to perform the coalescing.
655  for (MachineRegisterInfo::use_nodbg_iterator UI =
656         MRI->use_nodbg_begin(IntA.reg),
657       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
658    MachineInstr *UseMI = &*UI;
659    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
660    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
661    if (ULR == IntA.end() || ULR->valno != AValNo)
662      continue;
663    // If this use is tied to a def, we can't rewrite the register.
664    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
665      return false;
666  }
667
668  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
669               << *DefMI);
670
671  // At this point we have decided that it is legal to do this
672  // transformation.  Start by commuting the instruction.
673  MachineBasicBlock *MBB = DefMI->getParent();
674  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
675  if (!NewMI)
676    return false;
677  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
678      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
679      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
680    return false;
681  if (NewMI != DefMI) {
682    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
683    MachineBasicBlock::iterator Pos = DefMI;
684    MBB->insert(Pos, NewMI);
685    MBB->erase(DefMI);
686  }
687  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
688  NewMI->getOperand(OpIdx).setIsKill();
689
690  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
691  // A = or A, B
692  // ...
693  // B = A
694  // ...
695  // C = A<kill>
696  // ...
697  //   = B
698
699  // Update uses of IntA of the specific Val# with IntB.
700  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
701         UE = MRI->use_end(); UI != UE;) {
702    MachineOperand &UseMO = UI.getOperand();
703    MachineInstr *UseMI = &*UI;
704    ++UI;
705    if (UseMI->isDebugValue()) {
706      // FIXME These don't have an instruction index.  Not clear we have enough
707      // info to decide whether to do this replacement or not.  For now do it.
708      UseMO.setReg(NewReg);
709      continue;
710    }
711    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
712    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
713    if (ULR == IntA.end() || ULR->valno != AValNo)
714      continue;
715    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
716      UseMO.substPhysReg(NewReg, *TRI);
717    else
718      UseMO.setReg(NewReg);
719    if (UseMI == CopyMI)
720      continue;
721    if (!UseMI->isCopy())
722      continue;
723    if (UseMI->getOperand(0).getReg() != IntB.reg ||
724        UseMI->getOperand(0).getSubReg())
725      continue;
726
727    // This copy will become a noop. If it's defining a new val#, merge it into
728    // BValNo.
729    SlotIndex DefIdx = UseIdx.getRegSlot();
730    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
731    if (!DVNI)
732      continue;
733    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
734    assert(DVNI->def == DefIdx);
735    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
736    ErasedInstrs.insert(UseMI);
737    LIS->RemoveMachineInstrFromMaps(UseMI);
738    UseMI->eraseFromParent();
739  }
740
741  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
742  // is updated.
743  VNInfo *ValNo = BValNo;
744  ValNo->def = AValNo->def;
745  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
746       AI != AE; ++AI) {
747    if (AI->valno != AValNo) continue;
748    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
749  }
750  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
751
752  IntA.removeValNo(AValNo);
753  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
754  ++numCommutes;
755  return true;
756}
757
758/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
759/// computation, replace the copy by rematerialize the definition.
760bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt,
761                                                unsigned DstReg,
762                                                MachineInstr *CopyMI) {
763  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
764  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
765  assert(SrcLR != SrcInt.end() && "Live range not found!");
766  VNInfo *ValNo = SrcLR->valno;
767  if (ValNo->isPHIDef() || ValNo->isUnused())
768    return false;
769  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
770  if (!DefMI)
771    return false;
772  assert(DefMI && "Defining instruction disappeared");
773  if (!DefMI->isAsCheapAsAMove())
774    return false;
775  if (!TII->isTriviallyReMaterializable(DefMI, AA))
776    return false;
777  bool SawStore = false;
778  if (!DefMI->isSafeToMove(TII, AA, SawStore))
779    return false;
780  const MCInstrDesc &MCID = DefMI->getDesc();
781  if (MCID.getNumDefs() != 1)
782    return false;
783  if (!DefMI->isImplicitDef()) {
784    // Make sure the copy destination register class fits the instruction
785    // definition register class. The mismatch can happen as a result of earlier
786    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
787    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
788    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
789      if (MRI->getRegClass(DstReg) != RC)
790        return false;
791    } else if (!RC->contains(DstReg))
792      return false;
793  }
794
795  MachineBasicBlock *MBB = CopyMI->getParent();
796  MachineBasicBlock::iterator MII =
797    llvm::next(MachineBasicBlock::iterator(CopyMI));
798  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
799  MachineInstr *NewMI = prior(MII);
800
801  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
802  // We need to remember these so we can add intervals once we insert
803  // NewMI into SlotIndexes.
804  SmallVector<unsigned, 4> NewMIImplDefs;
805  for (unsigned i = NewMI->getDesc().getNumOperands(),
806         e = NewMI->getNumOperands(); i != e; ++i) {
807    MachineOperand &MO = NewMI->getOperand(i);
808    if (MO.isReg()) {
809      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
810             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
811      NewMIImplDefs.push_back(MO.getReg());
812    }
813  }
814
815  // CopyMI may have implicit operands, transfer them over to the newly
816  // rematerialized instruction. And update implicit def interval valnos.
817  for (unsigned i = CopyMI->getDesc().getNumOperands(),
818         e = CopyMI->getNumOperands(); i != e; ++i) {
819    MachineOperand &MO = CopyMI->getOperand(i);
820    if (MO.isReg()) {
821      assert(MO.isImplicit() && "No explicit operands after implict operands.");
822      // Discard VReg implicit defs.
823      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
824        NewMI->addOperand(MO);
825      }
826    }
827  }
828
829  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
830
831  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
832  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
833    unsigned reg = NewMIImplDefs[i];
834    LiveInterval &li = LIS->getInterval(reg);
835    VNInfo *DeadDefVN = li.getNextValue(NewMIIdx.getRegSlot(),
836                                        LIS->getVNInfoAllocator());
837    LiveRange lr(NewMIIdx.getRegSlot(), NewMIIdx.getDeadSlot(), DeadDefVN);
838    li.addRange(lr);
839  }
840
841  CopyMI->eraseFromParent();
842  ErasedInstrs.insert(CopyMI);
843  DEBUG(dbgs() << "Remat: " << *NewMI);
844  ++NumReMats;
845
846  // The source interval can become smaller because we removed a use.
847  LIS->shrinkToUses(&SrcInt, &DeadDefs);
848  if (!DeadDefs.empty())
849    eliminateDeadDefs();
850
851  return true;
852}
853
854/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
855/// values, it only removes local variables. When we have a copy like:
856///
857///   %vreg1 = COPY %vreg2<undef>
858///
859/// We delete the copy and remove the corresponding value number from %vreg1.
860/// Any uses of that value number are marked as <undef>.
861bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
862                                           const CoalescerPair &CP) {
863  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
864  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
865  if (SrcInt->liveAt(Idx))
866    return false;
867  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
868  if (DstInt->liveAt(Idx))
869    return false;
870
871  // No intervals are live-in to CopyMI - it is undef.
872  if (CP.isFlipped())
873    DstInt = SrcInt;
874  SrcInt = 0;
875
876  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
877  assert(DeadVNI && "No value defined in DstInt");
878  DstInt->removeValNo(DeadVNI);
879
880  // Find new undef uses.
881  for (MachineRegisterInfo::reg_nodbg_iterator
882         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
883       I != E; ++I) {
884    MachineOperand &MO = I.getOperand();
885    if (MO.isDef() || MO.isUndef())
886      continue;
887    MachineInstr *MI = MO.getParent();
888    SlotIndex Idx = LIS->getInstructionIndex(MI);
889    if (DstInt->liveAt(Idx))
890      continue;
891    MO.setIsUndef(true);
892    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
893  }
894  return true;
895}
896
897/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
898/// update the subregister number if it is not zero. If DstReg is a
899/// physical register and the existing subregister number of the def / use
900/// being updated is not zero, make sure to set it to the correct physical
901/// subregister.
902void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
903                                          unsigned DstReg,
904                                          unsigned SubIdx) {
905  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
906  LiveInterval &DstInt = LIS->getInterval(DstReg);
907
908  // Update LiveDebugVariables.
909  LDV->renameRegister(SrcReg, DstReg, SubIdx);
910
911  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
912       MachineInstr *UseMI = I.skipInstruction();) {
913    SmallVector<unsigned,8> Ops;
914    bool Reads, Writes;
915    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
916
917    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
918    // because SrcReg is a sub-register.
919    if (!Reads && SubIdx)
920      Reads = DstInt.liveAt(LIS->getInstructionIndex(UseMI));
921
922    // Replace SrcReg with DstReg in all UseMI operands.
923    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
924      MachineOperand &MO = UseMI->getOperand(Ops[i]);
925
926      // Adjust <undef> flags in case of sub-register joins. We don't want to
927      // turn a full def into a read-modify-write sub-register def and vice
928      // versa.
929      if (SubIdx && MO.isDef())
930        MO.setIsUndef(!Reads);
931
932      if (DstIsPhys)
933        MO.substPhysReg(DstReg, *TRI);
934      else
935        MO.substVirtReg(DstReg, SubIdx, *TRI);
936    }
937
938    DEBUG({
939        dbgs() << "\t\tupdated: ";
940        if (!UseMI->isDebugValue())
941          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
942        dbgs() << *UseMI;
943      });
944  }
945}
946
947/// canJoinPhys - Return true if a copy involving a physreg should be joined.
948bool RegisterCoalescer::canJoinPhys(CoalescerPair &CP) {
949  /// Always join simple intervals that are defined by a single copy from a
950  /// reserved register. This doesn't increase register pressure, so it is
951  /// always beneficial.
952  if (!RegClassInfo.isReserved(CP.getDstReg())) {
953    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
954    return false;
955  }
956
957  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
958  if (CP.isFlipped() && JoinVInt.containsOneValue())
959    return true;
960
961  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
962  return false;
963}
964
965/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
966/// which are the src/dst of the copy instruction CopyMI.  This returns true
967/// if the copy was successfully coalesced away. If it is not currently
968/// possible to coalesce this interval, but it may be possible if other
969/// things get coalesced, then it returns true by reference in 'Again'.
970bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
971
972  Again = false;
973  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
974
975  CoalescerPair CP(*TII, *TRI);
976  if (!CP.setRegisters(CopyMI)) {
977    DEBUG(dbgs() << "\tNot coalescable.\n");
978    return false;
979  }
980
981  // Dead code elimination. This really should be handled by MachineDCE, but
982  // sometimes dead copies slip through, and we can't generate invalid live
983  // ranges.
984  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
985    DEBUG(dbgs() << "\tCopy is dead.\n");
986    DeadDefs.push_back(CopyMI);
987    eliminateDeadDefs();
988    return true;
989  }
990
991  // If they are already joined we continue.
992  if (CP.getSrcReg() == CP.getDstReg()) {
993    DEBUG(dbgs() << "\tCopy already coalesced.\n");
994    LIS->RemoveMachineInstrFromMaps(CopyMI);
995    CopyMI->eraseFromParent();
996    return false;  // Not coalescable.
997  }
998
999  // Eliminate undefs.
1000  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1001    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1002    LIS->RemoveMachineInstrFromMaps(CopyMI);
1003    CopyMI->eraseFromParent();
1004    return false;  // Not coalescable.
1005  }
1006
1007  // Enforce policies.
1008  if (CP.isPhys()) {
1009    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1010                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1011                 << '\n');
1012    if (!canJoinPhys(CP)) {
1013      // Before giving up coalescing, if definition of source is defined by
1014      // trivial computation, try rematerializing it.
1015      if (!CP.isFlipped() &&
1016          reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
1017                                  CP.getDstReg(), CopyMI))
1018        return true;
1019      return false;
1020    }
1021  } else {
1022    DEBUG({
1023      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1024             << " with ";
1025      if (CP.getDstIdx() && CP.getSrcIdx())
1026        dbgs() << PrintReg(CP.getDstReg()) << " in "
1027               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1028               << PrintReg(CP.getSrcReg()) << " in "
1029               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1030      else
1031        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1032               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1033    });
1034
1035    // When possible, let DstReg be the larger interval.
1036    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1037                           LIS->getInterval(CP.getDstReg()).ranges.size())
1038      CP.flip();
1039  }
1040
1041  // Okay, attempt to join these two intervals.  On failure, this returns false.
1042  // Otherwise, if one of the intervals being joined is a physreg, this method
1043  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1044  // been modified, so we can use this information below to update aliases.
1045  if (!joinIntervals(CP)) {
1046    // Coalescing failed.
1047
1048    // If definition of source is defined by trivial computation, try
1049    // rematerializing it.
1050    if (!CP.isFlipped() &&
1051        reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
1052                                CP.getDstReg(), CopyMI))
1053      return true;
1054
1055    // If we can eliminate the copy without merging the live ranges, do so now.
1056    if (!CP.isPartial()) {
1057      if (adjustCopiesBackFrom(CP, CopyMI) ||
1058          removeCopyByCommutingDef(CP, CopyMI)) {
1059        LIS->RemoveMachineInstrFromMaps(CopyMI);
1060        CopyMI->eraseFromParent();
1061        DEBUG(dbgs() << "\tTrivial!\n");
1062        return true;
1063      }
1064    }
1065
1066    // Otherwise, we are unable to join the intervals.
1067    DEBUG(dbgs() << "\tInterference!\n");
1068    Again = true;  // May be possible to coalesce later.
1069    return false;
1070  }
1071
1072  // Coalescing to a virtual register that is of a sub-register class of the
1073  // other. Make sure the resulting register is set to the right register class.
1074  if (CP.isCrossClass()) {
1075    ++numCrossRCs;
1076    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1077  }
1078
1079  // Removing sub-register copies can ease the register class constraints.
1080  // Make sure we attempt to inflate the register class of DstReg.
1081  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1082    InflateRegs.push_back(CP.getDstReg());
1083
1084  // CopyMI has been erased by joinIntervals at this point. Remove it from
1085  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1086  // to the work list. This keeps ErasedInstrs from growing needlessly.
1087  ErasedInstrs.erase(CopyMI);
1088
1089  // Rewrite all SrcReg operands to DstReg.
1090  // Also update DstReg operands to include DstIdx if it is set.
1091  if (CP.getDstIdx())
1092    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1093  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1094
1095  // SrcReg is guaranteed to be the register whose live interval that is
1096  // being merged.
1097  LIS->removeInterval(CP.getSrcReg());
1098
1099  // Update regalloc hint.
1100  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1101
1102  DEBUG({
1103    LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
1104    dbgs() << "\tJoined. Result = ";
1105    DstInt.print(dbgs(), TRI);
1106    dbgs() << "\n";
1107  });
1108
1109  ++numJoins;
1110  return true;
1111}
1112
1113/// Attempt joining with a reserved physreg.
1114bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1115  assert(CP.isPhys() && "Must be a physreg copy");
1116  assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register");
1117  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1118  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1119
1120  assert(CP.isFlipped() && RHS.containsOneValue() &&
1121         "Invalid join with reserved register");
1122
1123  // Optimization for reserved registers like ESP. We can only merge with a
1124  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1125  // The live range of the reserved register will look like a set of dead defs
1126  // - we don't properly track the live range of reserved registers.
1127
1128  // Deny any overlapping intervals.  This depends on all the reserved
1129  // register live ranges to look like dead defs.
1130  for (const uint16_t *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
1131    if (!LIS->hasInterval(*AS)) {
1132      // Make sure at least DstReg itself exists before attempting a join.
1133      if (*AS == CP.getDstReg())
1134        LIS->getOrCreateInterval(CP.getDstReg());
1135      continue;
1136    }
1137    if (RHS.overlaps(LIS->getInterval(*AS))) {
1138      DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
1139      return false;
1140    }
1141  }
1142  // Skip any value computations, we are not adding new values to the
1143  // reserved register.  Also skip merging the live ranges, the reserved
1144  // register live range doesn't need to be accurate as long as all the
1145  // defs are there.
1146  return true;
1147}
1148
1149/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1150/// compute what the resultant value numbers for each value in the input two
1151/// ranges will be.  This is complicated by copies between the two which can
1152/// and will commonly cause multiple value numbers to be merged into one.
1153///
1154/// VN is the value number that we're trying to resolve.  InstDefiningValue
1155/// keeps track of the new InstDefiningValue assignment for the result
1156/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1157/// whether a value in this or other is a copy from the opposite set.
1158/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1159/// already been assigned.
1160///
1161/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1162/// contains the value number the copy is from.
1163///
1164static unsigned ComputeUltimateVN(VNInfo *VNI,
1165                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1166                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1167                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1168                                  SmallVector<int, 16> &ThisValNoAssignments,
1169                                  SmallVector<int, 16> &OtherValNoAssignments) {
1170  unsigned VN = VNI->id;
1171
1172  // If the VN has already been computed, just return it.
1173  if (ThisValNoAssignments[VN] >= 0)
1174    return ThisValNoAssignments[VN];
1175  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1176
1177  // If this val is not a copy from the other val, then it must be a new value
1178  // number in the destination.
1179  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1180  if (I == ThisFromOther.end()) {
1181    NewVNInfo.push_back(VNI);
1182    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1183  }
1184  VNInfo *OtherValNo = I->second;
1185
1186  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1187  // been computed, return it.
1188  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1189    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1190
1191  // Mark this value number as currently being computed, then ask what the
1192  // ultimate value # of the other value is.
1193  ThisValNoAssignments[VN] = -2;
1194  unsigned UltimateVN =
1195    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1196                      OtherValNoAssignments, ThisValNoAssignments);
1197  return ThisValNoAssignments[VN] = UltimateVN;
1198}
1199
1200
1201// Find out if we have something like
1202// A = X
1203// B = X
1204// if so, we can pretend this is actually
1205// A = X
1206// B = A
1207// which allows us to coalesce A and B.
1208// VNI is the definition of B. LR is the life range of A that includes
1209// the slot just before B. If we return true, we add "B = X" to DupCopies.
1210// This implies that A dominates B.
1211static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1212                                          const TargetRegisterInfo &tri,
1213                                          CoalescerPair &CP,
1214                                          VNInfo *VNI,
1215                                          VNInfo *OtherVNI,
1216                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1217  // FIXME: This is very conservative. For example, we don't handle
1218  // physical registers.
1219
1220  MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
1221
1222  if (!MI || !MI->isFullCopy() || CP.isPartial() || CP.isPhys())
1223    return false;
1224
1225  unsigned Dst = MI->getOperand(0).getReg();
1226  unsigned Src = MI->getOperand(1).getReg();
1227
1228  if (!TargetRegisterInfo::isVirtualRegister(Src) ||
1229      !TargetRegisterInfo::isVirtualRegister(Dst))
1230    return false;
1231
1232  unsigned A = CP.getDstReg();
1233  unsigned B = CP.getSrcReg();
1234
1235  if (B == Dst)
1236    std::swap(A, B);
1237  assert(Dst == A);
1238
1239  const MachineInstr *OtherMI = li.getInstructionFromIndex(OtherVNI->def);
1240
1241  if (!OtherMI || !OtherMI->isFullCopy())
1242    return false;
1243
1244  unsigned OtherDst = OtherMI->getOperand(0).getReg();
1245  unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1246
1247  if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
1248      !TargetRegisterInfo::isVirtualRegister(OtherDst))
1249    return false;
1250
1251  assert(OtherDst == B);
1252
1253  if (Src != OtherSrc)
1254    return false;
1255
1256  // If the copies use two different value numbers of X, we cannot merge
1257  // A and B.
1258  LiveInterval &SrcInt = li.getInterval(Src);
1259  // getVNInfoBefore returns NULL for undef copies. In this case, the
1260  // optimization is still safe.
1261  if (SrcInt.getVNInfoBefore(OtherVNI->def) != SrcInt.getVNInfoBefore(VNI->def))
1262    return false;
1263
1264  DupCopies.push_back(MI);
1265
1266  return true;
1267}
1268
1269/// joinIntervals - Attempt to join these two intervals.  On failure, this
1270/// returns false.
1271bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
1272  // Handle physreg joins separately.
1273  if (CP.isPhys())
1274    return joinReservedPhysReg(CP);
1275
1276  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1277  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1278
1279  // Compute the final value assignment, assuming that the live ranges can be
1280  // coalesced.
1281  SmallVector<int, 16> LHSValNoAssignments;
1282  SmallVector<int, 16> RHSValNoAssignments;
1283  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1284  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1285  SmallVector<VNInfo*, 16> NewVNInfo;
1286
1287  SmallVector<MachineInstr*, 8> DupCopies;
1288  SmallVector<MachineInstr*, 8> DeadCopies;
1289
1290  LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1291  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
1292
1293  // Loop over the value numbers of the LHS, seeing if any are defined from
1294  // the RHS.
1295  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1296       i != e; ++i) {
1297    VNInfo *VNI = *i;
1298    if (VNI->isUnused() || VNI->isPHIDef())
1299      continue;
1300    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1301    assert(MI && "Missing def");
1302    if (!MI->isCopyLike())  // Src not defined by a copy?
1303      continue;
1304
1305    // Figure out the value # from the RHS.
1306    VNInfo *OtherVNI = RHS.getVNInfoBefore(VNI->def);
1307    // The copy could be to an aliased physreg.
1308    if (!OtherVNI)
1309      continue;
1310
1311    // DstReg is known to be a register in the LHS interval.  If the src is
1312    // from the RHS interval, we can use its value #.
1313    if (CP.isCoalescable(MI))
1314      DeadCopies.push_back(MI);
1315    else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
1316                                            DupCopies))
1317      continue;
1318
1319    LHSValsDefinedFromRHS[VNI] = OtherVNI;
1320  }
1321
1322  // Loop over the value numbers of the RHS, seeing if any are defined from
1323  // the LHS.
1324  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1325       i != e; ++i) {
1326    VNInfo *VNI = *i;
1327    if (VNI->isUnused() || VNI->isPHIDef())
1328      continue;
1329    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1330    assert(MI && "Missing def");
1331    if (!MI->isCopyLike())  // Src not defined by a copy?
1332      continue;
1333
1334    // Figure out the value # from the LHS.
1335    VNInfo *OtherVNI = LHS.getVNInfoBefore(VNI->def);
1336    // The copy could be to an aliased physreg.
1337    if (!OtherVNI)
1338      continue;
1339
1340    // DstReg is known to be a register in the RHS interval.  If the src is
1341    // from the LHS interval, we can use its value #.
1342    if (CP.isCoalescable(MI))
1343      DeadCopies.push_back(MI);
1344    else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
1345                                            DupCopies))
1346        continue;
1347
1348    RHSValsDefinedFromLHS[VNI] = OtherVNI;
1349  }
1350
1351  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1352  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1353  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1354
1355  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1356       i != e; ++i) {
1357    VNInfo *VNI = *i;
1358    unsigned VN = VNI->id;
1359    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1360      continue;
1361    ComputeUltimateVN(VNI, NewVNInfo,
1362                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1363                      LHSValNoAssignments, RHSValNoAssignments);
1364  }
1365  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1366       i != e; ++i) {
1367    VNInfo *VNI = *i;
1368    unsigned VN = VNI->id;
1369    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1370      continue;
1371    // If this value number isn't a copy from the LHS, it's a new number.
1372    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1373      NewVNInfo.push_back(VNI);
1374      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1375      continue;
1376    }
1377
1378    ComputeUltimateVN(VNI, NewVNInfo,
1379                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1380                      RHSValNoAssignments, LHSValNoAssignments);
1381  }
1382
1383  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1384  // interval lists to see if these intervals are coalescable.
1385  LiveInterval::const_iterator I = LHS.begin();
1386  LiveInterval::const_iterator IE = LHS.end();
1387  LiveInterval::const_iterator J = RHS.begin();
1388  LiveInterval::const_iterator JE = RHS.end();
1389
1390  // Skip ahead until the first place of potential sharing.
1391  if (I != IE && J != JE) {
1392    if (I->start < J->start) {
1393      I = std::upper_bound(I, IE, J->start);
1394      if (I != LHS.begin()) --I;
1395    } else if (J->start < I->start) {
1396      J = std::upper_bound(J, JE, I->start);
1397      if (J != RHS.begin()) --J;
1398    }
1399  }
1400
1401  while (I != IE && J != JE) {
1402    // Determine if these two live ranges overlap.
1403    // If so, check value # info to determine if they are really different.
1404    if (I->end > J->start && J->end > I->start) {
1405      // If the live range overlap will map to the same value number in the
1406      // result liverange, we can still coalesce them.  If not, we can't.
1407      if (LHSValNoAssignments[I->valno->id] !=
1408          RHSValNoAssignments[J->valno->id])
1409        return false;
1410    }
1411
1412    if (I->end < J->end)
1413      ++I;
1414    else
1415      ++J;
1416  }
1417
1418  // Update kill info. Some live ranges are extended due to copy coalescing.
1419  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1420         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1421    VNInfo *VNI = I->first;
1422    unsigned LHSValID = LHSValNoAssignments[VNI->id];
1423    if (VNI->hasPHIKill())
1424      NewVNInfo[LHSValID]->setHasPHIKill(true);
1425  }
1426
1427  // Update kill info. Some live ranges are extended due to copy coalescing.
1428  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1429         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1430    VNInfo *VNI = I->first;
1431    unsigned RHSValID = RHSValNoAssignments[VNI->id];
1432    if (VNI->hasPHIKill())
1433      NewVNInfo[RHSValID]->setHasPHIKill(true);
1434  }
1435
1436  if (LHSValNoAssignments.empty())
1437    LHSValNoAssignments.push_back(-1);
1438  if (RHSValNoAssignments.empty())
1439    RHSValNoAssignments.push_back(-1);
1440
1441  // Now erase all the redundant copies.
1442  for (unsigned i = 0, e = DeadCopies.size(); i != e; ++i) {
1443    MachineInstr *MI = DeadCopies[i];
1444    if (!ErasedInstrs.insert(MI))
1445      continue;
1446    DEBUG(dbgs() << "\t\terased:\t" << LIS->getInstructionIndex(MI)
1447                 << '\t' << *MI);
1448    LIS->RemoveMachineInstrFromMaps(MI);
1449    MI->eraseFromParent();
1450  }
1451
1452  SmallVector<unsigned, 8> SourceRegisters;
1453  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1454         E = DupCopies.end(); I != E; ++I) {
1455    MachineInstr *MI = *I;
1456    if (!ErasedInstrs.insert(MI))
1457      continue;
1458
1459    // We have pretended that the assignment to B in
1460    // A = X
1461    // B = X
1462    // was actually a copy from A. Now that we decided to coalesce A and B,
1463    // transform the code into
1464    // A = X
1465    unsigned Src = MI->getOperand(1).getReg();
1466    SourceRegisters.push_back(Src);
1467    LIS->RemoveMachineInstrFromMaps(MI);
1468    MI->eraseFromParent();
1469  }
1470
1471  // If B = X was the last use of X in a liverange, we have to shrink it now
1472  // that B = X is gone.
1473  for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1474         E = SourceRegisters.end(); I != E; ++I) {
1475    LIS->shrinkToUses(&LIS->getInterval(*I));
1476  }
1477
1478  // If we get here, we know that we can coalesce the live ranges.  Ask the
1479  // intervals to coalesce themselves now.
1480  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1481           MRI);
1482  return true;
1483}
1484
1485namespace {
1486  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1487  // depth of the basic block (the unsigned), and then on the MBB number.
1488  struct DepthMBBCompare {
1489    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1490    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1491      // Deeper loops first
1492      if (LHS.first != RHS.first)
1493        return LHS.first > RHS.first;
1494
1495      // Prefer blocks that are more connected in the CFG. This takes care of
1496      // the most difficult copies first while intervals are short.
1497      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1498      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1499      if (cl != cr)
1500        return cl > cr;
1501
1502      // As a last resort, sort by block number.
1503      return LHS.second->getNumber() < RHS.second->getNumber();
1504    }
1505  };
1506}
1507
1508// Try joining WorkList copies starting from index From.
1509// Null out any successful joins.
1510bool RegisterCoalescer::copyCoalesceWorkList(unsigned From) {
1511  assert(From <= WorkList.size() && "Out of range");
1512  bool Progress = false;
1513  for (unsigned i = From, e = WorkList.size(); i != e; ++i) {
1514    if (!WorkList[i])
1515      continue;
1516    // Skip instruction pointers that have already been erased, for example by
1517    // dead code elimination.
1518    if (ErasedInstrs.erase(WorkList[i])) {
1519      WorkList[i] = 0;
1520      continue;
1521    }
1522    bool Again = false;
1523    bool Success = joinCopy(WorkList[i], Again);
1524    Progress |= Success;
1525    if (Success || !Again)
1526      WorkList[i] = 0;
1527  }
1528  return Progress;
1529}
1530
1531void
1532RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
1533  DEBUG(dbgs() << MBB->getName() << ":\n");
1534
1535  // Collect all copy-like instructions in MBB. Don't start coalescing anything
1536  // yet, it might invalidate the iterator.
1537  const unsigned PrevSize = WorkList.size();
1538  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1539       MII != E; ++MII)
1540    if (MII->isCopyLike())
1541      WorkList.push_back(MII);
1542
1543  // Try coalescing the collected copies immediately, and remove the nulls.
1544  // This prevents the WorkList from getting too large since most copies are
1545  // joinable on the first attempt.
1546  if (copyCoalesceWorkList(PrevSize))
1547    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
1548                               (MachineInstr*)0), WorkList.end());
1549}
1550
1551void RegisterCoalescer::joinAllIntervals() {
1552  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1553  assert(WorkList.empty() && "Old data still around.");
1554
1555  if (Loops->empty()) {
1556    // If there are no loops in the function, join intervals in function order.
1557    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1558         I != E; ++I)
1559      copyCoalesceInMBB(I);
1560  } else {
1561    // Otherwise, join intervals in inner loops before other intervals.
1562    // Unfortunately we can't just iterate over loop hierarchy here because
1563    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1564
1565    // Join intervals in the function prolog first. We want to join physical
1566    // registers with virtual registers before the intervals got too long.
1567    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1568    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1569      MachineBasicBlock *MBB = I;
1570      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1571    }
1572
1573    // Sort by loop depth.
1574    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1575
1576    // Finally, join intervals in loop nest order.
1577    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1578      copyCoalesceInMBB(MBBs[i].second);
1579  }
1580
1581  // Joining intervals can allow other intervals to be joined.  Iteratively join
1582  // until we make no progress.
1583  while (copyCoalesceWorkList())
1584    /* empty */ ;
1585}
1586
1587void RegisterCoalescer::releaseMemory() {
1588  ErasedInstrs.clear();
1589  WorkList.clear();
1590  DeadDefs.clear();
1591  InflateRegs.clear();
1592}
1593
1594bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1595  MF = &fn;
1596  MRI = &fn.getRegInfo();
1597  TM = &fn.getTarget();
1598  TRI = TM->getRegisterInfo();
1599  TII = TM->getInstrInfo();
1600  LIS = &getAnalysis<LiveIntervals>();
1601  LDV = &getAnalysis<LiveDebugVariables>();
1602  AA = &getAnalysis<AliasAnalysis>();
1603  Loops = &getAnalysis<MachineLoopInfo>();
1604
1605  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1606               << "********** Function: "
1607               << ((Value*)MF->getFunction())->getName() << '\n');
1608
1609  if (VerifyCoalescing)
1610    MF->verify(this, "Before register coalescing");
1611
1612  RegClassInfo.runOnMachineFunction(fn);
1613
1614  // Join (coalesce) intervals if requested.
1615  if (EnableJoining) {
1616    joinAllIntervals();
1617    DEBUG({
1618        dbgs() << "********** INTERVALS POST JOINING **********\n";
1619        for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
1620             I != E; ++I){
1621          I->second->print(dbgs(), TRI);
1622          dbgs() << "\n";
1623        }
1624      });
1625  }
1626
1627  // Perform a final pass over the instructions and compute spill weights
1628  // and remove identity moves.
1629  SmallVector<unsigned, 4> DeadDefs;
1630  for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
1631       mbbi != mbbe; ++mbbi) {
1632    MachineBasicBlock* mbb = mbbi;
1633    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1634         mii != mie; ) {
1635      MachineInstr *MI = mii;
1636
1637      ++mii;
1638
1639      // Check for now unnecessary kill flags.
1640      if (LIS->isNotInMIMap(MI)) continue;
1641      SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
1642      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1643        MachineOperand &MO = MI->getOperand(i);
1644        if (!MO.isReg() || !MO.isKill()) continue;
1645        unsigned reg = MO.getReg();
1646        if (!reg || !LIS->hasInterval(reg)) continue;
1647        if (!LIS->getInterval(reg).killedAt(DefIdx)) {
1648          MO.setIsKill(false);
1649          continue;
1650        }
1651        // When leaving a kill flag on a physreg, check if any subregs should
1652        // remain alive.
1653        if (!TargetRegisterInfo::isPhysicalRegister(reg))
1654          continue;
1655        for (const uint16_t *SR = TRI->getSubRegisters(reg);
1656             unsigned S = *SR; ++SR)
1657          if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
1658            MI->addRegisterDefined(S, TRI);
1659      }
1660    }
1661  }
1662
1663  // After deleting a lot of copies, register classes may be less constrained.
1664  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
1665  // DPR inflation.
1666  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1667  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1668                    InflateRegs.end());
1669  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1670  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1671    unsigned Reg = InflateRegs[i];
1672    if (MRI->reg_nodbg_empty(Reg))
1673      continue;
1674    if (MRI->recomputeRegClass(Reg, *TM)) {
1675      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1676                   << MRI->getRegClass(Reg)->getName() << '\n');
1677      ++NumInflated;
1678    }
1679  }
1680
1681  DEBUG(dump());
1682  DEBUG(LDV->dump());
1683  if (VerifyCoalescing)
1684    MF->verify(this, "After register coalescing");
1685  return true;
1686}
1687
1688/// print - Implement the dump method.
1689void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
1690   LIS->print(O, m);
1691}
1692