RegisterCoalescer.cpp revision 83b3a293349919d18bc05d87bc03156ef6637370
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "RegisterClassInfo.h"
20#include "VirtRegMap.h"
21
22#include "llvm/Pass.h"
23#include "llvm/Value.h"
24#include "llvm/CodeGen/LiveIntervalAnalysis.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/ADT/OwningPtr.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48#include <cmath>
49using namespace llvm;
50
51STATISTIC(numJoins    , "Number of interval joins performed");
52STATISTIC(numCrossRCs , "Number of cross class joins performed");
53STATISTIC(numCommutes , "Number of instruction commuting performed");
54STATISTIC(numExtends  , "Number of copies extended");
55STATISTIC(NumReMats   , "Number of instructions re-materialized");
56STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
57STATISTIC(numAborts   , "Number of times interval joining aborted");
58STATISTIC(NumInflated , "Number of register classes inflated");
59
60static cl::opt<bool>
61EnableJoining("join-liveintervals",
62              cl::desc("Coalesce copies (default=true)"),
63              cl::init(true));
64
65static cl::opt<bool>
66EnablePhysicalJoin("join-physregs",
67                   cl::desc("Join physical register copies"),
68                   cl::init(false), cl::Hidden);
69
70static cl::opt<bool>
71VerifyCoalescing("verify-coalescing",
72         cl::desc("Verify machine instrs before and after register coalescing"),
73         cl::Hidden);
74
75namespace {
76  class RegisterCoalescer : public MachineFunctionPass {
77    MachineFunction* MF;
78    MachineRegisterInfo* MRI;
79    const TargetMachine* TM;
80    const TargetRegisterInfo* TRI;
81    const TargetInstrInfo* TII;
82    LiveIntervals *LIS;
83    LiveDebugVariables *LDV;
84    const MachineLoopInfo* Loops;
85    AliasAnalysis *AA;
86    RegisterClassInfo RegClassInfo;
87
88    /// JoinedCopies - Keep track of copies eliminated due to coalescing.
89    ///
90    SmallPtrSet<MachineInstr*, 32> JoinedCopies;
91
92    /// ReMatCopies - Keep track of copies eliminated due to remat.
93    ///
94    SmallPtrSet<MachineInstr*, 32> ReMatCopies;
95
96    /// ReMatDefs - Keep track of definition instructions which have
97    /// been remat'ed.
98    SmallPtrSet<MachineInstr*, 8> ReMatDefs;
99
100    /// joinAllIntervals - join compatible live intervals
101    void joinAllIntervals();
102
103    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
104    /// copies that cannot yet be coalesced into the "TryAgain" list.
105    void copyCoalesceInMBB(MachineBasicBlock *MBB,
106                           std::vector<MachineInstr*> &TryAgain);
107
108    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
109    /// which are the src/dst of the copy instruction CopyMI.  This returns
110    /// true if the copy was successfully coalesced away. If it is not
111    /// currently possible to coalesce this interval, but it may be possible if
112    /// other things get coalesced, then it returns true by reference in
113    /// 'Again'.
114    bool joinCopy(MachineInstr *TheCopy, bool &Again);
115
116    /// joinIntervals - Attempt to join these two intervals.  On failure, this
117    /// returns false.  The output "SrcInt" will not have been modified, so we
118    /// can use this information below to update aliases.
119    bool joinIntervals(CoalescerPair &CP);
120
121    /// Attempt joining with a reserved physreg.
122    bool joinReservedPhysReg(CoalescerPair &CP);
123
124    /// Check for interference with a normal unreserved physreg.
125    bool canJoinPhysReg(CoalescerPair &CP);
126
127    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
128    /// the source value number is defined by a copy from the destination reg
129    /// see if we can merge these two destination reg valno# into a single
130    /// value number, eliminating a copy.
131    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
132
133    /// hasOtherReachingDefs - Return true if there are definitions of IntB
134    /// other than BValNo val# that can reach uses of AValno val# of IntA.
135    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
136                              VNInfo *AValNo, VNInfo *BValNo);
137
138    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
139    /// If the source value number is defined by a commutable instruction and
140    /// its other operand is coalesced to the copy dest register, see if we
141    /// can transform the copy into a noop by commuting the definition.
142    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
143
144    /// reMaterializeTrivialDef - If the source of a copy is defined by a
145    /// trivial computation, replace the copy by rematerialize the definition.
146    /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
147    bool reMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
148                                 unsigned DstReg, MachineInstr *CopyMI);
149
150    /// shouldJoinPhys - Return true if a physreg copy should be joined.
151    bool shouldJoinPhys(CoalescerPair &CP);
152
153    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
154    /// update the subregister number if it is not zero. If DstReg is a
155    /// physical register and the existing subregister number of the def / use
156    /// being updated is not zero, make sure to set it to the correct physical
157    /// subregister.
158    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
159
160    /// removeDeadDef - If a def of a live interval is now determined dead,
161    /// remove the val# it defines. If the live interval becomes empty, remove
162    /// it as well.
163    bool removeDeadDef(LiveInterval &li, MachineInstr *DefMI);
164
165    /// markAsJoined - Remember that CopyMI has already been joined.
166    void markAsJoined(MachineInstr *CopyMI);
167
168    /// eliminateUndefCopy - Handle copies of undef values.
169    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
170
171  public:
172    static char ID; // Class identification, replacement for typeinfo
173    RegisterCoalescer() : MachineFunctionPass(ID) {
174      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
175    }
176
177    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
178
179    virtual void releaseMemory();
180
181    /// runOnMachineFunction - pass entry point
182    virtual bool runOnMachineFunction(MachineFunction&);
183
184    /// print - Implement the dump method.
185    virtual void print(raw_ostream &O, const Module* = 0) const;
186  };
187} /// end anonymous namespace
188
189char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
190
191INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
192                      "Simple Register Coalescing", false, false)
193INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
194INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
195INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
196INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
197INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
198INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
199                    "Simple Register Coalescing", false, false)
200
201char RegisterCoalescer::ID = 0;
202
203static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
204  if (!a) return b;
205  if (!b) return a;
206  return tri.composeSubRegIndices(a, b);
207}
208
209static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
210                        unsigned &Src, unsigned &Dst,
211                        unsigned &SrcSub, unsigned &DstSub) {
212  if (MI->isCopy()) {
213    Dst = MI->getOperand(0).getReg();
214    DstSub = MI->getOperand(0).getSubReg();
215    Src = MI->getOperand(1).getReg();
216    SrcSub = MI->getOperand(1).getSubReg();
217  } else if (MI->isSubregToReg()) {
218    Dst = MI->getOperand(0).getReg();
219    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
220                     MI->getOperand(3).getImm());
221    Src = MI->getOperand(2).getReg();
222    SrcSub = MI->getOperand(2).getSubReg();
223  } else
224    return false;
225  return true;
226}
227
228bool CoalescerPair::setRegisters(const MachineInstr *MI) {
229  SrcReg = DstReg = 0;
230  SrcIdx = DstIdx = 0;
231  NewRC = 0;
232  Flipped = CrossClass = false;
233
234  unsigned Src, Dst, SrcSub, DstSub;
235  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
236    return false;
237  Partial = SrcSub || DstSub;
238
239  // If one register is a physreg, it must be Dst.
240  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
241    if (TargetRegisterInfo::isPhysicalRegister(Dst))
242      return false;
243    std::swap(Src, Dst);
244    std::swap(SrcSub, DstSub);
245    Flipped = true;
246  }
247
248  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
249
250  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
251    // Eliminate DstSub on a physreg.
252    if (DstSub) {
253      Dst = TRI.getSubReg(Dst, DstSub);
254      if (!Dst) return false;
255      DstSub = 0;
256    }
257
258    // Eliminate SrcSub by picking a corresponding Dst superregister.
259    if (SrcSub) {
260      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
261      if (!Dst) return false;
262      SrcSub = 0;
263    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
264      return false;
265    }
266  } else {
267    // Both registers are virtual.
268    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
269    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
270
271    // Both registers have subreg indices.
272    if (SrcSub && DstSub) {
273      // Copies between different sub-registers are never coalescable.
274      if (Src == Dst && SrcSub != DstSub)
275        return false;
276
277      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
278                                         SrcIdx, DstIdx);
279      if (!NewRC)
280        return false;
281    } else if (DstSub) {
282      // SrcReg will be merged with a sub-register of DstReg.
283      SrcIdx = DstSub;
284      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
285    } else if (SrcSub) {
286      // DstReg will be merged with a sub-register of SrcReg.
287      DstIdx = SrcSub;
288      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
289    } else {
290      // This is a straight copy without sub-registers.
291      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
292    }
293
294    // The combined constraint may be impossible to satisfy.
295    if (!NewRC)
296      return false;
297
298    // Prefer SrcReg to be a sub-register of DstReg.
299    // FIXME: Coalescer should support subregs symmetrically.
300    if (DstIdx && !SrcIdx) {
301      std::swap(Src, Dst);
302      std::swap(SrcIdx, DstIdx);
303      Flipped = !Flipped;
304    }
305
306    CrossClass = NewRC != DstRC || NewRC != SrcRC;
307  }
308  // Check our invariants
309  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
310  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
311         "Cannot have a physical SubIdx");
312  SrcReg = Src;
313  DstReg = Dst;
314  return true;
315}
316
317bool CoalescerPair::flip() {
318  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
319    return false;
320  std::swap(SrcReg, DstReg);
321  std::swap(SrcIdx, DstIdx);
322  Flipped = !Flipped;
323  return true;
324}
325
326bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
327  if (!MI)
328    return false;
329  unsigned Src, Dst, SrcSub, DstSub;
330  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
331    return false;
332
333  // Find the virtual register that is SrcReg.
334  if (Dst == SrcReg) {
335    std::swap(Src, Dst);
336    std::swap(SrcSub, DstSub);
337  } else if (Src != SrcReg) {
338    return false;
339  }
340
341  // Now check that Dst matches DstReg.
342  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
343    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
344      return false;
345    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
346    // DstSub could be set for a physreg from INSERT_SUBREG.
347    if (DstSub)
348      Dst = TRI.getSubReg(Dst, DstSub);
349    // Full copy of Src.
350    if (!SrcSub)
351      return DstReg == Dst;
352    // This is a partial register copy. Check that the parts match.
353    return TRI.getSubReg(DstReg, SrcSub) == Dst;
354  } else {
355    // DstReg is virtual.
356    if (DstReg != Dst)
357      return false;
358    // Registers match, do the subregisters line up?
359    return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub);
360  }
361}
362
363void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
364  AU.setPreservesCFG();
365  AU.addRequired<AliasAnalysis>();
366  AU.addRequired<LiveIntervals>();
367  AU.addPreserved<LiveIntervals>();
368  AU.addRequired<LiveDebugVariables>();
369  AU.addPreserved<LiveDebugVariables>();
370  AU.addPreserved<SlotIndexes>();
371  AU.addRequired<MachineLoopInfo>();
372  AU.addPreserved<MachineLoopInfo>();
373  AU.addPreservedID(MachineDominatorsID);
374  MachineFunctionPass::getAnalysisUsage(AU);
375}
376
377void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
378  /// Joined copies are not deleted immediately, but kept in JoinedCopies.
379  JoinedCopies.insert(CopyMI);
380
381  /// Mark all register operands of CopyMI as <undef> so they won't affect dead
382  /// code elimination.
383  for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
384       E = CopyMI->operands_end(); I != E; ++I)
385    if (I->isReg())
386      I->setIsUndef(true);
387}
388
389/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
390/// being the source and IntB being the dest, thus this defines a value number
391/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
392/// see if we can merge these two pieces of B into a single value number,
393/// eliminating a copy.  For example:
394///
395///  A3 = B0
396///    ...
397///  B1 = A3      <- this copy
398///
399/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
400/// value number to be replaced with B0 (which simplifies the B liveinterval).
401///
402/// This returns true if an interval was modified.
403///
404bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
405                                             MachineInstr *CopyMI) {
406  assert(!CP.isPartial() && "This doesn't work for partial copies.");
407
408  // Bail if there is no dst interval - can happen when merging physical subreg
409  // operations.
410  if (!LIS->hasInterval(CP.getDstReg()))
411    return false;
412
413  LiveInterval &IntA =
414    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
415  LiveInterval &IntB =
416    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
417  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
418
419  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
420  // the example above.
421  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
422  if (BLR == IntB.end()) return false;
423  VNInfo *BValNo = BLR->valno;
424
425  // Get the location that B is defined at.  Two options: either this value has
426  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
427  // can't process it.
428  if (BValNo->def != CopyIdx) return false;
429
430  // AValNo is the value number in A that defines the copy, A3 in the example.
431  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
432  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
433  // The live range might not exist after fun with physreg coalescing.
434  if (ALR == IntA.end()) return false;
435  VNInfo *AValNo = ALR->valno;
436
437  // If AValNo is defined as a copy from IntB, we can potentially process this.
438  // Get the instruction that defines this value number.
439  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
440  if (!CP.isCoalescable(ACopyMI))
441    return false;
442
443  // Get the LiveRange in IntB that this value number starts with.
444  LiveInterval::iterator ValLR =
445    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
446  if (ValLR == IntB.end())
447    return false;
448
449  // Make sure that the end of the live range is inside the same block as
450  // CopyMI.
451  MachineInstr *ValLREndInst =
452    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
453  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
454    return false;
455
456  // Okay, we now know that ValLR ends in the same block that the CopyMI
457  // live-range starts.  If there are no intervening live ranges between them in
458  // IntB, we can merge them.
459  if (ValLR+1 != BLR) return false;
460
461  // If a live interval is a physical register, conservatively check if any
462  // of its aliases is overlapping the live interval of the virtual register.
463  // If so, do not coalesce.
464  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
465    for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
466      if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
467        DEBUG({
468            dbgs() << "\t\tInterfere with alias ";
469            LIS->getInterval(*AS).print(dbgs(), TRI);
470          });
471        return false;
472      }
473  }
474
475  DEBUG({
476      dbgs() << "Extending: ";
477      IntB.print(dbgs(), TRI);
478    });
479
480  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
481  // We are about to delete CopyMI, so need to remove it as the 'instruction
482  // that defines this value #'. Update the valnum with the new defining
483  // instruction #.
484  BValNo->def = FillerStart;
485
486  // Okay, we can merge them.  We need to insert a new liverange:
487  // [ValLR.end, BLR.begin) of either value number, then we merge the
488  // two value numbers.
489  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
490
491  // If the IntB live range is assigned to a physical register, and if that
492  // physreg has sub-registers, update their live intervals as well.
493  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
494    for (const uint16_t *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
495      if (!LIS->hasInterval(*SR))
496        continue;
497      LiveInterval &SRLI = LIS->getInterval(*SR);
498      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
499                              SRLI.getNextValue(FillerStart,
500                                                LIS->getVNInfoAllocator())));
501    }
502  }
503
504  // Okay, merge "B1" into the same value number as "B0".
505  if (BValNo != ValLR->valno) {
506    // If B1 is killed by a PHI, then the merged live range must also be killed
507    // by the same PHI, as B0 and B1 can not overlap.
508    bool HasPHIKill = BValNo->hasPHIKill();
509    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
510    if (HasPHIKill)
511      ValLR->valno->setHasPHIKill(true);
512  }
513  DEBUG({
514      dbgs() << "   result = ";
515      IntB.print(dbgs(), TRI);
516      dbgs() << "\n";
517    });
518
519  // If the source instruction was killing the source register before the
520  // merge, unset the isKill marker given the live range has been extended.
521  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
522  if (UIdx != -1) {
523    ValLREndInst->getOperand(UIdx).setIsKill(false);
524  }
525
526  // Rewrite the copy. If the copy instruction was killing the destination
527  // register before the merge, find the last use and trim the live range. That
528  // will also add the isKill marker.
529  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
530  if (ALR->end == CopyIdx)
531    LIS->shrinkToUses(&IntA);
532
533  ++numExtends;
534  return true;
535}
536
537/// hasOtherReachingDefs - Return true if there are definitions of IntB
538/// other than BValNo val# that can reach uses of AValno val# of IntA.
539bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
540                                             LiveInterval &IntB,
541                                             VNInfo *AValNo,
542                                             VNInfo *BValNo) {
543  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
544       AI != AE; ++AI) {
545    if (AI->valno != AValNo) continue;
546    LiveInterval::Ranges::iterator BI =
547      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
548    if (BI != IntB.ranges.begin())
549      --BI;
550    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
551      if (BI->valno == BValNo)
552        continue;
553      if (BI->start <= AI->start && BI->end > AI->start)
554        return true;
555      if (BI->start > AI->start && BI->start < AI->end)
556        return true;
557    }
558  }
559  return false;
560}
561
562/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
563/// IntA being the source and IntB being the dest, thus this defines a value
564/// number in IntB.  If the source value number (in IntA) is defined by a
565/// commutable instruction and its other operand is coalesced to the copy dest
566/// register, see if we can transform the copy into a noop by commuting the
567/// definition. For example,
568///
569///  A3 = op A2 B0<kill>
570///    ...
571///  B1 = A3      <- this copy
572///    ...
573///     = op A3   <- more uses
574///
575/// ==>
576///
577///  B2 = op B0 A2<kill>
578///    ...
579///  B1 = B2      <- now an identify copy
580///    ...
581///     = op B2   <- more uses
582///
583/// This returns true if an interval was modified.
584///
585bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
586                                                 MachineInstr *CopyMI) {
587  // FIXME: For now, only eliminate the copy by commuting its def when the
588  // source register is a virtual register. We want to guard against cases
589  // where the copy is a back edge copy and commuting the def lengthen the
590  // live interval of the source register to the entire loop.
591  if (CP.isPhys() && CP.isFlipped())
592    return false;
593
594  // Bail if there is no dst interval.
595  if (!LIS->hasInterval(CP.getDstReg()))
596    return false;
597
598  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
599
600  LiveInterval &IntA =
601    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
602  LiveInterval &IntB =
603    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
604
605  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
606  // the example above.
607  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
608  if (!BValNo || BValNo->def != CopyIdx)
609    return false;
610
611  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
612
613  // AValNo is the value number in A that defines the copy, A3 in the example.
614  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
615  assert(AValNo && "COPY source not live");
616
617  // If other defs can reach uses of this def, then it's not safe to perform
618  // the optimization.
619  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
620    return false;
621  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
622  if (!DefMI)
623    return false;
624  if (!DefMI->isCommutable())
625    return false;
626  // If DefMI is a two-address instruction then commuting it will change the
627  // destination register.
628  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
629  assert(DefIdx != -1);
630  unsigned UseOpIdx;
631  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
632    return false;
633  unsigned Op1, Op2, NewDstIdx;
634  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
635    return false;
636  if (Op1 == UseOpIdx)
637    NewDstIdx = Op2;
638  else if (Op2 == UseOpIdx)
639    NewDstIdx = Op1;
640  else
641    return false;
642
643  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
644  unsigned NewReg = NewDstMO.getReg();
645  if (NewReg != IntB.reg || !NewDstMO.isKill())
646    return false;
647
648  // Make sure there are no other definitions of IntB that would reach the
649  // uses which the new definition can reach.
650  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
651    return false;
652
653  // Abort if the aliases of IntB.reg have values that are not simply the
654  // clobbers from the superreg.
655  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
656    for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
657      if (LIS->hasInterval(*AS) &&
658          hasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
659        return false;
660
661  // If some of the uses of IntA.reg is already coalesced away, return false.
662  // It's not possible to determine whether it's safe to perform the coalescing.
663  for (MachineRegisterInfo::use_nodbg_iterator UI =
664         MRI->use_nodbg_begin(IntA.reg),
665       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
666    MachineInstr *UseMI = &*UI;
667    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
668    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
669    if (ULR == IntA.end())
670      continue;
671    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
672      return false;
673  }
674
675  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
676               << *DefMI);
677
678  // At this point we have decided that it is legal to do this
679  // transformation.  Start by commuting the instruction.
680  MachineBasicBlock *MBB = DefMI->getParent();
681  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
682  if (!NewMI)
683    return false;
684  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
685      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
686      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
687    return false;
688  if (NewMI != DefMI) {
689    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
690    MachineBasicBlock::iterator Pos = DefMI;
691    MBB->insert(Pos, NewMI);
692    MBB->erase(DefMI);
693  }
694  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
695  NewMI->getOperand(OpIdx).setIsKill();
696
697  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
698  // A = or A, B
699  // ...
700  // B = A
701  // ...
702  // C = A<kill>
703  // ...
704  //   = B
705
706  // Update uses of IntA of the specific Val# with IntB.
707  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
708         UE = MRI->use_end(); UI != UE;) {
709    MachineOperand &UseMO = UI.getOperand();
710    MachineInstr *UseMI = &*UI;
711    ++UI;
712    if (JoinedCopies.count(UseMI))
713      continue;
714    if (UseMI->isDebugValue()) {
715      // FIXME These don't have an instruction index.  Not clear we have enough
716      // info to decide whether to do this replacement or not.  For now do it.
717      UseMO.setReg(NewReg);
718      continue;
719    }
720    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
721    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
722    if (ULR == IntA.end() || ULR->valno != AValNo)
723      continue;
724    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
725      UseMO.substPhysReg(NewReg, *TRI);
726    else
727      UseMO.setReg(NewReg);
728    if (UseMI == CopyMI)
729      continue;
730    if (!UseMI->isCopy())
731      continue;
732    if (UseMI->getOperand(0).getReg() != IntB.reg ||
733        UseMI->getOperand(0).getSubReg())
734      continue;
735
736    // This copy will become a noop. If it's defining a new val#, merge it into
737    // BValNo.
738    SlotIndex DefIdx = UseIdx.getRegSlot();
739    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
740    if (!DVNI)
741      continue;
742    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
743    assert(DVNI->def == DefIdx);
744    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
745    markAsJoined(UseMI);
746  }
747
748  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
749  // is updated.
750  VNInfo *ValNo = BValNo;
751  ValNo->def = AValNo->def;
752  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
753       AI != AE; ++AI) {
754    if (AI->valno != AValNo) continue;
755    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
756  }
757  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
758
759  IntA.removeValNo(AValNo);
760  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
761  ++numCommutes;
762  return true;
763}
764
765/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
766/// computation, replace the copy by rematerialize the definition.
767bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt,
768                                                bool preserveSrcInt,
769                                                unsigned DstReg,
770                                                MachineInstr *CopyMI) {
771  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
772  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
773  assert(SrcLR != SrcInt.end() && "Live range not found!");
774  VNInfo *ValNo = SrcLR->valno;
775  if (ValNo->isPHIDef() || ValNo->isUnused())
776    return false;
777  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
778  if (!DefMI)
779    return false;
780  assert(DefMI && "Defining instruction disappeared");
781  if (!DefMI->isAsCheapAsAMove())
782    return false;
783  if (!TII->isTriviallyReMaterializable(DefMI, AA))
784    return false;
785  bool SawStore = false;
786  if (!DefMI->isSafeToMove(TII, AA, SawStore))
787    return false;
788  const MCInstrDesc &MCID = DefMI->getDesc();
789  if (MCID.getNumDefs() != 1)
790    return false;
791  if (!DefMI->isImplicitDef()) {
792    // Make sure the copy destination register class fits the instruction
793    // definition register class. The mismatch can happen as a result of earlier
794    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
795    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
796    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
797      if (MRI->getRegClass(DstReg) != RC)
798        return false;
799    } else if (!RC->contains(DstReg))
800      return false;
801  }
802
803  MachineBasicBlock *MBB = CopyMI->getParent();
804  MachineBasicBlock::iterator MII =
805    llvm::next(MachineBasicBlock::iterator(CopyMI));
806  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
807  MachineInstr *NewMI = prior(MII);
808
809  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
810  // We need to remember these so we can add intervals once we insert
811  // NewMI into SlotIndexes.
812  SmallVector<unsigned, 4> NewMIImplDefs;
813  for (unsigned i = NewMI->getDesc().getNumOperands(),
814         e = NewMI->getNumOperands(); i != e; ++i) {
815    MachineOperand &MO = NewMI->getOperand(i);
816    if (MO.isReg()) {
817      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
818             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
819      NewMIImplDefs.push_back(MO.getReg());
820    }
821  }
822
823  // CopyMI may have implicit operands, transfer them over to the newly
824  // rematerialized instruction. And update implicit def interval valnos.
825  for (unsigned i = CopyMI->getDesc().getNumOperands(),
826         e = CopyMI->getNumOperands(); i != e; ++i) {
827    MachineOperand &MO = CopyMI->getOperand(i);
828    if (MO.isReg()) {
829      assert(MO.isImplicit() && "No explicit operands after implict operands.");
830      // Discard VReg implicit defs.
831      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
832        NewMI->addOperand(MO);
833      }
834    }
835  }
836
837  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
838
839  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
840  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
841    unsigned reg = NewMIImplDefs[i];
842    LiveInterval &li = LIS->getInterval(reg);
843    VNInfo *DeadDefVN = li.getNextValue(NewMIIdx.getRegSlot(),
844                                        LIS->getVNInfoAllocator());
845    LiveRange lr(NewMIIdx.getRegSlot(), NewMIIdx.getDeadSlot(), DeadDefVN);
846    li.addRange(lr);
847  }
848
849  CopyMI->eraseFromParent();
850  ReMatCopies.insert(CopyMI);
851  ReMatDefs.insert(DefMI);
852  DEBUG(dbgs() << "Remat: " << *NewMI);
853  ++NumReMats;
854
855  // The source interval can become smaller because we removed a use.
856  if (preserveSrcInt)
857    LIS->shrinkToUses(&SrcInt);
858
859  return true;
860}
861
862/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
863/// values, it only removes local variables. When we have a copy like:
864///
865///   %vreg1 = COPY %vreg2<undef>
866///
867/// We delete the copy and remove the corresponding value number from %vreg1.
868/// Any uses of that value number are marked as <undef>.
869bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
870                                           const CoalescerPair &CP) {
871  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
872  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
873  if (SrcInt->liveAt(Idx))
874    return false;
875  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
876  if (DstInt->liveAt(Idx))
877    return false;
878
879  // No intervals are live-in to CopyMI - it is undef.
880  if (CP.isFlipped())
881    DstInt = SrcInt;
882  SrcInt = 0;
883
884  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
885  assert(DeadVNI && "No value defined in DstInt");
886  DstInt->removeValNo(DeadVNI);
887
888  // Find new undef uses.
889  for (MachineRegisterInfo::reg_nodbg_iterator
890         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
891       I != E; ++I) {
892    MachineOperand &MO = I.getOperand();
893    if (MO.isDef() || MO.isUndef())
894      continue;
895    MachineInstr *MI = MO.getParent();
896    SlotIndex Idx = LIS->getInstructionIndex(MI);
897    if (DstInt->liveAt(Idx))
898      continue;
899    MO.setIsUndef(true);
900    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
901  }
902  return true;
903}
904
905/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
906/// update the subregister number if it is not zero. If DstReg is a
907/// physical register and the existing subregister number of the def / use
908/// being updated is not zero, make sure to set it to the correct physical
909/// subregister.
910void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
911                                          unsigned DstReg,
912                                          unsigned SubIdx) {
913  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
914
915  // Update LiveDebugVariables.
916  LDV->renameRegister(SrcReg, DstReg, SubIdx);
917
918  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
919       MachineInstr *UseMI = I.skipInstruction();) {
920    // A PhysReg copy that won't be coalesced can perhaps be rematerialized
921    // instead.
922    if (DstIsPhys) {
923      if (UseMI->isFullCopy() &&
924          UseMI->getOperand(1).getReg() == SrcReg &&
925          UseMI->getOperand(0).getReg() != SrcReg &&
926          UseMI->getOperand(0).getReg() != DstReg &&
927          !JoinedCopies.count(UseMI) &&
928          reMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
929                                  UseMI->getOperand(0).getReg(), UseMI))
930        continue;
931    }
932
933    SmallVector<unsigned,8> Ops;
934    bool Reads, Writes;
935    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
936
937    // Replace SrcReg with DstReg in all UseMI operands.
938    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
939      MachineOperand &MO = UseMI->getOperand(Ops[i]);
940
941      // Make sure we don't create read-modify-write defs accidentally.  We
942      // assume here that a SrcReg def cannot be joined into a live DstReg.  If
943      // RegisterCoalescer starts tracking partially live registers, we will
944      // need to check the actual LiveInterval to determine if DstReg is live
945      // here.
946      if (SubIdx && !Reads)
947        MO.setIsUndef();
948
949      if (DstIsPhys)
950        MO.substPhysReg(DstReg, *TRI);
951      else
952        MO.substVirtReg(DstReg, SubIdx, *TRI);
953    }
954
955    // This instruction is a copy that will be removed.
956    if (JoinedCopies.count(UseMI))
957      continue;
958
959    DEBUG({
960        dbgs() << "\t\tupdated: ";
961        if (!UseMI->isDebugValue())
962          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
963        dbgs() << *UseMI;
964      });
965  }
966}
967
968/// removeIntervalIfEmpty - Check if the live interval of a physical register
969/// is empty, if so remove it and also remove the empty intervals of its
970/// sub-registers. Return true if live interval is removed.
971static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
972                                  const TargetRegisterInfo *TRI) {
973  if (li.empty()) {
974    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
975      for (const uint16_t* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
976        if (!LIS->hasInterval(*SR))
977          continue;
978        LiveInterval &sli = LIS->getInterval(*SR);
979        if (sli.empty())
980          LIS->removeInterval(*SR);
981      }
982    LIS->removeInterval(li.reg);
983    return true;
984  }
985  return false;
986}
987
988/// removeDeadDef - If a def of a live interval is now determined dead, remove
989/// the val# it defines. If the live interval becomes empty, remove it as well.
990bool RegisterCoalescer::removeDeadDef(LiveInterval &li, MachineInstr *DefMI) {
991  SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot();
992  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
993  if (DefIdx != MLR->valno->def)
994    return false;
995  li.removeValNo(MLR->valno);
996  return removeIntervalIfEmpty(li, LIS, TRI);
997}
998
999/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
1000/// We need to be careful about coalescing a source physical register with a
1001/// virtual register. Once the coalescing is done, it cannot be broken and these
1002/// are not spillable! If the destination interval uses are far away, think
1003/// twice about coalescing them!
1004bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
1005  bool Allocatable = LIS->isAllocatable(CP.getDstReg());
1006  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1007
1008  /// Always join simple intervals that are defined by a single copy from a
1009  /// reserved register. This doesn't increase register pressure, so it is
1010  /// always beneficial.
1011  if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
1012    return true;
1013
1014  if (!EnablePhysicalJoin) {
1015    DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
1016    return false;
1017  }
1018
1019  // Only coalesce to allocatable physreg, we don't want to risk modifying
1020  // reserved registers.
1021  if (!Allocatable) {
1022    DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
1023    return false;  // Not coalescable.
1024  }
1025
1026  // Don't join with physregs that have a ridiculous number of live
1027  // ranges. The data structure performance is really bad when that
1028  // happens.
1029  if (LIS->hasInterval(CP.getDstReg()) &&
1030      LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
1031    ++numAborts;
1032    DEBUG(dbgs()
1033          << "\tPhysical register live interval too complicated, abort!\n");
1034    return false;
1035  }
1036
1037  // FIXME: Why are we skipping this test for partial copies?
1038  //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
1039  if (!CP.isPartial()) {
1040    const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
1041    unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
1042    unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
1043    if (Length > Threshold) {
1044      ++numAborts;
1045      DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
1046      return false;
1047    }
1048  }
1049  return true;
1050}
1051
1052
1053/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1054/// which are the src/dst of the copy instruction CopyMI.  This returns true
1055/// if the copy was successfully coalesced away. If it is not currently
1056/// possible to coalesce this interval, but it may be possible if other
1057/// things get coalesced, then it returns true by reference in 'Again'.
1058bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1059
1060  Again = false;
1061  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1062    return false; // Already done.
1063
1064  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1065
1066  CoalescerPair CP(*TII, *TRI);
1067  if (!CP.setRegisters(CopyMI)) {
1068    DEBUG(dbgs() << "\tNot coalescable.\n");
1069    return false;
1070  }
1071
1072  // If they are already joined we continue.
1073  if (CP.getSrcReg() == CP.getDstReg()) {
1074    markAsJoined(CopyMI);
1075    DEBUG(dbgs() << "\tCopy already coalesced.\n");
1076    return false;  // Not coalescable.
1077  }
1078
1079  // Eliminate undefs.
1080  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1081    markAsJoined(CopyMI);
1082    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1083    return false;  // Not coalescable.
1084  }
1085
1086  // Enforce policies.
1087  if (CP.isPhys()) {
1088    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1089                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1090                 << '\n');
1091    if (!shouldJoinPhys(CP)) {
1092      // Before giving up coalescing, if definition of source is defined by
1093      // trivial computation, try rematerializing it.
1094      if (!CP.isFlipped() &&
1095          reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1096                                  CP.getDstReg(), CopyMI))
1097        return true;
1098      return false;
1099    }
1100  } else {
1101    DEBUG({
1102      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1103             << " with ";
1104      if (CP.getDstIdx() && CP.getSrcIdx())
1105        dbgs() << PrintReg(CP.getDstReg()) << " in "
1106               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1107               << PrintReg(CP.getSrcReg()) << " in "
1108               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1109      else
1110        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1111               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1112    });
1113
1114    // When possible, let DstReg be the larger interval.
1115    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1116                           LIS->getInterval(CP.getDstReg()).ranges.size())
1117      CP.flip();
1118  }
1119
1120  // Okay, attempt to join these two intervals.  On failure, this returns false.
1121  // Otherwise, if one of the intervals being joined is a physreg, this method
1122  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1123  // been modified, so we can use this information below to update aliases.
1124  if (!joinIntervals(CP)) {
1125    // Coalescing failed.
1126
1127    // If definition of source is defined by trivial computation, try
1128    // rematerializing it.
1129    if (!CP.isFlipped() &&
1130        reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1131                                CP.getDstReg(), CopyMI))
1132      return true;
1133
1134    // If we can eliminate the copy without merging the live ranges, do so now.
1135    if (!CP.isPartial()) {
1136      if (adjustCopiesBackFrom(CP, CopyMI) ||
1137          removeCopyByCommutingDef(CP, CopyMI)) {
1138        markAsJoined(CopyMI);
1139        DEBUG(dbgs() << "\tTrivial!\n");
1140        return true;
1141      }
1142    }
1143
1144    // Otherwise, we are unable to join the intervals.
1145    DEBUG(dbgs() << "\tInterference!\n");
1146    Again = true;  // May be possible to coalesce later.
1147    return false;
1148  }
1149
1150  // Coalescing to a virtual register that is of a sub-register class of the
1151  // other. Make sure the resulting register is set to the right register class.
1152  if (CP.isCrossClass()) {
1153    ++numCrossRCs;
1154    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1155  }
1156
1157  // Remember to delete the copy instruction.
1158  markAsJoined(CopyMI);
1159
1160  // Rewrite all SrcReg operands to DstReg.
1161  // Also update DstReg operands to include DstIdx if it is set.
1162  if (CP.getDstIdx())
1163    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1164  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1165
1166  // If we have extended the live range of a physical register, make sure we
1167  // update live-in lists as well.
1168  if (CP.isPhys()) {
1169    SmallVector<MachineBasicBlock*, 16> BlockSeq;
1170    // joinIntervals invalidates the VNInfos in SrcInt, but we only need the
1171    // ranges for this, and they are preserved.
1172    LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
1173    for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
1174         I != E; ++I ) {
1175      LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
1176      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
1177        MachineBasicBlock &block = *BlockSeq[idx];
1178        if (!block.isLiveIn(CP.getDstReg()))
1179          block.addLiveIn(CP.getDstReg());
1180      }
1181      BlockSeq.clear();
1182    }
1183  }
1184
1185  // SrcReg is guaranteed to be the register whose live interval that is
1186  // being merged.
1187  LIS->removeInterval(CP.getSrcReg());
1188
1189  // Update regalloc hint.
1190  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1191
1192  DEBUG({
1193    LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
1194    dbgs() << "\tJoined. Result = ";
1195    DstInt.print(dbgs(), TRI);
1196    dbgs() << "\n";
1197  });
1198
1199  ++numJoins;
1200  return true;
1201}
1202
1203/// Attempt joining with a reserved physreg.
1204bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1205  assert(CP.isPhys() && "Must be a physreg copy");
1206  assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register");
1207  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1208  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1209
1210  assert(CP.isFlipped() && RHS.containsOneValue() &&
1211         "Invalid join with reserved register");
1212
1213  // Optimization for reserved registers like ESP. We can only merge with a
1214  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1215  // The live range of the reserved register will look like a set of dead defs
1216  // - we don't properly track the live range of reserved registers.
1217
1218  // Deny any overlapping intervals.  This depends on all the reserved
1219  // register live ranges to look like dead defs.
1220  for (const uint16_t *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
1221    if (!LIS->hasInterval(*AS)) {
1222      // Make sure at least DstReg itself exists before attempting a join.
1223      if (*AS == CP.getDstReg())
1224        LIS->getOrCreateInterval(CP.getDstReg());
1225      continue;
1226    }
1227    if (RHS.overlaps(LIS->getInterval(*AS))) {
1228      DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
1229      return false;
1230    }
1231  }
1232  // Skip any value computations, we are not adding new values to the
1233  // reserved register.  Also skip merging the live ranges, the reserved
1234  // register live range doesn't need to be accurate as long as all the
1235  // defs are there.
1236  return true;
1237}
1238
1239bool RegisterCoalescer::canJoinPhysReg(CoalescerPair &CP) {
1240  assert(CP.isPhys() && "Must be a physreg copy");
1241  // If a live interval is a physical register, check for interference with any
1242  // aliases. The interference check implemented here is a bit more
1243  // conservative than the full interfeence check below. We allow overlapping
1244  // live ranges only when one is a copy of the other.
1245  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1246  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1247
1248  // Check if a register mask clobbers DstReg.
1249  BitVector UsableRegs;
1250  if (LIS->checkRegMaskInterference(RHS, UsableRegs) &&
1251      !UsableRegs.test(CP.getDstReg())) {
1252    DEBUG(dbgs() << "\t\tRegister mask interference.\n");
1253    return false;
1254  }
1255
1256  for (const uint16_t *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
1257    if (!LIS->hasInterval(*AS))
1258      continue;
1259    const LiveInterval &LHS = LIS->getInterval(*AS);
1260    LiveInterval::const_iterator LI = LHS.begin();
1261    for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
1262         RI != RE; ++RI) {
1263      LI = std::lower_bound(LI, LHS.end(), RI->start);
1264      // Does LHS have an overlapping live range starting before RI?
1265      if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
1266          (RI->start != RI->valno->def ||
1267           !CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
1268        DEBUG({
1269          dbgs() << "\t\tInterference from alias: ";
1270          LHS.print(dbgs(), TRI);
1271          dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
1272        });
1273        return false;
1274      }
1275
1276      // Check that LHS ranges beginning in this range are copies.
1277      for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
1278        if (LI->start != LI->valno->def ||
1279            !CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
1280          DEBUG({
1281            dbgs() << "\t\tInterference from alias: ";
1282            LHS.print(dbgs(), TRI);
1283            dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
1284          });
1285          return false;
1286        }
1287      }
1288    }
1289  }
1290  return true;
1291}
1292
1293/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1294/// compute what the resultant value numbers for each value in the input two
1295/// ranges will be.  This is complicated by copies between the two which can
1296/// and will commonly cause multiple value numbers to be merged into one.
1297///
1298/// VN is the value number that we're trying to resolve.  InstDefiningValue
1299/// keeps track of the new InstDefiningValue assignment for the result
1300/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1301/// whether a value in this or other is a copy from the opposite set.
1302/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1303/// already been assigned.
1304///
1305/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1306/// contains the value number the copy is from.
1307///
1308static unsigned ComputeUltimateVN(VNInfo *VNI,
1309                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1310                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1311                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1312                                  SmallVector<int, 16> &ThisValNoAssignments,
1313                                  SmallVector<int, 16> &OtherValNoAssignments) {
1314  unsigned VN = VNI->id;
1315
1316  // If the VN has already been computed, just return it.
1317  if (ThisValNoAssignments[VN] >= 0)
1318    return ThisValNoAssignments[VN];
1319  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1320
1321  // If this val is not a copy from the other val, then it must be a new value
1322  // number in the destination.
1323  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1324  if (I == ThisFromOther.end()) {
1325    NewVNInfo.push_back(VNI);
1326    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1327  }
1328  VNInfo *OtherValNo = I->second;
1329
1330  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1331  // been computed, return it.
1332  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1333    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1334
1335  // Mark this value number as currently being computed, then ask what the
1336  // ultimate value # of the other value is.
1337  ThisValNoAssignments[VN] = -2;
1338  unsigned UltimateVN =
1339    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1340                      OtherValNoAssignments, ThisValNoAssignments);
1341  return ThisValNoAssignments[VN] = UltimateVN;
1342}
1343
1344
1345// Find out if we have something like
1346// A = X
1347// B = X
1348// if so, we can pretend this is actually
1349// A = X
1350// B = A
1351// which allows us to coalesce A and B.
1352// VNI is the definition of B. LR is the life range of A that includes
1353// the slot just before B. If we return true, we add "B = X" to DupCopies.
1354// This implies that A dominates B.
1355static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1356                                          const TargetRegisterInfo &tri,
1357                                          CoalescerPair &CP,
1358                                          VNInfo *VNI,
1359                                          LiveRange *LR,
1360                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1361  // FIXME: This is very conservative. For example, we don't handle
1362  // physical registers.
1363
1364  MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
1365
1366  if (!MI || !MI->isFullCopy() || CP.isPartial() || CP.isPhys())
1367    return false;
1368
1369  unsigned Dst = MI->getOperand(0).getReg();
1370  unsigned Src = MI->getOperand(1).getReg();
1371
1372  if (!TargetRegisterInfo::isVirtualRegister(Src) ||
1373      !TargetRegisterInfo::isVirtualRegister(Dst))
1374    return false;
1375
1376  unsigned A = CP.getDstReg();
1377  unsigned B = CP.getSrcReg();
1378
1379  if (B == Dst)
1380    std::swap(A, B);
1381  assert(Dst == A);
1382
1383  VNInfo *Other = LR->valno;
1384  const MachineInstr *OtherMI = li.getInstructionFromIndex(Other->def);
1385
1386  if (!OtherMI || !OtherMI->isFullCopy())
1387    return false;
1388
1389  unsigned OtherDst = OtherMI->getOperand(0).getReg();
1390  unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1391
1392  if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
1393      !TargetRegisterInfo::isVirtualRegister(OtherDst))
1394    return false;
1395
1396  assert(OtherDst == B);
1397
1398  if (Src != OtherSrc)
1399    return false;
1400
1401  // If the copies use two different value numbers of X, we cannot merge
1402  // A and B.
1403  LiveInterval &SrcInt = li.getInterval(Src);
1404  // getVNInfoBefore returns NULL for undef copies. In this case, the
1405  // optimization is still safe.
1406  if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def))
1407    return false;
1408
1409  DupCopies.push_back(MI);
1410
1411  return true;
1412}
1413
1414/// joinIntervals - Attempt to join these two intervals.  On failure, this
1415/// returns false.
1416bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
1417  // Handle physreg joins separately.
1418  if (CP.isPhys()) {
1419    if (RegClassInfo.isReserved(CP.getDstReg()))
1420      return joinReservedPhysReg(CP);
1421    if (!canJoinPhysReg(CP))
1422      return false;
1423  }
1424
1425  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1426  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1427
1428  // Compute the final value assignment, assuming that the live ranges can be
1429  // coalesced.
1430  SmallVector<int, 16> LHSValNoAssignments;
1431  SmallVector<int, 16> RHSValNoAssignments;
1432  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1433  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1434  SmallVector<VNInfo*, 16> NewVNInfo;
1435
1436  SmallVector<MachineInstr*, 8> DupCopies;
1437
1438  LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1439  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
1440
1441  // Loop over the value numbers of the LHS, seeing if any are defined from
1442  // the RHS.
1443  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1444       i != e; ++i) {
1445    VNInfo *VNI = *i;
1446    if (VNI->isUnused() || VNI->isPHIDef())
1447      continue;
1448    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1449    assert(MI && "Missing def");
1450    if (!MI->isCopyLike())  // Src not defined by a copy?
1451      continue;
1452
1453    // Figure out the value # from the RHS.
1454    LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1455    // The copy could be to an aliased physreg.
1456    if (!lr) continue;
1457
1458    // DstReg is known to be a register in the LHS interval.  If the src is
1459    // from the RHS interval, we can use its value #.
1460    if (!CP.isCoalescable(MI) &&
1461        !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1462      continue;
1463
1464    LHSValsDefinedFromRHS[VNI] = lr->valno;
1465  }
1466
1467  // Loop over the value numbers of the RHS, seeing if any are defined from
1468  // the LHS.
1469  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1470       i != e; ++i) {
1471    VNInfo *VNI = *i;
1472    if (VNI->isUnused() || VNI->isPHIDef())
1473      continue;
1474    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1475    assert(MI && "Missing def");
1476    if (!MI->isCopyLike())  // Src not defined by a copy?
1477      continue;
1478
1479    // Figure out the value # from the LHS.
1480    LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1481    // The copy could be to an aliased physreg.
1482    if (!lr) continue;
1483
1484    // DstReg is known to be a register in the RHS interval.  If the src is
1485    // from the LHS interval, we can use its value #.
1486    if (!CP.isCoalescable(MI) &&
1487        !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1488        continue;
1489
1490    RHSValsDefinedFromLHS[VNI] = lr->valno;
1491  }
1492
1493  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1494  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1495  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1496
1497  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1498       i != e; ++i) {
1499    VNInfo *VNI = *i;
1500    unsigned VN = VNI->id;
1501    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1502      continue;
1503    ComputeUltimateVN(VNI, NewVNInfo,
1504                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1505                      LHSValNoAssignments, RHSValNoAssignments);
1506  }
1507  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1508       i != e; ++i) {
1509    VNInfo *VNI = *i;
1510    unsigned VN = VNI->id;
1511    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1512      continue;
1513    // If this value number isn't a copy from the LHS, it's a new number.
1514    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1515      NewVNInfo.push_back(VNI);
1516      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1517      continue;
1518    }
1519
1520    ComputeUltimateVN(VNI, NewVNInfo,
1521                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1522                      RHSValNoAssignments, LHSValNoAssignments);
1523  }
1524
1525  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1526  // interval lists to see if these intervals are coalescable.
1527  LiveInterval::const_iterator I = LHS.begin();
1528  LiveInterval::const_iterator IE = LHS.end();
1529  LiveInterval::const_iterator J = RHS.begin();
1530  LiveInterval::const_iterator JE = RHS.end();
1531
1532  // Skip ahead until the first place of potential sharing.
1533  if (I != IE && J != JE) {
1534    if (I->start < J->start) {
1535      I = std::upper_bound(I, IE, J->start);
1536      if (I != LHS.begin()) --I;
1537    } else if (J->start < I->start) {
1538      J = std::upper_bound(J, JE, I->start);
1539      if (J != RHS.begin()) --J;
1540    }
1541  }
1542
1543  while (I != IE && J != JE) {
1544    // Determine if these two live ranges overlap.
1545    bool Overlaps;
1546    if (I->start < J->start) {
1547      Overlaps = I->end > J->start;
1548    } else {
1549      Overlaps = J->end > I->start;
1550    }
1551
1552    // If so, check value # info to determine if they are really different.
1553    if (Overlaps) {
1554      // If the live range overlap will map to the same value number in the
1555      // result liverange, we can still coalesce them.  If not, we can't.
1556      if (LHSValNoAssignments[I->valno->id] !=
1557          RHSValNoAssignments[J->valno->id])
1558        return false;
1559    }
1560
1561    if (I->end < J->end)
1562      ++I;
1563    else
1564      ++J;
1565  }
1566
1567  // Update kill info. Some live ranges are extended due to copy coalescing.
1568  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1569         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1570    VNInfo *VNI = I->first;
1571    unsigned LHSValID = LHSValNoAssignments[VNI->id];
1572    if (VNI->hasPHIKill())
1573      NewVNInfo[LHSValID]->setHasPHIKill(true);
1574  }
1575
1576  // Update kill info. Some live ranges are extended due to copy coalescing.
1577  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1578         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1579    VNInfo *VNI = I->first;
1580    unsigned RHSValID = RHSValNoAssignments[VNI->id];
1581    if (VNI->hasPHIKill())
1582      NewVNInfo[RHSValID]->setHasPHIKill(true);
1583  }
1584
1585  if (LHSValNoAssignments.empty())
1586    LHSValNoAssignments.push_back(-1);
1587  if (RHSValNoAssignments.empty())
1588    RHSValNoAssignments.push_back(-1);
1589
1590  SmallVector<unsigned, 8> SourceRegisters;
1591  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1592         E = DupCopies.end(); I != E; ++I) {
1593    MachineInstr *MI = *I;
1594
1595    // We have pretended that the assignment to B in
1596    // A = X
1597    // B = X
1598    // was actually a copy from A. Now that we decided to coalesce A and B,
1599    // transform the code into
1600    // A = X
1601    // X = X
1602    // and mark the X as coalesced to keep the illusion.
1603    unsigned Src = MI->getOperand(1).getReg();
1604    SourceRegisters.push_back(Src);
1605    MI->getOperand(0).substVirtReg(Src, 0, *TRI);
1606
1607    markAsJoined(MI);
1608  }
1609
1610  // If B = X was the last use of X in a liverange, we have to shrink it now
1611  // that B = X is gone.
1612  for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1613         E = SourceRegisters.end(); I != E; ++I) {
1614    LIS->shrinkToUses(&LIS->getInterval(*I));
1615  }
1616
1617  // If we get here, we know that we can coalesce the live ranges.  Ask the
1618  // intervals to coalesce themselves now.
1619  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1620           MRI);
1621  return true;
1622}
1623
1624namespace {
1625  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1626  // depth of the basic block (the unsigned), and then on the MBB number.
1627  struct DepthMBBCompare {
1628    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1629    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1630      // Deeper loops first
1631      if (LHS.first != RHS.first)
1632        return LHS.first > RHS.first;
1633
1634      // Prefer blocks that are more connected in the CFG. This takes care of
1635      // the most difficult copies first while intervals are short.
1636      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1637      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1638      if (cl != cr)
1639        return cl > cr;
1640
1641      // As a last resort, sort by block number.
1642      return LHS.second->getNumber() < RHS.second->getNumber();
1643    }
1644  };
1645}
1646
1647void
1648RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB,
1649                                     std::vector<MachineInstr*> &TryAgain) {
1650  DEBUG(dbgs() << MBB->getName() << ":\n");
1651
1652  SmallVector<MachineInstr*, 8> VirtCopies;
1653  SmallVector<MachineInstr*, 8> PhysCopies;
1654  SmallVector<MachineInstr*, 8> ImpDefCopies;
1655  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1656       MII != E;) {
1657    MachineInstr *Inst = MII++;
1658
1659    // If this isn't a copy nor a extract_subreg, we can't join intervals.
1660    unsigned SrcReg, DstReg;
1661    if (Inst->isCopy()) {
1662      DstReg = Inst->getOperand(0).getReg();
1663      SrcReg = Inst->getOperand(1).getReg();
1664    } else if (Inst->isSubregToReg()) {
1665      DstReg = Inst->getOperand(0).getReg();
1666      SrcReg = Inst->getOperand(2).getReg();
1667    } else
1668      continue;
1669
1670    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1671    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1672    if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
1673      ImpDefCopies.push_back(Inst);
1674    else if (SrcIsPhys || DstIsPhys)
1675      PhysCopies.push_back(Inst);
1676    else
1677      VirtCopies.push_back(Inst);
1678  }
1679
1680  // Try coalescing implicit copies and insert_subreg <undef> first,
1681  // followed by copies to / from physical registers, then finally copies
1682  // from virtual registers to virtual registers.
1683  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
1684    MachineInstr *TheCopy = ImpDefCopies[i];
1685    bool Again = false;
1686    if (!joinCopy(TheCopy, Again))
1687      if (Again)
1688        TryAgain.push_back(TheCopy);
1689  }
1690  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
1691    MachineInstr *TheCopy = PhysCopies[i];
1692    bool Again = false;
1693    if (!joinCopy(TheCopy, Again))
1694      if (Again)
1695        TryAgain.push_back(TheCopy);
1696  }
1697  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
1698    MachineInstr *TheCopy = VirtCopies[i];
1699    bool Again = false;
1700    if (!joinCopy(TheCopy, Again))
1701      if (Again)
1702        TryAgain.push_back(TheCopy);
1703  }
1704}
1705
1706void RegisterCoalescer::joinAllIntervals() {
1707  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1708
1709  std::vector<MachineInstr*> TryAgainList;
1710  if (Loops->empty()) {
1711    // If there are no loops in the function, join intervals in function order.
1712    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1713         I != E; ++I)
1714      copyCoalesceInMBB(I, TryAgainList);
1715  } else {
1716    // Otherwise, join intervals in inner loops before other intervals.
1717    // Unfortunately we can't just iterate over loop hierarchy here because
1718    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1719
1720    // Join intervals in the function prolog first. We want to join physical
1721    // registers with virtual registers before the intervals got too long.
1722    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1723    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1724      MachineBasicBlock *MBB = I;
1725      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1726    }
1727
1728    // Sort by loop depth.
1729    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1730
1731    // Finally, join intervals in loop nest order.
1732    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1733      copyCoalesceInMBB(MBBs[i].second, TryAgainList);
1734  }
1735
1736  // Joining intervals can allow other intervals to be joined.  Iteratively join
1737  // until we make no progress.
1738  bool ProgressMade = true;
1739  while (ProgressMade) {
1740    ProgressMade = false;
1741
1742    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1743      MachineInstr *&TheCopy = TryAgainList[i];
1744      if (!TheCopy)
1745        continue;
1746
1747      bool Again = false;
1748      bool Success = joinCopy(TheCopy, Again);
1749      if (Success || !Again) {
1750        TheCopy= 0;   // Mark this one as done.
1751        ProgressMade = true;
1752      }
1753    }
1754  }
1755}
1756
1757void RegisterCoalescer::releaseMemory() {
1758  JoinedCopies.clear();
1759  ReMatCopies.clear();
1760  ReMatDefs.clear();
1761}
1762
1763bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1764  MF = &fn;
1765  MRI = &fn.getRegInfo();
1766  TM = &fn.getTarget();
1767  TRI = TM->getRegisterInfo();
1768  TII = TM->getInstrInfo();
1769  LIS = &getAnalysis<LiveIntervals>();
1770  LDV = &getAnalysis<LiveDebugVariables>();
1771  AA = &getAnalysis<AliasAnalysis>();
1772  Loops = &getAnalysis<MachineLoopInfo>();
1773
1774  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1775               << "********** Function: "
1776               << ((Value*)MF->getFunction())->getName() << '\n');
1777
1778  if (VerifyCoalescing)
1779    MF->verify(this, "Before register coalescing");
1780
1781  RegClassInfo.runOnMachineFunction(fn);
1782
1783  // Join (coalesce) intervals if requested.
1784  if (EnableJoining) {
1785    joinAllIntervals();
1786    DEBUG({
1787        dbgs() << "********** INTERVALS POST JOINING **********\n";
1788        for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
1789             I != E; ++I){
1790          I->second->print(dbgs(), TRI);
1791          dbgs() << "\n";
1792        }
1793      });
1794  }
1795
1796  // Perform a final pass over the instructions and compute spill weights
1797  // and remove identity moves.
1798  SmallVector<unsigned, 4> DeadDefs, InflateRegs;
1799  for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
1800       mbbi != mbbe; ++mbbi) {
1801    MachineBasicBlock* mbb = mbbi;
1802    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1803         mii != mie; ) {
1804      MachineInstr *MI = mii;
1805      if (JoinedCopies.count(MI)) {
1806        // Delete all coalesced copies.
1807        bool DoDelete = true;
1808        assert(MI->isCopyLike() && "Unrecognized copy instruction");
1809        unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
1810        unsigned DstReg = MI->getOperand(0).getReg();
1811
1812        // Collect candidates for register class inflation.
1813        if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1814            RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg)))
1815          InflateRegs.push_back(SrcReg);
1816        if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
1817            RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg)))
1818          InflateRegs.push_back(DstReg);
1819
1820        if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1821            MI->getNumOperands() > 2)
1822          // Do not delete extract_subreg, insert_subreg of physical
1823          // registers unless the definition is dead. e.g.
1824          // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1825          // or else the scavenger may complain. LowerSubregs will
1826          // delete them later.
1827          DoDelete = false;
1828
1829        if (MI->allDefsAreDead()) {
1830          if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1831              LIS->hasInterval(SrcReg))
1832            LIS->shrinkToUses(&LIS->getInterval(SrcReg));
1833          DoDelete = true;
1834        }
1835        if (!DoDelete) {
1836          // We need the instruction to adjust liveness, so make it a KILL.
1837          if (MI->isSubregToReg()) {
1838            MI->RemoveOperand(3);
1839            MI->RemoveOperand(1);
1840          }
1841          MI->setDesc(TII->get(TargetOpcode::KILL));
1842          mii = llvm::next(mii);
1843        } else {
1844          LIS->RemoveMachineInstrFromMaps(MI);
1845          mii = mbbi->erase(mii);
1846          ++numPeep;
1847        }
1848        continue;
1849      }
1850
1851      // Now check if this is a remat'ed def instruction which is now dead.
1852      if (ReMatDefs.count(MI)) {
1853        bool isDead = true;
1854        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1855          const MachineOperand &MO = MI->getOperand(i);
1856          if (!MO.isReg())
1857            continue;
1858          unsigned Reg = MO.getReg();
1859          if (!Reg)
1860            continue;
1861          DeadDefs.push_back(Reg);
1862          if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1863            // Remat may also enable register class inflation.
1864            if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)))
1865              InflateRegs.push_back(Reg);
1866          }
1867          if (MO.isDead())
1868            continue;
1869          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
1870              !MRI->use_nodbg_empty(Reg)) {
1871            isDead = false;
1872            break;
1873          }
1874        }
1875        if (isDead) {
1876          while (!DeadDefs.empty()) {
1877            unsigned DeadDef = DeadDefs.back();
1878            DeadDefs.pop_back();
1879            removeDeadDef(LIS->getInterval(DeadDef), MI);
1880          }
1881          LIS->RemoveMachineInstrFromMaps(mii);
1882          mii = mbbi->erase(mii);
1883          continue;
1884        } else
1885          DeadDefs.clear();
1886      }
1887
1888      ++mii;
1889
1890      // Check for now unnecessary kill flags.
1891      if (LIS->isNotInMIMap(MI)) continue;
1892      SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
1893      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1894        MachineOperand &MO = MI->getOperand(i);
1895        if (!MO.isReg() || !MO.isKill()) continue;
1896        unsigned reg = MO.getReg();
1897        if (!reg || !LIS->hasInterval(reg)) continue;
1898        if (!LIS->getInterval(reg).killedAt(DefIdx)) {
1899          MO.setIsKill(false);
1900          continue;
1901        }
1902        // When leaving a kill flag on a physreg, check if any subregs should
1903        // remain alive.
1904        if (!TargetRegisterInfo::isPhysicalRegister(reg))
1905          continue;
1906        for (const uint16_t *SR = TRI->getSubRegisters(reg);
1907             unsigned S = *SR; ++SR)
1908          if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
1909            MI->addRegisterDefined(S, TRI);
1910      }
1911    }
1912  }
1913
1914  // After deleting a lot of copies, register classes may be less constrained.
1915  // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 ->
1916  // DPR inflation.
1917  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1918  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1919                    InflateRegs.end());
1920  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1921  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1922    unsigned Reg = InflateRegs[i];
1923    if (MRI->reg_nodbg_empty(Reg))
1924      continue;
1925    if (MRI->recomputeRegClass(Reg, *TM)) {
1926      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1927                   << MRI->getRegClass(Reg)->getName() << '\n');
1928      ++NumInflated;
1929    }
1930  }
1931
1932  DEBUG(dump());
1933  DEBUG(LDV->dump());
1934  if (VerifyCoalescing)
1935    MF->verify(this, "After register coalescing");
1936  return true;
1937}
1938
1939/// print - Implement the dump method.
1940void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
1941   LIS->print(O, m);
1942}
1943