RegisterCoalescer.cpp revision 6c0c6d613ac3223fdf515c1616331bdeb2a4f1a4
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "VirtRegMap.h"
20
21#include "llvm/Pass.h"
22#include "llvm/Value.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/CodeGen/LiveIntervalAnalysis.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/CodeGen/LiveRangeEdit.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/CodeGen/RegisterClassInfo.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include <algorithm>
49#include <cmath>
50using namespace llvm;
51
52STATISTIC(numJoins    , "Number of interval joins performed");
53STATISTIC(numCrossRCs , "Number of cross class joins performed");
54STATISTIC(numCommutes , "Number of instruction commuting performed");
55STATISTIC(numExtends  , "Number of copies extended");
56STATISTIC(NumReMats   , "Number of instructions re-materialized");
57STATISTIC(NumInflated , "Number of register classes inflated");
58STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
59STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
60
61static cl::opt<bool>
62EnableJoining("join-liveintervals",
63              cl::desc("Coalesce copies (default=true)"),
64              cl::init(true));
65
66static cl::opt<bool>
67VerifyCoalescing("verify-coalescing",
68         cl::desc("Verify machine instrs before and after register coalescing"),
69         cl::Hidden);
70
71namespace {
72  class RegisterCoalescer : public MachineFunctionPass,
73                            private LiveRangeEdit::Delegate {
74    MachineFunction* MF;
75    MachineRegisterInfo* MRI;
76    const TargetMachine* TM;
77    const TargetRegisterInfo* TRI;
78    const TargetInstrInfo* TII;
79    LiveIntervals *LIS;
80    LiveDebugVariables *LDV;
81    const MachineLoopInfo* Loops;
82    AliasAnalysis *AA;
83    RegisterClassInfo RegClassInfo;
84
85    /// WorkList - Copy instructions yet to be coalesced.
86    SmallVector<MachineInstr*, 8> WorkList;
87
88    /// ErasedInstrs - Set of instruction pointers that have been erased, and
89    /// that may be present in WorkList.
90    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
91
92    /// Dead instructions that are about to be deleted.
93    SmallVector<MachineInstr*, 8> DeadDefs;
94
95    /// Virtual registers to be considered for register class inflation.
96    SmallVector<unsigned, 8> InflateRegs;
97
98    /// Recursively eliminate dead defs in DeadDefs.
99    void eliminateDeadDefs();
100
101    /// LiveRangeEdit callback.
102    void LRE_WillEraseInstruction(MachineInstr *MI);
103
104    /// joinAllIntervals - join compatible live intervals
105    void joinAllIntervals();
106
107    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
108    /// copies that cannot yet be coalesced into WorkList.
109    void copyCoalesceInMBB(MachineBasicBlock *MBB);
110
111    /// copyCoalesceWorkList - Try to coalesce all copies in WorkList after
112    /// position From. Return true if any progress was made.
113    bool copyCoalesceWorkList(unsigned From = 0);
114
115    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
116    /// which are the src/dst of the copy instruction CopyMI.  This returns
117    /// true if the copy was successfully coalesced away. If it is not
118    /// currently possible to coalesce this interval, but it may be possible if
119    /// other things get coalesced, then it returns true by reference in
120    /// 'Again'.
121    bool joinCopy(MachineInstr *TheCopy, bool &Again);
122
123    /// joinIntervals - Attempt to join these two intervals.  On failure, this
124    /// returns false.  The output "SrcInt" will not have been modified, so we
125    /// can use this information below to update aliases.
126    bool joinIntervals(CoalescerPair &CP);
127
128    /// Attempt joining two virtual registers. Return true on success.
129    bool joinVirtRegs(CoalescerPair &CP);
130
131    /// Attempt joining with a reserved physreg.
132    bool joinReservedPhysReg(CoalescerPair &CP);
133
134    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
135    /// the source value number is defined by a copy from the destination reg
136    /// see if we can merge these two destination reg valno# into a single
137    /// value number, eliminating a copy.
138    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
139
140    /// hasOtherReachingDefs - Return true if there are definitions of IntB
141    /// other than BValNo val# that can reach uses of AValno val# of IntA.
142    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
143                              VNInfo *AValNo, VNInfo *BValNo);
144
145    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
146    /// If the source value number is defined by a commutable instruction and
147    /// its other operand is coalesced to the copy dest register, see if we
148    /// can transform the copy into a noop by commuting the definition.
149    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
150
151    /// reMaterializeTrivialDef - If the source of a copy is defined by a
152    /// trivial computation, replace the copy by rematerialize the definition.
153    bool reMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg,
154                                 MachineInstr *CopyMI);
155
156    /// canJoinPhys - Return true if a physreg copy should be joined.
157    bool canJoinPhys(CoalescerPair &CP);
158
159    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
160    /// update the subregister number if it is not zero. If DstReg is a
161    /// physical register and the existing subregister number of the def / use
162    /// being updated is not zero, make sure to set it to the correct physical
163    /// subregister.
164    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
165
166    /// eliminateUndefCopy - Handle copies of undef values.
167    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
168
169  public:
170    static char ID; // Class identification, replacement for typeinfo
171    RegisterCoalescer() : MachineFunctionPass(ID) {
172      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
173    }
174
175    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
176
177    virtual void releaseMemory();
178
179    /// runOnMachineFunction - pass entry point
180    virtual bool runOnMachineFunction(MachineFunction&);
181
182    /// print - Implement the dump method.
183    virtual void print(raw_ostream &O, const Module* = 0) const;
184  };
185} /// end anonymous namespace
186
187char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
188
189INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
190                      "Simple Register Coalescing", false, false)
191INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
192INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
193INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
194INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
195INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
196INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
197                    "Simple Register Coalescing", false, false)
198
199char RegisterCoalescer::ID = 0;
200
201static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
202  if (!a) return b;
203  if (!b) return a;
204  return tri.composeSubRegIndices(a, b);
205}
206
207static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
208                        unsigned &Src, unsigned &Dst,
209                        unsigned &SrcSub, unsigned &DstSub) {
210  if (MI->isCopy()) {
211    Dst = MI->getOperand(0).getReg();
212    DstSub = MI->getOperand(0).getSubReg();
213    Src = MI->getOperand(1).getReg();
214    SrcSub = MI->getOperand(1).getSubReg();
215  } else if (MI->isSubregToReg()) {
216    Dst = MI->getOperand(0).getReg();
217    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
218                     MI->getOperand(3).getImm());
219    Src = MI->getOperand(2).getReg();
220    SrcSub = MI->getOperand(2).getSubReg();
221  } else
222    return false;
223  return true;
224}
225
226bool CoalescerPair::setRegisters(const MachineInstr *MI) {
227  SrcReg = DstReg = 0;
228  SrcIdx = DstIdx = 0;
229  NewRC = 0;
230  Flipped = CrossClass = false;
231
232  unsigned Src, Dst, SrcSub, DstSub;
233  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
234    return false;
235  Partial = SrcSub || DstSub;
236
237  // If one register is a physreg, it must be Dst.
238  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
239    if (TargetRegisterInfo::isPhysicalRegister(Dst))
240      return false;
241    std::swap(Src, Dst);
242    std::swap(SrcSub, DstSub);
243    Flipped = true;
244  }
245
246  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
247
248  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
249    // Eliminate DstSub on a physreg.
250    if (DstSub) {
251      Dst = TRI.getSubReg(Dst, DstSub);
252      if (!Dst) return false;
253      DstSub = 0;
254    }
255
256    // Eliminate SrcSub by picking a corresponding Dst superregister.
257    if (SrcSub) {
258      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
259      if (!Dst) return false;
260      SrcSub = 0;
261    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
262      return false;
263    }
264  } else {
265    // Both registers are virtual.
266    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
267    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
268
269    // Both registers have subreg indices.
270    if (SrcSub && DstSub) {
271      // Copies between different sub-registers are never coalescable.
272      if (Src == Dst && SrcSub != DstSub)
273        return false;
274
275      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
276                                         SrcIdx, DstIdx);
277      if (!NewRC)
278        return false;
279    } else if (DstSub) {
280      // SrcReg will be merged with a sub-register of DstReg.
281      SrcIdx = DstSub;
282      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
283    } else if (SrcSub) {
284      // DstReg will be merged with a sub-register of SrcReg.
285      DstIdx = SrcSub;
286      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
287    } else {
288      // This is a straight copy without sub-registers.
289      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
290    }
291
292    // The combined constraint may be impossible to satisfy.
293    if (!NewRC)
294      return false;
295
296    // Prefer SrcReg to be a sub-register of DstReg.
297    // FIXME: Coalescer should support subregs symmetrically.
298    if (DstIdx && !SrcIdx) {
299      std::swap(Src, Dst);
300      std::swap(SrcIdx, DstIdx);
301      Flipped = !Flipped;
302    }
303
304    CrossClass = NewRC != DstRC || NewRC != SrcRC;
305  }
306  // Check our invariants
307  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
308  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
309         "Cannot have a physical SubIdx");
310  SrcReg = Src;
311  DstReg = Dst;
312  return true;
313}
314
315bool CoalescerPair::flip() {
316  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
317    return false;
318  std::swap(SrcReg, DstReg);
319  std::swap(SrcIdx, DstIdx);
320  Flipped = !Flipped;
321  return true;
322}
323
324bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
325  if (!MI)
326    return false;
327  unsigned Src, Dst, SrcSub, DstSub;
328  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
329    return false;
330
331  // Find the virtual register that is SrcReg.
332  if (Dst == SrcReg) {
333    std::swap(Src, Dst);
334    std::swap(SrcSub, DstSub);
335  } else if (Src != SrcReg) {
336    return false;
337  }
338
339  // Now check that Dst matches DstReg.
340  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
341    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
342      return false;
343    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
344    // DstSub could be set for a physreg from INSERT_SUBREG.
345    if (DstSub)
346      Dst = TRI.getSubReg(Dst, DstSub);
347    // Full copy of Src.
348    if (!SrcSub)
349      return DstReg == Dst;
350    // This is a partial register copy. Check that the parts match.
351    return TRI.getSubReg(DstReg, SrcSub) == Dst;
352  } else {
353    // DstReg is virtual.
354    if (DstReg != Dst)
355      return false;
356    // Registers match, do the subregisters line up?
357    return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub);
358  }
359}
360
361void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
362  AU.setPreservesCFG();
363  AU.addRequired<AliasAnalysis>();
364  AU.addRequired<LiveIntervals>();
365  AU.addPreserved<LiveIntervals>();
366  AU.addRequired<LiveDebugVariables>();
367  AU.addPreserved<LiveDebugVariables>();
368  AU.addPreserved<SlotIndexes>();
369  AU.addRequired<MachineLoopInfo>();
370  AU.addPreserved<MachineLoopInfo>();
371  AU.addPreservedID(MachineDominatorsID);
372  MachineFunctionPass::getAnalysisUsage(AU);
373}
374
375void RegisterCoalescer::eliminateDeadDefs() {
376  SmallVector<LiveInterval*, 8> NewRegs;
377  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
378}
379
380// Callback from eliminateDeadDefs().
381void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
382  // MI may be in WorkList. Make sure we don't visit it.
383  ErasedInstrs.insert(MI);
384}
385
386/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
387/// being the source and IntB being the dest, thus this defines a value number
388/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
389/// see if we can merge these two pieces of B into a single value number,
390/// eliminating a copy.  For example:
391///
392///  A3 = B0
393///    ...
394///  B1 = A3      <- this copy
395///
396/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
397/// value number to be replaced with B0 (which simplifies the B liveinterval).
398///
399/// This returns true if an interval was modified.
400///
401bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
402                                             MachineInstr *CopyMI) {
403  assert(!CP.isPartial() && "This doesn't work for partial copies.");
404  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
405
406  LiveInterval &IntA =
407    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
408  LiveInterval &IntB =
409    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
410  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
411
412  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
413  // the example above.
414  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
415  if (BLR == IntB.end()) return false;
416  VNInfo *BValNo = BLR->valno;
417
418  // Get the location that B is defined at.  Two options: either this value has
419  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
420  // can't process it.
421  if (BValNo->def != CopyIdx) return false;
422
423  // AValNo is the value number in A that defines the copy, A3 in the example.
424  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
425  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
426  // The live range might not exist after fun with physreg coalescing.
427  if (ALR == IntA.end()) return false;
428  VNInfo *AValNo = ALR->valno;
429
430  // If AValNo is defined as a copy from IntB, we can potentially process this.
431  // Get the instruction that defines this value number.
432  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
433  if (!CP.isCoalescable(ACopyMI))
434    return false;
435
436  // Get the LiveRange in IntB that this value number starts with.
437  LiveInterval::iterator ValLR =
438    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
439  if (ValLR == IntB.end())
440    return false;
441
442  // Make sure that the end of the live range is inside the same block as
443  // CopyMI.
444  MachineInstr *ValLREndInst =
445    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
446  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
447    return false;
448
449  // Okay, we now know that ValLR ends in the same block that the CopyMI
450  // live-range starts.  If there are no intervening live ranges between them in
451  // IntB, we can merge them.
452  if (ValLR+1 != BLR) return false;
453
454  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
455
456  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
457  // We are about to delete CopyMI, so need to remove it as the 'instruction
458  // that defines this value #'. Update the valnum with the new defining
459  // instruction #.
460  BValNo->def = FillerStart;
461
462  // Okay, we can merge them.  We need to insert a new liverange:
463  // [ValLR.end, BLR.begin) of either value number, then we merge the
464  // two value numbers.
465  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
466
467  // Okay, merge "B1" into the same value number as "B0".
468  if (BValNo != ValLR->valno)
469    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
470  DEBUG(dbgs() << "   result = " << IntB << '\n');
471
472  // If the source instruction was killing the source register before the
473  // merge, unset the isKill marker given the live range has been extended.
474  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
475  if (UIdx != -1) {
476    ValLREndInst->getOperand(UIdx).setIsKill(false);
477  }
478
479  // Rewrite the copy. If the copy instruction was killing the destination
480  // register before the merge, find the last use and trim the live range. That
481  // will also add the isKill marker.
482  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
483  if (ALR->end == CopyIdx)
484    LIS->shrinkToUses(&IntA);
485
486  ++numExtends;
487  return true;
488}
489
490/// hasOtherReachingDefs - Return true if there are definitions of IntB
491/// other than BValNo val# that can reach uses of AValno val# of IntA.
492bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
493                                             LiveInterval &IntB,
494                                             VNInfo *AValNo,
495                                             VNInfo *BValNo) {
496  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
497  // the PHI values.
498  if (LIS->hasPHIKill(IntA, AValNo))
499    return true;
500
501  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
502       AI != AE; ++AI) {
503    if (AI->valno != AValNo) continue;
504    LiveInterval::Ranges::iterator BI =
505      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
506    if (BI != IntB.ranges.begin())
507      --BI;
508    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
509      if (BI->valno == BValNo)
510        continue;
511      if (BI->start <= AI->start && BI->end > AI->start)
512        return true;
513      if (BI->start > AI->start && BI->start < AI->end)
514        return true;
515    }
516  }
517  return false;
518}
519
520/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
521/// IntA being the source and IntB being the dest, thus this defines a value
522/// number in IntB.  If the source value number (in IntA) is defined by a
523/// commutable instruction and its other operand is coalesced to the copy dest
524/// register, see if we can transform the copy into a noop by commuting the
525/// definition. For example,
526///
527///  A3 = op A2 B0<kill>
528///    ...
529///  B1 = A3      <- this copy
530///    ...
531///     = op A3   <- more uses
532///
533/// ==>
534///
535///  B2 = op B0 A2<kill>
536///    ...
537///  B1 = B2      <- now an identify copy
538///    ...
539///     = op B2   <- more uses
540///
541/// This returns true if an interval was modified.
542///
543bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
544                                                 MachineInstr *CopyMI) {
545  assert (!CP.isPhys());
546
547  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
548
549  LiveInterval &IntA =
550    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
551  LiveInterval &IntB =
552    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
553
554  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
555  // the example above.
556  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
557  if (!BValNo || BValNo->def != CopyIdx)
558    return false;
559
560  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
561
562  // AValNo is the value number in A that defines the copy, A3 in the example.
563  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
564  assert(AValNo && "COPY source not live");
565  if (AValNo->isPHIDef() || AValNo->isUnused())
566    return false;
567  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
568  if (!DefMI)
569    return false;
570  if (!DefMI->isCommutable())
571    return false;
572  // If DefMI is a two-address instruction then commuting it will change the
573  // destination register.
574  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
575  assert(DefIdx != -1);
576  unsigned UseOpIdx;
577  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
578    return false;
579  unsigned Op1, Op2, NewDstIdx;
580  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
581    return false;
582  if (Op1 == UseOpIdx)
583    NewDstIdx = Op2;
584  else if (Op2 == UseOpIdx)
585    NewDstIdx = Op1;
586  else
587    return false;
588
589  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
590  unsigned NewReg = NewDstMO.getReg();
591  if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
592    return false;
593
594  // Make sure there are no other definitions of IntB that would reach the
595  // uses which the new definition can reach.
596  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
597    return false;
598
599  // If some of the uses of IntA.reg is already coalesced away, return false.
600  // It's not possible to determine whether it's safe to perform the coalescing.
601  for (MachineRegisterInfo::use_nodbg_iterator UI =
602         MRI->use_nodbg_begin(IntA.reg),
603       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
604    MachineInstr *UseMI = &*UI;
605    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
606    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
607    if (ULR == IntA.end() || ULR->valno != AValNo)
608      continue;
609    // If this use is tied to a def, we can't rewrite the register.
610    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
611      return false;
612  }
613
614  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
615               << *DefMI);
616
617  // At this point we have decided that it is legal to do this
618  // transformation.  Start by commuting the instruction.
619  MachineBasicBlock *MBB = DefMI->getParent();
620  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
621  if (!NewMI)
622    return false;
623  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
624      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
625      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
626    return false;
627  if (NewMI != DefMI) {
628    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
629    MachineBasicBlock::iterator Pos = DefMI;
630    MBB->insert(Pos, NewMI);
631    MBB->erase(DefMI);
632  }
633  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
634  NewMI->getOperand(OpIdx).setIsKill();
635
636  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
637  // A = or A, B
638  // ...
639  // B = A
640  // ...
641  // C = A<kill>
642  // ...
643  //   = B
644
645  // Update uses of IntA of the specific Val# with IntB.
646  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
647         UE = MRI->use_end(); UI != UE;) {
648    MachineOperand &UseMO = UI.getOperand();
649    MachineInstr *UseMI = &*UI;
650    ++UI;
651    if (UseMI->isDebugValue()) {
652      // FIXME These don't have an instruction index.  Not clear we have enough
653      // info to decide whether to do this replacement or not.  For now do it.
654      UseMO.setReg(NewReg);
655      continue;
656    }
657    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
658    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
659    if (ULR == IntA.end() || ULR->valno != AValNo)
660      continue;
661    // Kill flags are no longer accurate. They are recomputed after RA.
662    UseMO.setIsKill(false);
663    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
664      UseMO.substPhysReg(NewReg, *TRI);
665    else
666      UseMO.setReg(NewReg);
667    if (UseMI == CopyMI)
668      continue;
669    if (!UseMI->isCopy())
670      continue;
671    if (UseMI->getOperand(0).getReg() != IntB.reg ||
672        UseMI->getOperand(0).getSubReg())
673      continue;
674
675    // This copy will become a noop. If it's defining a new val#, merge it into
676    // BValNo.
677    SlotIndex DefIdx = UseIdx.getRegSlot();
678    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
679    if (!DVNI)
680      continue;
681    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
682    assert(DVNI->def == DefIdx);
683    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
684    ErasedInstrs.insert(UseMI);
685    LIS->RemoveMachineInstrFromMaps(UseMI);
686    UseMI->eraseFromParent();
687  }
688
689  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
690  // is updated.
691  VNInfo *ValNo = BValNo;
692  ValNo->def = AValNo->def;
693  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
694       AI != AE; ++AI) {
695    if (AI->valno != AValNo) continue;
696    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
697  }
698  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
699
700  IntA.removeValNo(AValNo);
701  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
702  ++numCommutes;
703  return true;
704}
705
706/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
707/// computation, replace the copy by rematerialize the definition.
708bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt,
709                                                unsigned DstReg,
710                                                MachineInstr *CopyMI) {
711  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
712  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
713  assert(SrcLR != SrcInt.end() && "Live range not found!");
714  VNInfo *ValNo = SrcLR->valno;
715  if (ValNo->isPHIDef() || ValNo->isUnused())
716    return false;
717  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
718  if (!DefMI)
719    return false;
720  assert(DefMI && "Defining instruction disappeared");
721  if (!DefMI->isAsCheapAsAMove())
722    return false;
723  if (!TII->isTriviallyReMaterializable(DefMI, AA))
724    return false;
725  bool SawStore = false;
726  if (!DefMI->isSafeToMove(TII, AA, SawStore))
727    return false;
728  const MCInstrDesc &MCID = DefMI->getDesc();
729  if (MCID.getNumDefs() != 1)
730    return false;
731  if (!DefMI->isImplicitDef()) {
732    // Make sure the copy destination register class fits the instruction
733    // definition register class. The mismatch can happen as a result of earlier
734    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
735    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
736    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
737      if (MRI->getRegClass(DstReg) != RC)
738        return false;
739    } else if (!RC->contains(DstReg))
740      return false;
741  }
742
743  MachineBasicBlock *MBB = CopyMI->getParent();
744  MachineBasicBlock::iterator MII =
745    llvm::next(MachineBasicBlock::iterator(CopyMI));
746  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
747  MachineInstr *NewMI = prior(MII);
748
749  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
750  // We need to remember these so we can add intervals once we insert
751  // NewMI into SlotIndexes.
752  SmallVector<unsigned, 4> NewMIImplDefs;
753  for (unsigned i = NewMI->getDesc().getNumOperands(),
754         e = NewMI->getNumOperands(); i != e; ++i) {
755    MachineOperand &MO = NewMI->getOperand(i);
756    if (MO.isReg()) {
757      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
758             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
759      NewMIImplDefs.push_back(MO.getReg());
760    }
761  }
762
763  // CopyMI may have implicit operands, transfer them over to the newly
764  // rematerialized instruction. And update implicit def interval valnos.
765  for (unsigned i = CopyMI->getDesc().getNumOperands(),
766         e = CopyMI->getNumOperands(); i != e; ++i) {
767    MachineOperand &MO = CopyMI->getOperand(i);
768    if (MO.isReg()) {
769      assert(MO.isImplicit() && "No explicit operands after implict operands.");
770      // Discard VReg implicit defs.
771      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
772        NewMI->addOperand(MO);
773      }
774    }
775  }
776
777  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
778
779  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
780  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
781    unsigned Reg = NewMIImplDefs[i];
782    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
783      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
784        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
785  }
786
787  CopyMI->eraseFromParent();
788  ErasedInstrs.insert(CopyMI);
789  DEBUG(dbgs() << "Remat: " << *NewMI);
790  ++NumReMats;
791
792  // The source interval can become smaller because we removed a use.
793  LIS->shrinkToUses(&SrcInt, &DeadDefs);
794  if (!DeadDefs.empty())
795    eliminateDeadDefs();
796
797  return true;
798}
799
800/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
801/// values, it only removes local variables. When we have a copy like:
802///
803///   %vreg1 = COPY %vreg2<undef>
804///
805/// We delete the copy and remove the corresponding value number from %vreg1.
806/// Any uses of that value number are marked as <undef>.
807bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
808                                           const CoalescerPair &CP) {
809  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
810  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
811  if (SrcInt->liveAt(Idx))
812    return false;
813  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
814  if (DstInt->liveAt(Idx))
815    return false;
816
817  // No intervals are live-in to CopyMI - it is undef.
818  if (CP.isFlipped())
819    DstInt = SrcInt;
820  SrcInt = 0;
821
822  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
823  assert(DeadVNI && "No value defined in DstInt");
824  DstInt->removeValNo(DeadVNI);
825
826  // Find new undef uses.
827  for (MachineRegisterInfo::reg_nodbg_iterator
828         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
829       I != E; ++I) {
830    MachineOperand &MO = I.getOperand();
831    if (MO.isDef() || MO.isUndef())
832      continue;
833    MachineInstr *MI = MO.getParent();
834    SlotIndex Idx = LIS->getInstructionIndex(MI);
835    if (DstInt->liveAt(Idx))
836      continue;
837    MO.setIsUndef(true);
838    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
839  }
840  return true;
841}
842
843/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
844/// update the subregister number if it is not zero. If DstReg is a
845/// physical register and the existing subregister number of the def / use
846/// being updated is not zero, make sure to set it to the correct physical
847/// subregister.
848void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
849                                          unsigned DstReg,
850                                          unsigned SubIdx) {
851  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
852  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
853
854  // Update LiveDebugVariables.
855  LDV->renameRegister(SrcReg, DstReg, SubIdx);
856
857  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
858       MachineInstr *UseMI = I.skipInstruction();) {
859    SmallVector<unsigned,8> Ops;
860    bool Reads, Writes;
861    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
862
863    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
864    // because SrcReg is a sub-register.
865    if (DstInt && !Reads && SubIdx)
866      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
867
868    // Replace SrcReg with DstReg in all UseMI operands.
869    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
870      MachineOperand &MO = UseMI->getOperand(Ops[i]);
871
872      // Adjust <undef> flags in case of sub-register joins. We don't want to
873      // turn a full def into a read-modify-write sub-register def and vice
874      // versa.
875      if (SubIdx && MO.isDef())
876        MO.setIsUndef(!Reads);
877
878      if (DstIsPhys)
879        MO.substPhysReg(DstReg, *TRI);
880      else
881        MO.substVirtReg(DstReg, SubIdx, *TRI);
882    }
883
884    DEBUG({
885        dbgs() << "\t\tupdated: ";
886        if (!UseMI->isDebugValue())
887          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
888        dbgs() << *UseMI;
889      });
890  }
891}
892
893/// canJoinPhys - Return true if a copy involving a physreg should be joined.
894bool RegisterCoalescer::canJoinPhys(CoalescerPair &CP) {
895  /// Always join simple intervals that are defined by a single copy from a
896  /// reserved register. This doesn't increase register pressure, so it is
897  /// always beneficial.
898  if (!RegClassInfo.isReserved(CP.getDstReg())) {
899    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
900    return false;
901  }
902
903  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
904  if (CP.isFlipped() && JoinVInt.containsOneValue())
905    return true;
906
907  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
908  return false;
909}
910
911/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
912/// which are the src/dst of the copy instruction CopyMI.  This returns true
913/// if the copy was successfully coalesced away. If it is not currently
914/// possible to coalesce this interval, but it may be possible if other
915/// things get coalesced, then it returns true by reference in 'Again'.
916bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
917
918  Again = false;
919  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
920
921  CoalescerPair CP(*TRI);
922  if (!CP.setRegisters(CopyMI)) {
923    DEBUG(dbgs() << "\tNot coalescable.\n");
924    return false;
925  }
926
927  // Dead code elimination. This really should be handled by MachineDCE, but
928  // sometimes dead copies slip through, and we can't generate invalid live
929  // ranges.
930  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
931    DEBUG(dbgs() << "\tCopy is dead.\n");
932    DeadDefs.push_back(CopyMI);
933    eliminateDeadDefs();
934    return true;
935  }
936
937  // Eliminate undefs.
938  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
939    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
940    LIS->RemoveMachineInstrFromMaps(CopyMI);
941    CopyMI->eraseFromParent();
942    return false;  // Not coalescable.
943  }
944
945  // Coalesced copies are normally removed immediately, but transformations
946  // like removeCopyByCommutingDef() can inadvertently create identity copies.
947  // When that happens, just join the values and remove the copy.
948  if (CP.getSrcReg() == CP.getDstReg()) {
949    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
950    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
951    LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
952    if (VNInfo *DefVNI = LRQ.valueDefined()) {
953      VNInfo *ReadVNI = LRQ.valueIn();
954      assert(ReadVNI && "No value before copy and no <undef> flag.");
955      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
956      LI.MergeValueNumberInto(DefVNI, ReadVNI);
957      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
958    }
959    LIS->RemoveMachineInstrFromMaps(CopyMI);
960    CopyMI->eraseFromParent();
961    return true;
962  }
963
964  // Enforce policies.
965  if (CP.isPhys()) {
966    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
967                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
968                 << '\n');
969    if (!canJoinPhys(CP)) {
970      // Before giving up coalescing, if definition of source is defined by
971      // trivial computation, try rematerializing it.
972      if (!CP.isFlipped() &&
973          reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
974                                  CP.getDstReg(), CopyMI))
975        return true;
976      return false;
977    }
978  } else {
979    DEBUG({
980      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
981             << " with ";
982      if (CP.getDstIdx() && CP.getSrcIdx())
983        dbgs() << PrintReg(CP.getDstReg()) << " in "
984               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
985               << PrintReg(CP.getSrcReg()) << " in "
986               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
987      else
988        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
989               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
990    });
991
992    // When possible, let DstReg be the larger interval.
993    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
994                           LIS->getInterval(CP.getDstReg()).ranges.size())
995      CP.flip();
996  }
997
998  // Okay, attempt to join these two intervals.  On failure, this returns false.
999  // Otherwise, if one of the intervals being joined is a physreg, this method
1000  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1001  // been modified, so we can use this information below to update aliases.
1002  if (!joinIntervals(CP)) {
1003    // Coalescing failed.
1004
1005    // If definition of source is defined by trivial computation, try
1006    // rematerializing it.
1007    if (!CP.isFlipped() &&
1008        reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
1009                                CP.getDstReg(), CopyMI))
1010      return true;
1011
1012    // If we can eliminate the copy without merging the live ranges, do so now.
1013    if (!CP.isPartial() && !CP.isPhys()) {
1014      if (adjustCopiesBackFrom(CP, CopyMI) ||
1015          removeCopyByCommutingDef(CP, CopyMI)) {
1016        LIS->RemoveMachineInstrFromMaps(CopyMI);
1017        CopyMI->eraseFromParent();
1018        DEBUG(dbgs() << "\tTrivial!\n");
1019        return true;
1020      }
1021    }
1022
1023    // Otherwise, we are unable to join the intervals.
1024    DEBUG(dbgs() << "\tInterference!\n");
1025    Again = true;  // May be possible to coalesce later.
1026    return false;
1027  }
1028
1029  // Coalescing to a virtual register that is of a sub-register class of the
1030  // other. Make sure the resulting register is set to the right register class.
1031  if (CP.isCrossClass()) {
1032    ++numCrossRCs;
1033    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1034  }
1035
1036  // Removing sub-register copies can ease the register class constraints.
1037  // Make sure we attempt to inflate the register class of DstReg.
1038  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1039    InflateRegs.push_back(CP.getDstReg());
1040
1041  // CopyMI has been erased by joinIntervals at this point. Remove it from
1042  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1043  // to the work list. This keeps ErasedInstrs from growing needlessly.
1044  ErasedInstrs.erase(CopyMI);
1045
1046  // Rewrite all SrcReg operands to DstReg.
1047  // Also update DstReg operands to include DstIdx if it is set.
1048  if (CP.getDstIdx())
1049    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1050  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1051
1052  // SrcReg is guaranteed to be the register whose live interval that is
1053  // being merged.
1054  LIS->removeInterval(CP.getSrcReg());
1055
1056  // Update regalloc hint.
1057  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1058
1059  DEBUG({
1060    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
1061    if (!CP.isPhys())
1062      dbgs() << LIS->getInterval(CP.getDstReg());
1063     dbgs() << '\n';
1064  });
1065
1066  ++numJoins;
1067  return true;
1068}
1069
1070/// Attempt joining with a reserved physreg.
1071bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1072  assert(CP.isPhys() && "Must be a physreg copy");
1073  assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register");
1074  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1075  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1076               << '\n');
1077
1078  assert(CP.isFlipped() && RHS.containsOneValue() &&
1079         "Invalid join with reserved register");
1080
1081  // Optimization for reserved registers like ESP. We can only merge with a
1082  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1083  // The live range of the reserved register will look like a set of dead defs
1084  // - we don't properly track the live range of reserved registers.
1085
1086  // Deny any overlapping intervals.  This depends on all the reserved
1087  // register live ranges to look like dead defs.
1088  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1089    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1090      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1091      return false;
1092    }
1093
1094  // Skip any value computations, we are not adding new values to the
1095  // reserved register.  Also skip merging the live ranges, the reserved
1096  // register live range doesn't need to be accurate as long as all the
1097  // defs are there.
1098
1099  // Delete the identity copy.
1100  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
1101  LIS->RemoveMachineInstrFromMaps(CopyMI);
1102  CopyMI->eraseFromParent();
1103
1104  // We don't track kills for reserved registers.
1105  MRI->clearKillFlags(CP.getSrcReg());
1106
1107  return true;
1108}
1109
1110//===----------------------------------------------------------------------===//
1111//                 Interference checking and interval joining
1112//===----------------------------------------------------------------------===//
1113//
1114// In the easiest case, the two live ranges being joined are disjoint, and
1115// there is no interference to consider. It is quite common, though, to have
1116// overlapping live ranges, and we need to check if the interference can be
1117// resolved.
1118//
1119// The live range of a single SSA value forms a sub-tree of the dominator tree.
1120// This means that two SSA values overlap if and only if the def of one value
1121// is contained in the live range of the other value. As a special case, the
1122// overlapping values can be defined at the same index.
1123//
1124// The interference from an overlapping def can be resolved in these cases:
1125//
1126// 1. Coalescable copies. The value is defined by a copy that would become an
1127//    identity copy after joining SrcReg and DstReg. The copy instruction will
1128//    be removed, and the value will be merged with the source value.
1129//
1130//    There can be several copies back and forth, causing many values to be
1131//    merged into one. We compute a list of ultimate values in the joined live
1132//    range as well as a mappings from the old value numbers.
1133//
1134// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1135//    predecessors have a live out value. It doesn't cause real interference,
1136//    and can be merged into the value it overlaps. Like a coalescable copy, it
1137//    can be erased after joining.
1138//
1139// 3. Copy of external value. The overlapping def may be a copy of a value that
1140//    is already in the other register. This is like a coalescable copy, but
1141//    the live range of the source register must be trimmed after erasing the
1142//    copy instruction:
1143//
1144//      %src = COPY %ext
1145//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1146//
1147// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1148//    defining one lane at a time:
1149//
1150//      %dst:ssub0<def,read-undef> = FOO
1151//      %src = BAR
1152//      %dst:ssub1<def> = COPY %src
1153//
1154//    The live range of %src overlaps the %dst value defined by FOO, but
1155//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1156//    which was undef anyway.
1157//
1158//    The value mapping is more complicated in this case. The final live range
1159//    will have different value numbers for both FOO and BAR, but there is no
1160//    simple mapping from old to new values. It may even be necessary to add
1161//    new PHI values.
1162//
1163// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1164//    is live, but never read. This can happen because we don't compute
1165//    individual live ranges per lane.
1166//
1167//      %dst<def> = FOO
1168//      %src = BAR
1169//      %dst:ssub1<def> = COPY %src
1170//
1171//    This kind of interference is only resolved locally. If the clobbered
1172//    lane value escapes the block, the join is aborted.
1173
1174namespace {
1175/// Track information about values in a single virtual register about to be
1176/// joined. Objects of this class are always created in pairs - one for each
1177/// side of the CoalescerPair.
1178class JoinVals {
1179  LiveInterval &LI;
1180
1181  // Location of this register in the final joined register.
1182  // Either CP.DstIdx or CP.SrcIdx.
1183  unsigned SubIdx;
1184
1185  // Values that will be present in the final live range.
1186  SmallVectorImpl<VNInfo*> &NewVNInfo;
1187
1188  const CoalescerPair &CP;
1189  LiveIntervals *LIS;
1190  SlotIndexes *Indexes;
1191  const TargetRegisterInfo *TRI;
1192
1193  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
1194  // This is suitable for passing to LiveInterval::join().
1195  SmallVector<int, 8> Assignments;
1196
1197  // Conflict resolution for overlapping values.
1198  enum ConflictResolution {
1199    // No overlap, simply keep this value.
1200    CR_Keep,
1201
1202    // Merge this value into OtherVNI and erase the defining instruction.
1203    // Used for IMPLICIT_DEF, coalescable copies, and copies from external
1204    // values.
1205    CR_Erase,
1206
1207    // Merge this value into OtherVNI but keep the defining instruction.
1208    // This is for the special case where OtherVNI is defined by the same
1209    // instruction.
1210    CR_Merge,
1211
1212    // Keep this value, and have it replace OtherVNI where possible. This
1213    // complicates value mapping since OtherVNI maps to two different values
1214    // before and after this def.
1215    // Used when clobbering undefined or dead lanes.
1216    CR_Replace,
1217
1218    // Unresolved conflict. Visit later when all values have been mapped.
1219    CR_Unresolved,
1220
1221    // Unresolvable conflict. Abort the join.
1222    CR_Impossible
1223  };
1224
1225  // Per-value info for LI. The lane bit masks are all relative to the final
1226  // joined register, so they can be compared directly between SrcReg and
1227  // DstReg.
1228  struct Val {
1229    ConflictResolution Resolution;
1230
1231    // Lanes written by this def, 0 for unanalyzed values.
1232    unsigned WriteLanes;
1233
1234    // Lanes with defined values in this register. Other lanes are undef and
1235    // safe to clobber.
1236    unsigned ValidLanes;
1237
1238    // Value in LI being redefined by this def.
1239    VNInfo *RedefVNI;
1240
1241    // Value in the other live range that overlaps this def, if any.
1242    VNInfo *OtherVNI;
1243
1244    // True when the live range of this value will be pruned because of an
1245    // overlapping CR_Replace value in the other live range.
1246    bool Pruned;
1247
1248    // True once Pruned above has been computed.
1249    bool PrunedComputed;
1250
1251    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1252            RedefVNI(0), OtherVNI(0), Pruned(false), PrunedComputed(false) {}
1253
1254    bool isAnalyzed() const { return WriteLanes != 0; }
1255  };
1256
1257  // One entry per value number in LI.
1258  SmallVector<Val, 8> Vals;
1259
1260  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
1261  VNInfo *stripCopies(VNInfo *VNI);
1262  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1263  void computeAssignment(unsigned ValNo, JoinVals &Other);
1264  bool taintExtent(unsigned, unsigned, JoinVals&,
1265                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1266  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
1267  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1268
1269public:
1270  JoinVals(LiveInterval &li, unsigned subIdx,
1271           SmallVectorImpl<VNInfo*> &newVNInfo,
1272           const CoalescerPair &cp,
1273           LiveIntervals *lis,
1274           const TargetRegisterInfo *tri)
1275    : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
1276      Indexes(LIS->getSlotIndexes()), TRI(tri),
1277      Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
1278  {}
1279
1280  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
1281  /// Returns false if any conflicts were impossible to resolve.
1282  bool mapValues(JoinVals &Other);
1283
1284  /// Try to resolve conflicts that require all values to be mapped.
1285  /// Returns false if any conflicts were impossible to resolve.
1286  bool resolveConflicts(JoinVals &Other);
1287
1288  /// Prune the live range of values in Other.LI where they would conflict with
1289  /// CR_Replace values in LI. Collect end points for restoring the live range
1290  /// after joining.
1291  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
1292
1293  /// Erase any machine instructions that have been coalesced away.
1294  /// Add erased instructions to ErasedInstrs.
1295  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1296  /// the erased instrs.
1297  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1298                   SmallVectorImpl<unsigned> &ShrinkRegs);
1299
1300  /// Get the value assignments suitable for passing to LiveInterval::join.
1301  const int *getAssignments() const { return &Assignments[0]; }
1302};
1303} // end anonymous namespace
1304
1305/// Compute the bitmask of lanes actually written by DefMI.
1306/// Set Redef if there are any partial register definitions that depend on the
1307/// previous value of the register.
1308unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
1309  unsigned L = 0;
1310  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
1311    if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
1312      continue;
1313    L |= TRI->getSubRegIndexLaneMask(compose(*TRI, SubIdx, MO->getSubReg()));
1314    if (MO->readsReg())
1315      Redef = true;
1316  }
1317  return L;
1318}
1319
1320/// Find the ultimate value that VNI was copied from.
1321VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
1322  while (!VNI->isPHIDef()) {
1323    MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
1324    assert(MI && "No defining instruction");
1325    if (!MI->isFullCopy())
1326      break;
1327    unsigned Reg = MI->getOperand(1).getReg();
1328    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1329      break;
1330    LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
1331    if (!LRQ.valueIn())
1332      break;
1333    VNI = LRQ.valueIn();
1334  }
1335  return VNI;
1336}
1337
1338/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1339/// Return a conflict resolution when possible, but leave the hard cases as
1340/// CR_Unresolved.
1341/// Recursively calls computeAssignment() on this and Other, guaranteeing that
1342/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1343/// The recursion always goes upwards in the dominator tree, making loops
1344/// impossible.
1345JoinVals::ConflictResolution
1346JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1347  Val &V = Vals[ValNo];
1348  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1349  VNInfo *VNI = LI.getValNumInfo(ValNo);
1350  if (VNI->isUnused()) {
1351    V.WriteLanes = ~0u;
1352    return CR_Keep;
1353  }
1354
1355  // Get the instruction defining this value, compute the lanes written.
1356  const MachineInstr *DefMI = 0;
1357  if (VNI->isPHIDef()) {
1358    // Conservatively assume that all lanes in a PHI are valid.
1359    V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1360  } else {
1361    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1362    bool Redef = false;
1363    V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1364
1365    // If this is a read-modify-write instruction, there may be more valid
1366    // lanes than the ones written by this instruction.
1367    // This only covers partial redef operands. DefMI may have normal use
1368    // operands reading the register. They don't contribute valid lanes.
1369    //
1370    // This adds ssub1 to the set of valid lanes in %src:
1371    //
1372    //   %src:ssub1<def> = FOO
1373    //
1374    // This leaves only ssub1 valid, making any other lanes undef:
1375    //
1376    //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1377    //
1378    // The <read-undef> flag on the def operand means that old lane values are
1379    // not important.
1380    if (Redef) {
1381      V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
1382      assert(V.RedefVNI && "Instruction is reading nonexistent value");
1383      computeAssignment(V.RedefVNI->id, Other);
1384      V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1385    }
1386
1387    // An IMPLICIT_DEF writes undef values.
1388    if (DefMI->isImplicitDef())
1389      V.ValidLanes &= ~V.WriteLanes;
1390  }
1391
1392  // Find the value in Other that overlaps VNI->def, if any.
1393  LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
1394
1395  // It is possible that both values are defined by the same instruction, or
1396  // the values are PHIs defined in the same block. When that happens, the two
1397  // values should be merged into one, but not into any preceding value.
1398  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1399  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1400    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1401
1402    // One value stays, the other is merged. Keep the earlier one, or the first
1403    // one we see.
1404    if (OtherVNI->def < VNI->def)
1405      Other.computeAssignment(OtherVNI->id, *this);
1406    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1407      // This is an early-clobber def overlapping a live-in value in the other
1408      // register. Not mergeable.
1409      V.OtherVNI = OtherLRQ.valueIn();
1410      return CR_Impossible;
1411    }
1412    V.OtherVNI = OtherVNI;
1413    Val &OtherV = Other.Vals[OtherVNI->id];
1414    // Keep this value, check for conflicts when analyzing OtherVNI.
1415    if (!OtherV.isAnalyzed())
1416      return CR_Keep;
1417    // Both sides have been analyzed now.
1418    // Allow overlapping PHI values. Any real interference would show up in a
1419    // predecessor, the PHI itself can't introduce any conflicts.
1420    if (VNI->isPHIDef())
1421      return CR_Merge;
1422    if (V.ValidLanes & OtherV.ValidLanes)
1423      // Overlapping lanes can't be resolved.
1424      return CR_Impossible;
1425    else
1426      return CR_Merge;
1427  }
1428
1429  // No simultaneous def. Is Other live at the def?
1430  V.OtherVNI = OtherLRQ.valueIn();
1431  if (!V.OtherVNI)
1432    // No overlap, no conflict.
1433    return CR_Keep;
1434
1435  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
1436
1437  // We have overlapping values, or possibly a kill of Other.
1438  // Recursively compute assignments up the dominator tree.
1439  Other.computeAssignment(V.OtherVNI->id, *this);
1440  const Val &OtherV = Other.Vals[V.OtherVNI->id];
1441
1442  // Allow overlapping PHI values. Any real interference would show up in a
1443  // predecessor, the PHI itself can't introduce any conflicts.
1444  if (VNI->isPHIDef())
1445    return CR_Replace;
1446
1447  // Check for simple erasable conflicts.
1448  if (DefMI->isImplicitDef())
1449    return CR_Erase;
1450
1451  // Include the non-conflict where DefMI is a coalescable copy that kills
1452  // OtherVNI. We still want the copy erased and value numbers merged.
1453  if (CP.isCoalescable(DefMI)) {
1454    // Some of the lanes copied from OtherVNI may be undef, making them undef
1455    // here too.
1456    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
1457    return CR_Erase;
1458  }
1459
1460  // This may not be a real conflict if DefMI simply kills Other and defines
1461  // VNI.
1462  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
1463    return CR_Keep;
1464
1465  // Handle the case where VNI and OtherVNI can be proven to be identical:
1466  //
1467  //   %other = COPY %ext
1468  //   %this  = COPY %ext <-- Erase this copy
1469  //
1470  if (DefMI->isFullCopy() && !CP.isPartial() &&
1471      stripCopies(VNI) == stripCopies(V.OtherVNI))
1472    return CR_Erase;
1473
1474  // If the lanes written by this instruction were all undef in OtherVNI, it is
1475  // still safe to join the live ranges. This can't be done with a simple value
1476  // mapping, though - OtherVNI will map to multiple values:
1477  //
1478  //   1 %dst:ssub0 = FOO                <-- OtherVNI
1479  //   2 %src = BAR                      <-- VNI
1480  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
1481  //   4 BAZ %dst<kill>
1482  //   5 QUUX %src<kill>
1483  //
1484  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
1485  // handles this complex value mapping.
1486  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
1487    return CR_Replace;
1488
1489  // VNI is clobbering live lanes in OtherVNI, but there is still the
1490  // possibility that no instructions actually read the clobbered lanes.
1491  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
1492  // Otherwise Other.LI wouldn't be live here.
1493  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
1494    return CR_Impossible;
1495
1496  // We need to verify that no instructions are reading the clobbered lanes. To
1497  // save compile time, we'll only check that locally. Don't allow the tainted
1498  // value to escape the basic block.
1499  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1500  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
1501    return CR_Impossible;
1502
1503  // There are still some things that could go wrong besides clobbered lanes
1504  // being read, for example OtherVNI may be only partially redefined in MBB,
1505  // and some clobbered lanes could escape the block. Save this analysis for
1506  // resolveConflicts() when all values have been mapped. We need to know
1507  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
1508  // that now - the recursive analyzeValue() calls must go upwards in the
1509  // dominator tree.
1510  return CR_Unresolved;
1511}
1512
1513/// Compute the value assignment for ValNo in LI.
1514/// This may be called recursively by analyzeValue(), but never for a ValNo on
1515/// the stack.
1516void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
1517  Val &V = Vals[ValNo];
1518  if (V.isAnalyzed()) {
1519    // Recursion should always move up the dominator tree, so ValNo is not
1520    // supposed to reappear before it has been assigned.
1521    assert(Assignments[ValNo] != -1 && "Bad recursion?");
1522    return;
1523  }
1524  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
1525  case CR_Erase:
1526  case CR_Merge:
1527    // Merge this ValNo into OtherVNI.
1528    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
1529    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
1530    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
1531    DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
1532                 << LI.getValNumInfo(ValNo)->def << " into "
1533                 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
1534                 << V.OtherVNI->def << " --> @"
1535                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
1536    break;
1537  case CR_Replace:
1538  case CR_Unresolved:
1539    // The other value is going to be pruned if this join is successful.
1540    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
1541    Other.Vals[V.OtherVNI->id].Pruned = true;
1542    // Fall through.
1543  default:
1544    // This value number needs to go in the final joined live range.
1545    Assignments[ValNo] = NewVNInfo.size();
1546    NewVNInfo.push_back(LI.getValNumInfo(ValNo));
1547    break;
1548  }
1549}
1550
1551bool JoinVals::mapValues(JoinVals &Other) {
1552  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1553    computeAssignment(i, Other);
1554    if (Vals[i].Resolution == CR_Impossible) {
1555      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
1556                   << '@' << LI.getValNumInfo(i)->def << '\n');
1557      return false;
1558    }
1559  }
1560  return true;
1561}
1562
1563/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
1564/// the extent of the tainted lanes in the block.
1565///
1566/// Multiple values in Other.LI can be affected since partial redefinitions can
1567/// preserve previously tainted lanes.
1568///
1569///   1 %dst = VLOAD           <-- Define all lanes in %dst
1570///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1571///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1572///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1573///
1574/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1575/// entry to TaintedVals.
1576///
1577/// Returns false if the tainted lanes extend beyond the basic block.
1578bool JoinVals::
1579taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
1580            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
1581  VNInfo *VNI = LI.getValNumInfo(ValNo);
1582  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1583  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
1584
1585  // Scan Other.LI from VNI.def to MBBEnd.
1586  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
1587  assert(OtherI != Other.LI.end() && "No conflict?");
1588  do {
1589    // OtherI is pointing to a tainted value. Abort the join if the tainted
1590    // lanes escape the block.
1591    SlotIndex End = OtherI->end;
1592    if (End >= MBBEnd) {
1593      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
1594                   << OtherI->valno->id << '@' << OtherI->start << '\n');
1595      return false;
1596    }
1597    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
1598                 << OtherI->valno->id << '@' << OtherI->start
1599                 << " to " << End << '\n');
1600    // A dead def is not a problem.
1601    if (End.isDead())
1602      break;
1603    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
1604
1605    // Check for another def in the MBB.
1606    if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
1607      break;
1608
1609    // Lanes written by the new def are no longer tainted.
1610    const Val &OV = Other.Vals[OtherI->valno->id];
1611    TaintedLanes &= ~OV.WriteLanes;
1612    if (!OV.RedefVNI)
1613      break;
1614  } while (TaintedLanes);
1615  return true;
1616}
1617
1618/// Return true if MI uses any of the given Lanes from Reg.
1619/// This does not include partial redefinitions of Reg.
1620bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
1621                         unsigned Lanes) {
1622  if (MI->isDebugValue())
1623    return false;
1624  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
1625    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
1626      continue;
1627    if (!MO->readsReg())
1628      continue;
1629    if (Lanes &
1630        TRI->getSubRegIndexLaneMask(compose(*TRI, SubIdx, MO->getSubReg())))
1631      return true;
1632  }
1633  return false;
1634}
1635
1636bool JoinVals::resolveConflicts(JoinVals &Other) {
1637  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1638    Val &V = Vals[i];
1639    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
1640    if (V.Resolution != CR_Unresolved)
1641      continue;
1642    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
1643                 << '@' << LI.getValNumInfo(i)->def << '\n');
1644    ++NumLaneConflicts;
1645    assert(V.OtherVNI && "Inconsistent conflict resolution.");
1646    VNInfo *VNI = LI.getValNumInfo(i);
1647    const Val &OtherV = Other.Vals[V.OtherVNI->id];
1648
1649    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
1650    // join, those lanes will be tainted with a wrong value. Get the extent of
1651    // the tainted lanes.
1652    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
1653    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
1654    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
1655      // Tainted lanes would extend beyond the basic block.
1656      return false;
1657
1658    assert(!TaintExtent.empty() && "There should be at least one conflict.");
1659
1660    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
1661    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1662    MachineBasicBlock::iterator MI = MBB->begin();
1663    if (!VNI->isPHIDef()) {
1664      MI = Indexes->getInstructionFromIndex(VNI->def);
1665      // No need to check the instruction defining VNI for reads.
1666      ++MI;
1667    }
1668    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
1669           "Interference ends on VNI->def. Should have been handled earlier");
1670    MachineInstr *LastMI =
1671      Indexes->getInstructionFromIndex(TaintExtent.front().first);
1672    assert(LastMI && "Range must end at a proper instruction");
1673    unsigned TaintNum = 0;
1674    for(;;) {
1675      assert(MI != MBB->end() && "Bad LastMI");
1676      if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
1677        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
1678        return false;
1679      }
1680      // LastMI is the last instruction to use the current value.
1681      if (&*MI == LastMI) {
1682        if (++TaintNum == TaintExtent.size())
1683          break;
1684        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
1685        assert(LastMI && "Range must end at a proper instruction");
1686        TaintedLanes = TaintExtent[TaintNum].second;
1687      }
1688      ++MI;
1689    }
1690
1691    // The tainted lanes are unused.
1692    V.Resolution = CR_Replace;
1693    ++NumLaneResolves;
1694  }
1695  return true;
1696}
1697
1698// Determine if ValNo is a copy of a value number in LI or Other.LI that will
1699// be pruned:
1700//
1701//   %dst = COPY %src
1702//   %src = COPY %dst  <-- This value to be pruned.
1703//   %dst = COPY %src  <-- This value is a copy of a pruned value.
1704//
1705bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
1706  Val &V = Vals[ValNo];
1707  if (V.Pruned || V.PrunedComputed)
1708    return V.Pruned;
1709
1710  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
1711    return V.Pruned;
1712
1713  // Follow copies up the dominator tree and check if any intermediate value
1714  // has been pruned.
1715  V.PrunedComputed = true;
1716  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
1717  return V.Pruned;
1718}
1719
1720void JoinVals::pruneValues(JoinVals &Other,
1721                           SmallVectorImpl<SlotIndex> &EndPoints) {
1722  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1723    SlotIndex Def = LI.getValNumInfo(i)->def;
1724    switch (Vals[i].Resolution) {
1725    case CR_Keep:
1726      break;
1727    case CR_Replace:
1728      // This value takes precedence over the value in Other.LI.
1729      LIS->pruneValue(&Other.LI, Def, &EndPoints);
1730      // Remove <def,read-undef> flags. This def is now a partial redef.
1731      if (!Def.isBlock()) {
1732        for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
1733             MO.isValid(); ++MO)
1734          if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg)
1735            MO->setIsUndef(false);
1736	// This value will reach instructions below, but we need to make sure
1737	// the live range also reaches the instruction at Def.
1738	EndPoints.push_back(Def);
1739      }
1740      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
1741                   << ": " << Other.LI << '\n');
1742      break;
1743    case CR_Erase:
1744    case CR_Merge:
1745      if (isPrunedValue(i, Other)) {
1746        // This value is ultimately a copy of a pruned value in LI or Other.LI.
1747        // We can no longer trust the value mapping computed by
1748        // computeAssignment(), the value that was originally copied could have
1749        // been replaced.
1750        LIS->pruneValue(&LI, Def, &EndPoints);
1751        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
1752                     << Def << ": " << LI << '\n');
1753      }
1754      break;
1755    case CR_Unresolved:
1756    case CR_Impossible:
1757      llvm_unreachable("Unresolved conflicts");
1758    }
1759  }
1760}
1761
1762void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1763                           SmallVectorImpl<unsigned> &ShrinkRegs) {
1764  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1765    if (Vals[i].Resolution != CR_Erase)
1766      continue;
1767    SlotIndex Def = LI.getValNumInfo(i)->def;
1768    MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1769    assert(MI && "No instruction to erase");
1770    if (MI->isCopy()) {
1771      unsigned Reg = MI->getOperand(1).getReg();
1772      if (TargetRegisterInfo::isVirtualRegister(Reg) &&
1773          Reg != CP.getSrcReg() && Reg != CP.getDstReg())
1774        ShrinkRegs.push_back(Reg);
1775    }
1776    ErasedInstrs.insert(MI);
1777    DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
1778    LIS->RemoveMachineInstrFromMaps(MI);
1779    MI->eraseFromParent();
1780  }
1781}
1782
1783bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
1784  SmallVector<VNInfo*, 16> NewVNInfo;
1785  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1786  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
1787  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
1788  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
1789
1790  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1791               << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
1792               << '\n');
1793
1794  // First compute NewVNInfo and the simple value mappings.
1795  // Detect impossible conflicts early.
1796  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
1797    return false;
1798
1799  // Some conflicts can only be resolved after all values have been mapped.
1800  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
1801    return false;
1802
1803  // All clear, the live ranges can be merged.
1804
1805  // The merging algorithm in LiveInterval::join() can't handle conflicting
1806  // value mappings, so we need to remove any live ranges that overlap a
1807  // CR_Replace resolution. Collect a set of end points that can be used to
1808  // restore the live range after joining.
1809  SmallVector<SlotIndex, 8> EndPoints;
1810  LHSVals.pruneValues(RHSVals, EndPoints);
1811  RHSVals.pruneValues(LHSVals, EndPoints);
1812
1813  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
1814  // registers to require trimming.
1815  SmallVector<unsigned, 8> ShrinkRegs;
1816  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1817  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1818  while (!ShrinkRegs.empty())
1819    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
1820
1821  // Join RHS into LHS.
1822  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo,
1823           MRI);
1824
1825  // Kill flags are going to be wrong if the live ranges were overlapping.
1826  // Eventually, we should simply clear all kill flags when computing live
1827  // ranges. They are reinserted after register allocation.
1828  MRI->clearKillFlags(LHS.reg);
1829  MRI->clearKillFlags(RHS.reg);
1830
1831  if (EndPoints.empty())
1832    return true;
1833
1834  // Recompute the parts of the live range we had to remove because of
1835  // CR_Replace conflicts.
1836  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
1837               << " points: " << LHS << '\n');
1838  LIS->extendToIndices(&LHS, EndPoints);
1839  return true;
1840}
1841
1842/// joinIntervals - Attempt to join these two intervals.  On failure, this
1843/// returns false.
1844bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
1845  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
1846}
1847
1848namespace {
1849  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1850  // depth of the basic block (the unsigned), and then on the MBB number.
1851  struct DepthMBBCompare {
1852    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1853    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1854      // Deeper loops first
1855      if (LHS.first != RHS.first)
1856        return LHS.first > RHS.first;
1857
1858      // Prefer blocks that are more connected in the CFG. This takes care of
1859      // the most difficult copies first while intervals are short.
1860      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1861      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1862      if (cl != cr)
1863        return cl > cr;
1864
1865      // As a last resort, sort by block number.
1866      return LHS.second->getNumber() < RHS.second->getNumber();
1867    }
1868  };
1869}
1870
1871// Try joining WorkList copies starting from index From.
1872// Null out any successful joins.
1873bool RegisterCoalescer::copyCoalesceWorkList(unsigned From) {
1874  assert(From <= WorkList.size() && "Out of range");
1875  bool Progress = false;
1876  for (unsigned i = From, e = WorkList.size(); i != e; ++i) {
1877    if (!WorkList[i])
1878      continue;
1879    // Skip instruction pointers that have already been erased, for example by
1880    // dead code elimination.
1881    if (ErasedInstrs.erase(WorkList[i])) {
1882      WorkList[i] = 0;
1883      continue;
1884    }
1885    bool Again = false;
1886    bool Success = joinCopy(WorkList[i], Again);
1887    Progress |= Success;
1888    if (Success || !Again)
1889      WorkList[i] = 0;
1890  }
1891  return Progress;
1892}
1893
1894void
1895RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
1896  DEBUG(dbgs() << MBB->getName() << ":\n");
1897
1898  // Collect all copy-like instructions in MBB. Don't start coalescing anything
1899  // yet, it might invalidate the iterator.
1900  const unsigned PrevSize = WorkList.size();
1901  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1902       MII != E; ++MII)
1903    if (MII->isCopyLike())
1904      WorkList.push_back(MII);
1905
1906  // Try coalescing the collected copies immediately, and remove the nulls.
1907  // This prevents the WorkList from getting too large since most copies are
1908  // joinable on the first attempt.
1909  if (copyCoalesceWorkList(PrevSize))
1910    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
1911                               (MachineInstr*)0), WorkList.end());
1912}
1913
1914void RegisterCoalescer::joinAllIntervals() {
1915  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1916  assert(WorkList.empty() && "Old data still around.");
1917
1918  if (Loops->empty()) {
1919    // If there are no loops in the function, join intervals in function order.
1920    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1921         I != E; ++I)
1922      copyCoalesceInMBB(I);
1923  } else {
1924    // Otherwise, join intervals in inner loops before other intervals.
1925    // Unfortunately we can't just iterate over loop hierarchy here because
1926    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1927
1928    // Join intervals in the function prolog first. We want to join physical
1929    // registers with virtual registers before the intervals got too long.
1930    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1931    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1932      MachineBasicBlock *MBB = I;
1933      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1934    }
1935
1936    // Sort by loop depth.
1937    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1938
1939    // Finally, join intervals in loop nest order.
1940    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1941      copyCoalesceInMBB(MBBs[i].second);
1942  }
1943
1944  // Joining intervals can allow other intervals to be joined.  Iteratively join
1945  // until we make no progress.
1946  while (copyCoalesceWorkList())
1947    /* empty */ ;
1948}
1949
1950void RegisterCoalescer::releaseMemory() {
1951  ErasedInstrs.clear();
1952  WorkList.clear();
1953  DeadDefs.clear();
1954  InflateRegs.clear();
1955}
1956
1957bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1958  MF = &fn;
1959  MRI = &fn.getRegInfo();
1960  TM = &fn.getTarget();
1961  TRI = TM->getRegisterInfo();
1962  TII = TM->getInstrInfo();
1963  LIS = &getAnalysis<LiveIntervals>();
1964  LDV = &getAnalysis<LiveDebugVariables>();
1965  AA = &getAnalysis<AliasAnalysis>();
1966  Loops = &getAnalysis<MachineLoopInfo>();
1967
1968  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1969               << "********** Function: " << MF->getName() << '\n');
1970
1971  if (VerifyCoalescing)
1972    MF->verify(this, "Before register coalescing");
1973
1974  RegClassInfo.runOnMachineFunction(fn);
1975
1976  // Join (coalesce) intervals if requested.
1977  if (EnableJoining)
1978    joinAllIntervals();
1979
1980  // After deleting a lot of copies, register classes may be less constrained.
1981  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
1982  // DPR inflation.
1983  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1984  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1985                    InflateRegs.end());
1986  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1987  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1988    unsigned Reg = InflateRegs[i];
1989    if (MRI->reg_nodbg_empty(Reg))
1990      continue;
1991    if (MRI->recomputeRegClass(Reg, *TM)) {
1992      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1993                   << MRI->getRegClass(Reg)->getName() << '\n');
1994      ++NumInflated;
1995    }
1996  }
1997
1998  DEBUG(dump());
1999  DEBUG(LDV->dump());
2000  if (VerifyCoalescing)
2001    MF->verify(this, "After register coalescing");
2002  return true;
2003}
2004
2005/// print - Implement the dump method.
2006void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2007   LIS->print(O, m);
2008}
2009