RegisterCoalescer.cpp revision 682e8d05c7def2b82edc354abf1d38df607d39c8
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "VirtRegMap.h"
20
21#include "llvm/Pass.h"
22#include "llvm/Value.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/CodeGen/LiveIntervalAnalysis.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/CodeGen/LiveRangeEdit.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/CodeGen/RegisterClassInfo.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include <algorithm>
49#include <cmath>
50using namespace llvm;
51
52STATISTIC(numJoins    , "Number of interval joins performed");
53STATISTIC(numCrossRCs , "Number of cross class joins performed");
54STATISTIC(numCommutes , "Number of instruction commuting performed");
55STATISTIC(numExtends  , "Number of copies extended");
56STATISTIC(NumReMats   , "Number of instructions re-materialized");
57STATISTIC(NumInflated , "Number of register classes inflated");
58
59static cl::opt<bool>
60EnableJoining("join-liveintervals",
61              cl::desc("Coalesce copies (default=true)"),
62              cl::init(true));
63
64static cl::opt<bool>
65VerifyCoalescing("verify-coalescing",
66         cl::desc("Verify machine instrs before and after register coalescing"),
67         cl::Hidden);
68
69namespace {
70  class RegisterCoalescer : public MachineFunctionPass,
71                            private LiveRangeEdit::Delegate {
72    MachineFunction* MF;
73    MachineRegisterInfo* MRI;
74    const TargetMachine* TM;
75    const TargetRegisterInfo* TRI;
76    const TargetInstrInfo* TII;
77    LiveIntervals *LIS;
78    LiveDebugVariables *LDV;
79    const MachineLoopInfo* Loops;
80    AliasAnalysis *AA;
81    RegisterClassInfo RegClassInfo;
82
83    /// WorkList - Copy instructions yet to be coalesced.
84    SmallVector<MachineInstr*, 8> WorkList;
85
86    /// ErasedInstrs - Set of instruction pointers that have been erased, and
87    /// that may be present in WorkList.
88    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
89
90    /// Dead instructions that are about to be deleted.
91    SmallVector<MachineInstr*, 8> DeadDefs;
92
93    /// Virtual registers to be considered for register class inflation.
94    SmallVector<unsigned, 8> InflateRegs;
95
96    /// Recursively eliminate dead defs in DeadDefs.
97    void eliminateDeadDefs();
98
99    /// LiveRangeEdit callback.
100    void LRE_WillEraseInstruction(MachineInstr *MI);
101
102    /// joinAllIntervals - join compatible live intervals
103    void joinAllIntervals();
104
105    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
106    /// copies that cannot yet be coalesced into WorkList.
107    void copyCoalesceInMBB(MachineBasicBlock *MBB);
108
109    /// copyCoalesceWorkList - Try to coalesce all copies in WorkList after
110    /// position From. Return true if any progress was made.
111    bool copyCoalesceWorkList(unsigned From = 0);
112
113    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
114    /// which are the src/dst of the copy instruction CopyMI.  This returns
115    /// true if the copy was successfully coalesced away. If it is not
116    /// currently possible to coalesce this interval, but it may be possible if
117    /// other things get coalesced, then it returns true by reference in
118    /// 'Again'.
119    bool joinCopy(MachineInstr *TheCopy, bool &Again);
120
121    /// joinIntervals - Attempt to join these two intervals.  On failure, this
122    /// returns false.  The output "SrcInt" will not have been modified, so we
123    /// can use this information below to update aliases.
124    bool joinIntervals(CoalescerPair &CP);
125
126    /// Attempt joining with a reserved physreg.
127    bool joinReservedPhysReg(CoalescerPair &CP);
128
129    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
130    /// the source value number is defined by a copy from the destination reg
131    /// see if we can merge these two destination reg valno# into a single
132    /// value number, eliminating a copy.
133    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
134
135    /// hasOtherReachingDefs - Return true if there are definitions of IntB
136    /// other than BValNo val# that can reach uses of AValno val# of IntA.
137    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
138                              VNInfo *AValNo, VNInfo *BValNo);
139
140    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
141    /// If the source value number is defined by a commutable instruction and
142    /// its other operand is coalesced to the copy dest register, see if we
143    /// can transform the copy into a noop by commuting the definition.
144    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
145
146    /// reMaterializeTrivialDef - If the source of a copy is defined by a
147    /// trivial computation, replace the copy by rematerialize the definition.
148    bool reMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg,
149                                 MachineInstr *CopyMI);
150
151    /// canJoinPhys - Return true if a physreg copy should be joined.
152    bool canJoinPhys(CoalescerPair &CP);
153
154    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
155    /// update the subregister number if it is not zero. If DstReg is a
156    /// physical register and the existing subregister number of the def / use
157    /// being updated is not zero, make sure to set it to the correct physical
158    /// subregister.
159    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
160
161    /// eliminateUndefCopy - Handle copies of undef values.
162    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
163
164  public:
165    static char ID; // Class identification, replacement for typeinfo
166    RegisterCoalescer() : MachineFunctionPass(ID) {
167      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
168    }
169
170    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
171
172    virtual void releaseMemory();
173
174    /// runOnMachineFunction - pass entry point
175    virtual bool runOnMachineFunction(MachineFunction&);
176
177    /// print - Implement the dump method.
178    virtual void print(raw_ostream &O, const Module* = 0) const;
179  };
180} /// end anonymous namespace
181
182char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
183
184INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
185                      "Simple Register Coalescing", false, false)
186INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
187INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
188INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
189INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
191INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
192                    "Simple Register Coalescing", false, false)
193
194char RegisterCoalescer::ID = 0;
195
196static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
197  if (!a) return b;
198  if (!b) return a;
199  return tri.composeSubRegIndices(a, b);
200}
201
202static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
203                        unsigned &Src, unsigned &Dst,
204                        unsigned &SrcSub, unsigned &DstSub) {
205  if (MI->isCopy()) {
206    Dst = MI->getOperand(0).getReg();
207    DstSub = MI->getOperand(0).getSubReg();
208    Src = MI->getOperand(1).getReg();
209    SrcSub = MI->getOperand(1).getSubReg();
210  } else if (MI->isSubregToReg()) {
211    Dst = MI->getOperand(0).getReg();
212    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
213                     MI->getOperand(3).getImm());
214    Src = MI->getOperand(2).getReg();
215    SrcSub = MI->getOperand(2).getSubReg();
216  } else
217    return false;
218  return true;
219}
220
221bool CoalescerPair::setRegisters(const MachineInstr *MI) {
222  SrcReg = DstReg = 0;
223  SrcIdx = DstIdx = 0;
224  NewRC = 0;
225  Flipped = CrossClass = false;
226
227  unsigned Src, Dst, SrcSub, DstSub;
228  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
229    return false;
230  Partial = SrcSub || DstSub;
231
232  // If one register is a physreg, it must be Dst.
233  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
234    if (TargetRegisterInfo::isPhysicalRegister(Dst))
235      return false;
236    std::swap(Src, Dst);
237    std::swap(SrcSub, DstSub);
238    Flipped = true;
239  }
240
241  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
242
243  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
244    // Eliminate DstSub on a physreg.
245    if (DstSub) {
246      Dst = TRI.getSubReg(Dst, DstSub);
247      if (!Dst) return false;
248      DstSub = 0;
249    }
250
251    // Eliminate SrcSub by picking a corresponding Dst superregister.
252    if (SrcSub) {
253      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
254      if (!Dst) return false;
255      SrcSub = 0;
256    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
257      return false;
258    }
259  } else {
260    // Both registers are virtual.
261    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
262    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
263
264    // Both registers have subreg indices.
265    if (SrcSub && DstSub) {
266      // Copies between different sub-registers are never coalescable.
267      if (Src == Dst && SrcSub != DstSub)
268        return false;
269
270      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
271                                         SrcIdx, DstIdx);
272      if (!NewRC)
273        return false;
274    } else if (DstSub) {
275      // SrcReg will be merged with a sub-register of DstReg.
276      SrcIdx = DstSub;
277      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
278    } else if (SrcSub) {
279      // DstReg will be merged with a sub-register of SrcReg.
280      DstIdx = SrcSub;
281      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
282    } else {
283      // This is a straight copy without sub-registers.
284      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
285    }
286
287    // The combined constraint may be impossible to satisfy.
288    if (!NewRC)
289      return false;
290
291    // Prefer SrcReg to be a sub-register of DstReg.
292    // FIXME: Coalescer should support subregs symmetrically.
293    if (DstIdx && !SrcIdx) {
294      std::swap(Src, Dst);
295      std::swap(SrcIdx, DstIdx);
296      Flipped = !Flipped;
297    }
298
299    CrossClass = NewRC != DstRC || NewRC != SrcRC;
300  }
301  // Check our invariants
302  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
303  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
304         "Cannot have a physical SubIdx");
305  SrcReg = Src;
306  DstReg = Dst;
307  return true;
308}
309
310bool CoalescerPair::flip() {
311  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
312    return false;
313  std::swap(SrcReg, DstReg);
314  std::swap(SrcIdx, DstIdx);
315  Flipped = !Flipped;
316  return true;
317}
318
319bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
320  if (!MI)
321    return false;
322  unsigned Src, Dst, SrcSub, DstSub;
323  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
324    return false;
325
326  // Find the virtual register that is SrcReg.
327  if (Dst == SrcReg) {
328    std::swap(Src, Dst);
329    std::swap(SrcSub, DstSub);
330  } else if (Src != SrcReg) {
331    return false;
332  }
333
334  // Now check that Dst matches DstReg.
335  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
336    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
337      return false;
338    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
339    // DstSub could be set for a physreg from INSERT_SUBREG.
340    if (DstSub)
341      Dst = TRI.getSubReg(Dst, DstSub);
342    // Full copy of Src.
343    if (!SrcSub)
344      return DstReg == Dst;
345    // This is a partial register copy. Check that the parts match.
346    return TRI.getSubReg(DstReg, SrcSub) == Dst;
347  } else {
348    // DstReg is virtual.
349    if (DstReg != Dst)
350      return false;
351    // Registers match, do the subregisters line up?
352    return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub);
353  }
354}
355
356void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
357  AU.setPreservesCFG();
358  AU.addRequired<AliasAnalysis>();
359  AU.addRequired<LiveIntervals>();
360  AU.addPreserved<LiveIntervals>();
361  AU.addRequired<LiveDebugVariables>();
362  AU.addPreserved<LiveDebugVariables>();
363  AU.addPreserved<SlotIndexes>();
364  AU.addRequired<MachineLoopInfo>();
365  AU.addPreserved<MachineLoopInfo>();
366  AU.addPreservedID(MachineDominatorsID);
367  MachineFunctionPass::getAnalysisUsage(AU);
368}
369
370void RegisterCoalescer::eliminateDeadDefs() {
371  SmallVector<LiveInterval*, 8> NewRegs;
372  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
373}
374
375// Callback from eliminateDeadDefs().
376void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
377  // MI may be in WorkList. Make sure we don't visit it.
378  ErasedInstrs.insert(MI);
379}
380
381/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
382/// being the source and IntB being the dest, thus this defines a value number
383/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
384/// see if we can merge these two pieces of B into a single value number,
385/// eliminating a copy.  For example:
386///
387///  A3 = B0
388///    ...
389///  B1 = A3      <- this copy
390///
391/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
392/// value number to be replaced with B0 (which simplifies the B liveinterval).
393///
394/// This returns true if an interval was modified.
395///
396bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
397                                             MachineInstr *CopyMI) {
398  assert(!CP.isPartial() && "This doesn't work for partial copies.");
399  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
400
401  LiveInterval &IntA =
402    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
403  LiveInterval &IntB =
404    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
405  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
406
407  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
408  // the example above.
409  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
410  if (BLR == IntB.end()) return false;
411  VNInfo *BValNo = BLR->valno;
412
413  // Get the location that B is defined at.  Two options: either this value has
414  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
415  // can't process it.
416  if (BValNo->def != CopyIdx) return false;
417
418  // AValNo is the value number in A that defines the copy, A3 in the example.
419  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
420  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
421  // The live range might not exist after fun with physreg coalescing.
422  if (ALR == IntA.end()) return false;
423  VNInfo *AValNo = ALR->valno;
424
425  // If AValNo is defined as a copy from IntB, we can potentially process this.
426  // Get the instruction that defines this value number.
427  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
428  if (!CP.isCoalescable(ACopyMI))
429    return false;
430
431  // Get the LiveRange in IntB that this value number starts with.
432  LiveInterval::iterator ValLR =
433    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
434  if (ValLR == IntB.end())
435    return false;
436
437  // Make sure that the end of the live range is inside the same block as
438  // CopyMI.
439  MachineInstr *ValLREndInst =
440    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
441  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
442    return false;
443
444  // Okay, we now know that ValLR ends in the same block that the CopyMI
445  // live-range starts.  If there are no intervening live ranges between them in
446  // IntB, we can merge them.
447  if (ValLR+1 != BLR) return false;
448
449  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
450
451  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
452  // We are about to delete CopyMI, so need to remove it as the 'instruction
453  // that defines this value #'. Update the valnum with the new defining
454  // instruction #.
455  BValNo->def = FillerStart;
456
457  // Okay, we can merge them.  We need to insert a new liverange:
458  // [ValLR.end, BLR.begin) of either value number, then we merge the
459  // two value numbers.
460  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
461
462  // Okay, merge "B1" into the same value number as "B0".
463  if (BValNo != ValLR->valno) {
464    // If B1 is killed by a PHI, then the merged live range must also be killed
465    // by the same PHI, as B0 and B1 can not overlap.
466    bool HasPHIKill = BValNo->hasPHIKill();
467    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
468    if (HasPHIKill)
469      ValLR->valno->setHasPHIKill(true);
470  }
471  DEBUG(dbgs() << "   result = " << IntB << '\n');
472
473  // If the source instruction was killing the source register before the
474  // merge, unset the isKill marker given the live range has been extended.
475  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
476  if (UIdx != -1) {
477    ValLREndInst->getOperand(UIdx).setIsKill(false);
478  }
479
480  // Rewrite the copy. If the copy instruction was killing the destination
481  // register before the merge, find the last use and trim the live range. That
482  // will also add the isKill marker.
483  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
484  if (ALR->end == CopyIdx)
485    LIS->shrinkToUses(&IntA);
486
487  ++numExtends;
488  return true;
489}
490
491/// hasOtherReachingDefs - Return true if there are definitions of IntB
492/// other than BValNo val# that can reach uses of AValno val# of IntA.
493bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
494                                             LiveInterval &IntB,
495                                             VNInfo *AValNo,
496                                             VNInfo *BValNo) {
497  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
498       AI != AE; ++AI) {
499    if (AI->valno != AValNo) continue;
500    LiveInterval::Ranges::iterator BI =
501      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
502    if (BI != IntB.ranges.begin())
503      --BI;
504    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
505      if (BI->valno == BValNo)
506        continue;
507      if (BI->start <= AI->start && BI->end > AI->start)
508        return true;
509      if (BI->start > AI->start && BI->start < AI->end)
510        return true;
511    }
512  }
513  return false;
514}
515
516/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
517/// IntA being the source and IntB being the dest, thus this defines a value
518/// number in IntB.  If the source value number (in IntA) is defined by a
519/// commutable instruction and its other operand is coalesced to the copy dest
520/// register, see if we can transform the copy into a noop by commuting the
521/// definition. For example,
522///
523///  A3 = op A2 B0<kill>
524///    ...
525///  B1 = A3      <- this copy
526///    ...
527///     = op A3   <- more uses
528///
529/// ==>
530///
531///  B2 = op B0 A2<kill>
532///    ...
533///  B1 = B2      <- now an identify copy
534///    ...
535///     = op B2   <- more uses
536///
537/// This returns true if an interval was modified.
538///
539bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
540                                                 MachineInstr *CopyMI) {
541  assert (!CP.isPhys());
542
543  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
544
545  LiveInterval &IntA =
546    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
547  LiveInterval &IntB =
548    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
549
550  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
551  // the example above.
552  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
553  if (!BValNo || BValNo->def != CopyIdx)
554    return false;
555
556  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
557
558  // AValNo is the value number in A that defines the copy, A3 in the example.
559  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
560  assert(AValNo && "COPY source not live");
561
562  // If other defs can reach uses of this def, then it's not safe to perform
563  // the optimization.
564  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
565    return false;
566  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
567  if (!DefMI)
568    return false;
569  if (!DefMI->isCommutable())
570    return false;
571  // If DefMI is a two-address instruction then commuting it will change the
572  // destination register.
573  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
574  assert(DefIdx != -1);
575  unsigned UseOpIdx;
576  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
577    return false;
578  unsigned Op1, Op2, NewDstIdx;
579  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
580    return false;
581  if (Op1 == UseOpIdx)
582    NewDstIdx = Op2;
583  else if (Op2 == UseOpIdx)
584    NewDstIdx = Op1;
585  else
586    return false;
587
588  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
589  unsigned NewReg = NewDstMO.getReg();
590  if (NewReg != IntB.reg || !NewDstMO.isKill())
591    return false;
592
593  // Make sure there are no other definitions of IntB that would reach the
594  // uses which the new definition can reach.
595  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
596    return false;
597
598  // If some of the uses of IntA.reg is already coalesced away, return false.
599  // It's not possible to determine whether it's safe to perform the coalescing.
600  for (MachineRegisterInfo::use_nodbg_iterator UI =
601         MRI->use_nodbg_begin(IntA.reg),
602       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
603    MachineInstr *UseMI = &*UI;
604    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
605    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
606    if (ULR == IntA.end() || ULR->valno != AValNo)
607      continue;
608    // If this use is tied to a def, we can't rewrite the register.
609    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
610      return false;
611  }
612
613  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
614               << *DefMI);
615
616  // At this point we have decided that it is legal to do this
617  // transformation.  Start by commuting the instruction.
618  MachineBasicBlock *MBB = DefMI->getParent();
619  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
620  if (!NewMI)
621    return false;
622  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
623      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
624      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
625    return false;
626  if (NewMI != DefMI) {
627    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
628    MachineBasicBlock::iterator Pos = DefMI;
629    MBB->insert(Pos, NewMI);
630    MBB->erase(DefMI);
631  }
632  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
633  NewMI->getOperand(OpIdx).setIsKill();
634
635  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
636  // A = or A, B
637  // ...
638  // B = A
639  // ...
640  // C = A<kill>
641  // ...
642  //   = B
643
644  // Update uses of IntA of the specific Val# with IntB.
645  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
646         UE = MRI->use_end(); UI != UE;) {
647    MachineOperand &UseMO = UI.getOperand();
648    MachineInstr *UseMI = &*UI;
649    ++UI;
650    if (UseMI->isDebugValue()) {
651      // FIXME These don't have an instruction index.  Not clear we have enough
652      // info to decide whether to do this replacement or not.  For now do it.
653      UseMO.setReg(NewReg);
654      continue;
655    }
656    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
657    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
658    if (ULR == IntA.end() || ULR->valno != AValNo)
659      continue;
660    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
661      UseMO.substPhysReg(NewReg, *TRI);
662    else
663      UseMO.setReg(NewReg);
664    if (UseMI == CopyMI)
665      continue;
666    if (!UseMI->isCopy())
667      continue;
668    if (UseMI->getOperand(0).getReg() != IntB.reg ||
669        UseMI->getOperand(0).getSubReg())
670      continue;
671
672    // This copy will become a noop. If it's defining a new val#, merge it into
673    // BValNo.
674    SlotIndex DefIdx = UseIdx.getRegSlot();
675    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
676    if (!DVNI)
677      continue;
678    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
679    assert(DVNI->def == DefIdx);
680    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
681    ErasedInstrs.insert(UseMI);
682    LIS->RemoveMachineInstrFromMaps(UseMI);
683    UseMI->eraseFromParent();
684  }
685
686  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
687  // is updated.
688  VNInfo *ValNo = BValNo;
689  ValNo->def = AValNo->def;
690  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
691       AI != AE; ++AI) {
692    if (AI->valno != AValNo) continue;
693    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
694  }
695  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
696
697  IntA.removeValNo(AValNo);
698  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
699  ++numCommutes;
700  return true;
701}
702
703/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
704/// computation, replace the copy by rematerialize the definition.
705bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt,
706                                                unsigned DstReg,
707                                                MachineInstr *CopyMI) {
708  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
709  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
710  assert(SrcLR != SrcInt.end() && "Live range not found!");
711  VNInfo *ValNo = SrcLR->valno;
712  if (ValNo->isPHIDef() || ValNo->isUnused())
713    return false;
714  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
715  if (!DefMI)
716    return false;
717  assert(DefMI && "Defining instruction disappeared");
718  if (!DefMI->isAsCheapAsAMove())
719    return false;
720  if (!TII->isTriviallyReMaterializable(DefMI, AA))
721    return false;
722  bool SawStore = false;
723  if (!DefMI->isSafeToMove(TII, AA, SawStore))
724    return false;
725  const MCInstrDesc &MCID = DefMI->getDesc();
726  if (MCID.getNumDefs() != 1)
727    return false;
728  if (!DefMI->isImplicitDef()) {
729    // Make sure the copy destination register class fits the instruction
730    // definition register class. The mismatch can happen as a result of earlier
731    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
732    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
733    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
734      if (MRI->getRegClass(DstReg) != RC)
735        return false;
736    } else if (!RC->contains(DstReg))
737      return false;
738  }
739
740  MachineBasicBlock *MBB = CopyMI->getParent();
741  MachineBasicBlock::iterator MII =
742    llvm::next(MachineBasicBlock::iterator(CopyMI));
743  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
744  MachineInstr *NewMI = prior(MII);
745
746  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
747  // We need to remember these so we can add intervals once we insert
748  // NewMI into SlotIndexes.
749  SmallVector<unsigned, 4> NewMIImplDefs;
750  for (unsigned i = NewMI->getDesc().getNumOperands(),
751         e = NewMI->getNumOperands(); i != e; ++i) {
752    MachineOperand &MO = NewMI->getOperand(i);
753    if (MO.isReg()) {
754      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
755             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
756      NewMIImplDefs.push_back(MO.getReg());
757    }
758  }
759
760  // CopyMI may have implicit operands, transfer them over to the newly
761  // rematerialized instruction. And update implicit def interval valnos.
762  for (unsigned i = CopyMI->getDesc().getNumOperands(),
763         e = CopyMI->getNumOperands(); i != e; ++i) {
764    MachineOperand &MO = CopyMI->getOperand(i);
765    if (MO.isReg()) {
766      assert(MO.isImplicit() && "No explicit operands after implict operands.");
767      // Discard VReg implicit defs.
768      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
769        NewMI->addOperand(MO);
770      }
771    }
772  }
773
774  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
775
776  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
777  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
778    unsigned Reg = NewMIImplDefs[i];
779    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
780      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
781        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
782  }
783
784  CopyMI->eraseFromParent();
785  ErasedInstrs.insert(CopyMI);
786  DEBUG(dbgs() << "Remat: " << *NewMI);
787  ++NumReMats;
788
789  // The source interval can become smaller because we removed a use.
790  LIS->shrinkToUses(&SrcInt, &DeadDefs);
791  if (!DeadDefs.empty())
792    eliminateDeadDefs();
793
794  return true;
795}
796
797/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
798/// values, it only removes local variables. When we have a copy like:
799///
800///   %vreg1 = COPY %vreg2<undef>
801///
802/// We delete the copy and remove the corresponding value number from %vreg1.
803/// Any uses of that value number are marked as <undef>.
804bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
805                                           const CoalescerPair &CP) {
806  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
807  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
808  if (SrcInt->liveAt(Idx))
809    return false;
810  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
811  if (DstInt->liveAt(Idx))
812    return false;
813
814  // No intervals are live-in to CopyMI - it is undef.
815  if (CP.isFlipped())
816    DstInt = SrcInt;
817  SrcInt = 0;
818
819  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
820  assert(DeadVNI && "No value defined in DstInt");
821  DstInt->removeValNo(DeadVNI);
822
823  // Find new undef uses.
824  for (MachineRegisterInfo::reg_nodbg_iterator
825         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
826       I != E; ++I) {
827    MachineOperand &MO = I.getOperand();
828    if (MO.isDef() || MO.isUndef())
829      continue;
830    MachineInstr *MI = MO.getParent();
831    SlotIndex Idx = LIS->getInstructionIndex(MI);
832    if (DstInt->liveAt(Idx))
833      continue;
834    MO.setIsUndef(true);
835    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
836  }
837  return true;
838}
839
840/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
841/// update the subregister number if it is not zero. If DstReg is a
842/// physical register and the existing subregister number of the def / use
843/// being updated is not zero, make sure to set it to the correct physical
844/// subregister.
845void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
846                                          unsigned DstReg,
847                                          unsigned SubIdx) {
848  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
849  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
850
851  // Update LiveDebugVariables.
852  LDV->renameRegister(SrcReg, DstReg, SubIdx);
853
854  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
855       MachineInstr *UseMI = I.skipInstruction();) {
856    SmallVector<unsigned,8> Ops;
857    bool Reads, Writes;
858    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
859
860    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
861    // because SrcReg is a sub-register.
862    if (DstInt && !Reads && SubIdx)
863      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
864
865    // Replace SrcReg with DstReg in all UseMI operands.
866    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
867      MachineOperand &MO = UseMI->getOperand(Ops[i]);
868
869      // Adjust <undef> flags in case of sub-register joins. We don't want to
870      // turn a full def into a read-modify-write sub-register def and vice
871      // versa.
872      if (SubIdx && MO.isDef())
873        MO.setIsUndef(!Reads);
874
875      if (DstIsPhys)
876        MO.substPhysReg(DstReg, *TRI);
877      else
878        MO.substVirtReg(DstReg, SubIdx, *TRI);
879    }
880
881    DEBUG({
882        dbgs() << "\t\tupdated: ";
883        if (!UseMI->isDebugValue())
884          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
885        dbgs() << *UseMI;
886      });
887  }
888}
889
890/// canJoinPhys - Return true if a copy involving a physreg should be joined.
891bool RegisterCoalescer::canJoinPhys(CoalescerPair &CP) {
892  /// Always join simple intervals that are defined by a single copy from a
893  /// reserved register. This doesn't increase register pressure, so it is
894  /// always beneficial.
895  if (!RegClassInfo.isReserved(CP.getDstReg())) {
896    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
897    return false;
898  }
899
900  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
901  if (CP.isFlipped() && JoinVInt.containsOneValue())
902    return true;
903
904  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
905  return false;
906}
907
908/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
909/// which are the src/dst of the copy instruction CopyMI.  This returns true
910/// if the copy was successfully coalesced away. If it is not currently
911/// possible to coalesce this interval, but it may be possible if other
912/// things get coalesced, then it returns true by reference in 'Again'.
913bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
914
915  Again = false;
916  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
917
918  CoalescerPair CP(*TRI);
919  if (!CP.setRegisters(CopyMI)) {
920    DEBUG(dbgs() << "\tNot coalescable.\n");
921    return false;
922  }
923
924  // Dead code elimination. This really should be handled by MachineDCE, but
925  // sometimes dead copies slip through, and we can't generate invalid live
926  // ranges.
927  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
928    DEBUG(dbgs() << "\tCopy is dead.\n");
929    DeadDefs.push_back(CopyMI);
930    eliminateDeadDefs();
931    return true;
932  }
933
934  // Eliminate undefs.
935  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
936    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
937    LIS->RemoveMachineInstrFromMaps(CopyMI);
938    CopyMI->eraseFromParent();
939    return false;  // Not coalescable.
940  }
941
942  // Coalesced copies are normally removed immediately, but transformations
943  // like removeCopyByCommutingDef() can inadvertently create identity copies.
944  // When that happens, just join the values and remove the copy.
945  if (CP.getSrcReg() == CP.getDstReg()) {
946    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
947    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
948    LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
949    if (VNInfo *DefVNI = LRQ.valueDefined()) {
950      VNInfo *ReadVNI = LRQ.valueIn();
951      assert(ReadVNI && "No value before copy and no <undef> flag.");
952      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
953      LI.MergeValueNumberInto(DefVNI, ReadVNI);
954      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
955    }
956    LIS->RemoveMachineInstrFromMaps(CopyMI);
957    CopyMI->eraseFromParent();
958    return true;
959  }
960
961  // Enforce policies.
962  if (CP.isPhys()) {
963    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
964                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
965                 << '\n');
966    if (!canJoinPhys(CP)) {
967      // Before giving up coalescing, if definition of source is defined by
968      // trivial computation, try rematerializing it.
969      if (!CP.isFlipped() &&
970          reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
971                                  CP.getDstReg(), CopyMI))
972        return true;
973      return false;
974    }
975  } else {
976    DEBUG({
977      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
978             << " with ";
979      if (CP.getDstIdx() && CP.getSrcIdx())
980        dbgs() << PrintReg(CP.getDstReg()) << " in "
981               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
982               << PrintReg(CP.getSrcReg()) << " in "
983               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
984      else
985        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
986               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
987    });
988
989    // When possible, let DstReg be the larger interval.
990    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
991                           LIS->getInterval(CP.getDstReg()).ranges.size())
992      CP.flip();
993  }
994
995  // Okay, attempt to join these two intervals.  On failure, this returns false.
996  // Otherwise, if one of the intervals being joined is a physreg, this method
997  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
998  // been modified, so we can use this information below to update aliases.
999  if (!joinIntervals(CP)) {
1000    // Coalescing failed.
1001
1002    // If definition of source is defined by trivial computation, try
1003    // rematerializing it.
1004    if (!CP.isFlipped() &&
1005        reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
1006                                CP.getDstReg(), CopyMI))
1007      return true;
1008
1009    // If we can eliminate the copy without merging the live ranges, do so now.
1010    if (!CP.isPartial() && !CP.isPhys()) {
1011      if (adjustCopiesBackFrom(CP, CopyMI) ||
1012          removeCopyByCommutingDef(CP, CopyMI)) {
1013        LIS->RemoveMachineInstrFromMaps(CopyMI);
1014        CopyMI->eraseFromParent();
1015        DEBUG(dbgs() << "\tTrivial!\n");
1016        return true;
1017      }
1018    }
1019
1020    // Otherwise, we are unable to join the intervals.
1021    DEBUG(dbgs() << "\tInterference!\n");
1022    Again = true;  // May be possible to coalesce later.
1023    return false;
1024  }
1025
1026  // Coalescing to a virtual register that is of a sub-register class of the
1027  // other. Make sure the resulting register is set to the right register class.
1028  if (CP.isCrossClass()) {
1029    ++numCrossRCs;
1030    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1031  }
1032
1033  // Removing sub-register copies can ease the register class constraints.
1034  // Make sure we attempt to inflate the register class of DstReg.
1035  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1036    InflateRegs.push_back(CP.getDstReg());
1037
1038  // CopyMI has been erased by joinIntervals at this point. Remove it from
1039  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1040  // to the work list. This keeps ErasedInstrs from growing needlessly.
1041  ErasedInstrs.erase(CopyMI);
1042
1043  // Rewrite all SrcReg operands to DstReg.
1044  // Also update DstReg operands to include DstIdx if it is set.
1045  if (CP.getDstIdx())
1046    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1047  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1048
1049  // SrcReg is guaranteed to be the register whose live interval that is
1050  // being merged.
1051  LIS->removeInterval(CP.getSrcReg());
1052
1053  // Update regalloc hint.
1054  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1055
1056  DEBUG({
1057    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
1058    if (!CP.isPhys())
1059      dbgs() << LIS->getInterval(CP.getDstReg());
1060     dbgs() << '\n';
1061  });
1062
1063  ++numJoins;
1064  return true;
1065}
1066
1067/// Attempt joining with a reserved physreg.
1068bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1069  assert(CP.isPhys() && "Must be a physreg copy");
1070  assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register");
1071  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1072  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1073               << '\n');
1074
1075  assert(CP.isFlipped() && RHS.containsOneValue() &&
1076         "Invalid join with reserved register");
1077
1078  // Optimization for reserved registers like ESP. We can only merge with a
1079  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1080  // The live range of the reserved register will look like a set of dead defs
1081  // - we don't properly track the live range of reserved registers.
1082
1083  // Deny any overlapping intervals.  This depends on all the reserved
1084  // register live ranges to look like dead defs.
1085  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1086    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1087      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1088      return false;
1089    }
1090
1091  // Skip any value computations, we are not adding new values to the
1092  // reserved register.  Also skip merging the live ranges, the reserved
1093  // register live range doesn't need to be accurate as long as all the
1094  // defs are there.
1095
1096  // We don't track kills for reserved registers.
1097  MRI->clearKillFlags(CP.getSrcReg());
1098
1099  return true;
1100}
1101
1102/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1103/// compute what the resultant value numbers for each value in the input two
1104/// ranges will be.  This is complicated by copies between the two which can
1105/// and will commonly cause multiple value numbers to be merged into one.
1106///
1107/// VN is the value number that we're trying to resolve.  InstDefiningValue
1108/// keeps track of the new InstDefiningValue assignment for the result
1109/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1110/// whether a value in this or other is a copy from the opposite set.
1111/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1112/// already been assigned.
1113///
1114/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1115/// contains the value number the copy is from.
1116///
1117static unsigned ComputeUltimateVN(VNInfo *VNI,
1118                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1119                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1120                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1121                                  SmallVector<int, 16> &ThisValNoAssignments,
1122                                  SmallVector<int, 16> &OtherValNoAssignments) {
1123  unsigned VN = VNI->id;
1124
1125  // If the VN has already been computed, just return it.
1126  if (ThisValNoAssignments[VN] >= 0)
1127    return ThisValNoAssignments[VN];
1128  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1129
1130  // If this val is not a copy from the other val, then it must be a new value
1131  // number in the destination.
1132  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1133  if (I == ThisFromOther.end()) {
1134    NewVNInfo.push_back(VNI);
1135    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1136  }
1137  VNInfo *OtherValNo = I->second;
1138
1139  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1140  // been computed, return it.
1141  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1142    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1143
1144  // Mark this value number as currently being computed, then ask what the
1145  // ultimate value # of the other value is.
1146  ThisValNoAssignments[VN] = -2;
1147  unsigned UltimateVN =
1148    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1149                      OtherValNoAssignments, ThisValNoAssignments);
1150  return ThisValNoAssignments[VN] = UltimateVN;
1151}
1152
1153
1154// Find out if we have something like
1155// A = X
1156// B = X
1157// if so, we can pretend this is actually
1158// A = X
1159// B = A
1160// which allows us to coalesce A and B.
1161// VNI is the definition of B. LR is the life range of A that includes
1162// the slot just before B. If we return true, we add "B = X" to DupCopies.
1163// This implies that A dominates B.
1164static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1165                                          const TargetRegisterInfo &tri,
1166                                          CoalescerPair &CP,
1167                                          VNInfo *VNI,
1168                                          VNInfo *OtherVNI,
1169                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1170  // FIXME: This is very conservative. For example, we don't handle
1171  // physical registers.
1172
1173  MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
1174
1175  if (!MI || CP.isPartial() || CP.isPhys())
1176    return false;
1177
1178  unsigned Dst = MI->getOperand(0).getReg();
1179  if (!TargetRegisterInfo::isVirtualRegister(Dst))
1180    return false;
1181
1182  unsigned A = CP.getDstReg();
1183  unsigned B = CP.getSrcReg();
1184
1185  if (B == Dst)
1186    std::swap(A, B);
1187  assert(Dst == A);
1188
1189  MachineInstr *OtherMI = li.getInstructionFromIndex(OtherVNI->def);
1190
1191  if (!OtherMI)
1192    return false;
1193
1194  unsigned OtherDst = OtherMI->getOperand(0).getReg();
1195  if (!TargetRegisterInfo::isVirtualRegister(OtherDst))
1196    return false;
1197
1198  assert(OtherDst == B);
1199
1200  if (MI->isImplicitDef()) {
1201    DupCopies.push_back(MI);
1202    return true;
1203  } else {
1204    if (!MI->isFullCopy())
1205      return false;
1206    unsigned Src = MI->getOperand(1).getReg();
1207    if (!TargetRegisterInfo::isVirtualRegister(Src))
1208      return false;
1209    if (!OtherMI->isFullCopy())
1210      return false;
1211    unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1212    if (!TargetRegisterInfo::isVirtualRegister(OtherSrc))
1213      return false;
1214
1215    if (Src != OtherSrc)
1216      return false;
1217
1218    // If the copies use two different value numbers of X, we cannot merge
1219    // A and B.
1220    LiveInterval &SrcInt = li.getInterval(Src);
1221    // getVNInfoBefore returns NULL for undef copies. In this case, the
1222    // optimization is still safe.
1223    if (SrcInt.getVNInfoBefore(OtherVNI->def) !=
1224        SrcInt.getVNInfoBefore(VNI->def))
1225      return false;
1226
1227    DupCopies.push_back(MI);
1228    return true;
1229  }
1230}
1231
1232/// joinIntervals - Attempt to join these two intervals.  On failure, this
1233/// returns false.
1234bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
1235  // Handle physreg joins separately.
1236  if (CP.isPhys())
1237    return joinReservedPhysReg(CP);
1238
1239  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1240  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1241               << '\n');
1242
1243  // Compute the final value assignment, assuming that the live ranges can be
1244  // coalesced.
1245  SmallVector<int, 16> LHSValNoAssignments;
1246  SmallVector<int, 16> RHSValNoAssignments;
1247  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1248  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1249  SmallVector<VNInfo*, 16> NewVNInfo;
1250
1251  SmallVector<MachineInstr*, 8> DupCopies;
1252  SmallVector<MachineInstr*, 8> DeadCopies;
1253
1254  LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1255  DEBUG(dbgs() << "\t\tLHS = " << PrintReg(CP.getDstReg(), TRI) << ' ' << LHS
1256               << '\n');
1257
1258  // Loop over the value numbers of the LHS, seeing if any are defined from
1259  // the RHS.
1260  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1261       i != e; ++i) {
1262    VNInfo *VNI = *i;
1263    if (VNI->isUnused() || VNI->isPHIDef())
1264      continue;
1265    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1266    assert(MI && "Missing def");
1267    if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
1268      continue;
1269
1270    // Figure out the value # from the RHS.
1271    VNInfo *OtherVNI = RHS.getVNInfoBefore(VNI->def);
1272    // The copy could be to an aliased physreg.
1273    if (!OtherVNI)
1274      continue;
1275
1276    // DstReg is known to be a register in the LHS interval.  If the src is
1277    // from the RHS interval, we can use its value #.
1278    if (CP.isCoalescable(MI))
1279      DeadCopies.push_back(MI);
1280    else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
1281                                            DupCopies))
1282      continue;
1283
1284    LHSValsDefinedFromRHS[VNI] = OtherVNI;
1285  }
1286
1287  // Loop over the value numbers of the RHS, seeing if any are defined from
1288  // the LHS.
1289  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1290       i != e; ++i) {
1291    VNInfo *VNI = *i;
1292    if (VNI->isUnused() || VNI->isPHIDef())
1293      continue;
1294    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1295    assert(MI && "Missing def");
1296    if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
1297      continue;
1298
1299    // Figure out the value # from the LHS.
1300    VNInfo *OtherVNI = LHS.getVNInfoBefore(VNI->def);
1301    // The copy could be to an aliased physreg.
1302    if (!OtherVNI)
1303      continue;
1304
1305    // DstReg is known to be a register in the RHS interval.  If the src is
1306    // from the LHS interval, we can use its value #.
1307    if (CP.isCoalescable(MI))
1308      DeadCopies.push_back(MI);
1309    else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
1310                                            DupCopies))
1311        continue;
1312
1313    RHSValsDefinedFromLHS[VNI] = OtherVNI;
1314  }
1315
1316  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1317  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1318  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1319
1320  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1321       i != e; ++i) {
1322    VNInfo *VNI = *i;
1323    unsigned VN = VNI->id;
1324    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1325      continue;
1326    ComputeUltimateVN(VNI, NewVNInfo,
1327                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1328                      LHSValNoAssignments, RHSValNoAssignments);
1329  }
1330  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1331       i != e; ++i) {
1332    VNInfo *VNI = *i;
1333    unsigned VN = VNI->id;
1334    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1335      continue;
1336    // If this value number isn't a copy from the LHS, it's a new number.
1337    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1338      NewVNInfo.push_back(VNI);
1339      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1340      continue;
1341    }
1342
1343    ComputeUltimateVN(VNI, NewVNInfo,
1344                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1345                      RHSValNoAssignments, LHSValNoAssignments);
1346  }
1347
1348  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1349  // interval lists to see if these intervals are coalescable.
1350  LiveInterval::const_iterator I = LHS.begin();
1351  LiveInterval::const_iterator IE = LHS.end();
1352  LiveInterval::const_iterator J = RHS.begin();
1353  LiveInterval::const_iterator JE = RHS.end();
1354
1355  // Collect interval end points that will no longer be kills.
1356  SmallVector<MachineInstr*, 8> LHSOldKills;
1357  SmallVector<MachineInstr*, 8> RHSOldKills;
1358
1359  // Skip ahead until the first place of potential sharing.
1360  if (I != IE && J != JE) {
1361    if (I->start < J->start) {
1362      I = std::upper_bound(I, IE, J->start);
1363      if (I != LHS.begin()) --I;
1364    } else if (J->start < I->start) {
1365      J = std::upper_bound(J, JE, I->start);
1366      if (J != RHS.begin()) --J;
1367    }
1368  }
1369
1370  while (I != IE && J != JE) {
1371    // Determine if these two live ranges overlap.
1372    // If so, check value # info to determine if they are really different.
1373    if (I->end > J->start && J->end > I->start) {
1374      // If the live range overlap will map to the same value number in the
1375      // result liverange, we can still coalesce them.  If not, we can't.
1376      if (LHSValNoAssignments[I->valno->id] !=
1377          RHSValNoAssignments[J->valno->id])
1378        return false;
1379
1380      // Extended live ranges should no longer be killed.
1381      if (!I->end.isBlock() && I->end < J->end)
1382        if (MachineInstr *MI = LIS->getInstructionFromIndex(I->end))
1383          LHSOldKills.push_back(MI);
1384      if (!J->end.isBlock() && J->end < I->end)
1385        if (MachineInstr *MI = LIS->getInstructionFromIndex(J->end))
1386          RHSOldKills.push_back(MI);
1387    }
1388
1389    if (I->end < J->end)
1390      ++I;
1391    else
1392      ++J;
1393  }
1394
1395  // Update kill info. Some live ranges are extended due to copy coalescing.
1396  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1397         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1398    VNInfo *VNI = I->first;
1399    unsigned LHSValID = LHSValNoAssignments[VNI->id];
1400    if (VNI->hasPHIKill())
1401      NewVNInfo[LHSValID]->setHasPHIKill(true);
1402  }
1403
1404  // Update kill info. Some live ranges are extended due to copy coalescing.
1405  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1406         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1407    VNInfo *VNI = I->first;
1408    unsigned RHSValID = RHSValNoAssignments[VNI->id];
1409    if (VNI->hasPHIKill())
1410      NewVNInfo[RHSValID]->setHasPHIKill(true);
1411  }
1412
1413  // Clear kill flags where live ranges are extended.
1414  while (!LHSOldKills.empty())
1415    LHSOldKills.pop_back_val()->clearRegisterKills(LHS.reg, TRI);
1416  while (!RHSOldKills.empty())
1417    RHSOldKills.pop_back_val()->clearRegisterKills(RHS.reg, TRI);
1418
1419  if (LHSValNoAssignments.empty())
1420    LHSValNoAssignments.push_back(-1);
1421  if (RHSValNoAssignments.empty())
1422    RHSValNoAssignments.push_back(-1);
1423
1424  // Now erase all the redundant copies.
1425  for (unsigned i = 0, e = DeadCopies.size(); i != e; ++i) {
1426    MachineInstr *MI = DeadCopies[i];
1427    if (!ErasedInstrs.insert(MI))
1428      continue;
1429    DEBUG(dbgs() << "\t\terased:\t" << LIS->getInstructionIndex(MI)
1430                 << '\t' << *MI);
1431    LIS->RemoveMachineInstrFromMaps(MI);
1432    MI->eraseFromParent();
1433  }
1434
1435  SmallVector<unsigned, 8> SourceRegisters;
1436  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1437         E = DupCopies.end(); I != E; ++I) {
1438    MachineInstr *MI = *I;
1439    if (!ErasedInstrs.insert(MI))
1440      continue;
1441
1442    // If MI is a copy, then we have pretended that the assignment to B in
1443    // A = X
1444    // B = X
1445    // was actually a copy from A. Now that we decided to coalesce A and B,
1446    // transform the code into
1447    // A = X
1448    // In the case of the implicit_def, we just have to remove it.
1449    if (!MI->isImplicitDef()) {
1450      unsigned Src = MI->getOperand(1).getReg();
1451      SourceRegisters.push_back(Src);
1452    }
1453    LIS->RemoveMachineInstrFromMaps(MI);
1454    MI->eraseFromParent();
1455  }
1456
1457  // If B = X was the last use of X in a liverange, we have to shrink it now
1458  // that B = X is gone.
1459  for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1460         E = SourceRegisters.end(); I != E; ++I) {
1461    LIS->shrinkToUses(&LIS->getInterval(*I));
1462  }
1463
1464  // If we get here, we know that we can coalesce the live ranges.  Ask the
1465  // intervals to coalesce themselves now.
1466  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1467           MRI);
1468  return true;
1469}
1470
1471namespace {
1472  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1473  // depth of the basic block (the unsigned), and then on the MBB number.
1474  struct DepthMBBCompare {
1475    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1476    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1477      // Deeper loops first
1478      if (LHS.first != RHS.first)
1479        return LHS.first > RHS.first;
1480
1481      // Prefer blocks that are more connected in the CFG. This takes care of
1482      // the most difficult copies first while intervals are short.
1483      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1484      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1485      if (cl != cr)
1486        return cl > cr;
1487
1488      // As a last resort, sort by block number.
1489      return LHS.second->getNumber() < RHS.second->getNumber();
1490    }
1491  };
1492}
1493
1494// Try joining WorkList copies starting from index From.
1495// Null out any successful joins.
1496bool RegisterCoalescer::copyCoalesceWorkList(unsigned From) {
1497  assert(From <= WorkList.size() && "Out of range");
1498  bool Progress = false;
1499  for (unsigned i = From, e = WorkList.size(); i != e; ++i) {
1500    if (!WorkList[i])
1501      continue;
1502    // Skip instruction pointers that have already been erased, for example by
1503    // dead code elimination.
1504    if (ErasedInstrs.erase(WorkList[i])) {
1505      WorkList[i] = 0;
1506      continue;
1507    }
1508    bool Again = false;
1509    bool Success = joinCopy(WorkList[i], Again);
1510    Progress |= Success;
1511    if (Success || !Again)
1512      WorkList[i] = 0;
1513  }
1514  return Progress;
1515}
1516
1517void
1518RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
1519  DEBUG(dbgs() << MBB->getName() << ":\n");
1520
1521  // Collect all copy-like instructions in MBB. Don't start coalescing anything
1522  // yet, it might invalidate the iterator.
1523  const unsigned PrevSize = WorkList.size();
1524  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1525       MII != E; ++MII)
1526    if (MII->isCopyLike())
1527      WorkList.push_back(MII);
1528
1529  // Try coalescing the collected copies immediately, and remove the nulls.
1530  // This prevents the WorkList from getting too large since most copies are
1531  // joinable on the first attempt.
1532  if (copyCoalesceWorkList(PrevSize))
1533    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
1534                               (MachineInstr*)0), WorkList.end());
1535}
1536
1537void RegisterCoalescer::joinAllIntervals() {
1538  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1539  assert(WorkList.empty() && "Old data still around.");
1540
1541  if (Loops->empty()) {
1542    // If there are no loops in the function, join intervals in function order.
1543    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1544         I != E; ++I)
1545      copyCoalesceInMBB(I);
1546  } else {
1547    // Otherwise, join intervals in inner loops before other intervals.
1548    // Unfortunately we can't just iterate over loop hierarchy here because
1549    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1550
1551    // Join intervals in the function prolog first. We want to join physical
1552    // registers with virtual registers before the intervals got too long.
1553    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1554    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1555      MachineBasicBlock *MBB = I;
1556      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1557    }
1558
1559    // Sort by loop depth.
1560    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1561
1562    // Finally, join intervals in loop nest order.
1563    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1564      copyCoalesceInMBB(MBBs[i].second);
1565  }
1566
1567  // Joining intervals can allow other intervals to be joined.  Iteratively join
1568  // until we make no progress.
1569  while (copyCoalesceWorkList())
1570    /* empty */ ;
1571}
1572
1573void RegisterCoalescer::releaseMemory() {
1574  ErasedInstrs.clear();
1575  WorkList.clear();
1576  DeadDefs.clear();
1577  InflateRegs.clear();
1578}
1579
1580bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1581  MF = &fn;
1582  MRI = &fn.getRegInfo();
1583  TM = &fn.getTarget();
1584  TRI = TM->getRegisterInfo();
1585  TII = TM->getInstrInfo();
1586  LIS = &getAnalysis<LiveIntervals>();
1587  LDV = &getAnalysis<LiveDebugVariables>();
1588  AA = &getAnalysis<AliasAnalysis>();
1589  Loops = &getAnalysis<MachineLoopInfo>();
1590
1591  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1592               << "********** Function: "
1593               << ((Value*)MF->getFunction())->getName() << '\n');
1594
1595  if (VerifyCoalescing)
1596    MF->verify(this, "Before register coalescing");
1597
1598  RegClassInfo.runOnMachineFunction(fn);
1599
1600  // Join (coalesce) intervals if requested.
1601  if (EnableJoining)
1602    joinAllIntervals();
1603
1604  // After deleting a lot of copies, register classes may be less constrained.
1605  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
1606  // DPR inflation.
1607  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1608  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1609                    InflateRegs.end());
1610  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1611  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1612    unsigned Reg = InflateRegs[i];
1613    if (MRI->reg_nodbg_empty(Reg))
1614      continue;
1615    if (MRI->recomputeRegClass(Reg, *TM)) {
1616      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1617                   << MRI->getRegClass(Reg)->getName() << '\n');
1618      ++NumInflated;
1619    }
1620  }
1621
1622  DEBUG(dump());
1623  DEBUG(LDV->dump());
1624  if (VerifyCoalescing)
1625    MF->verify(this, "After register coalescing");
1626  return true;
1627}
1628
1629/// print - Implement the dump method.
1630void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
1631   LIS->print(O, m);
1632}
1633