RegisterCoalescer.cpp revision ab9baf7ff4b58b3905bccad68c8d2ab59ea4202b
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "VirtRegMap.h"
20
21#include "llvm/Pass.h"
22#include "llvm/Value.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/CodeGen/LiveIntervalAnalysis.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/CodeGen/LiveRangeEdit.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/CodeGen/RegisterClassInfo.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include <algorithm>
49#include <cmath>
50using namespace llvm;
51
52STATISTIC(numJoins    , "Number of interval joins performed");
53STATISTIC(numCrossRCs , "Number of cross class joins performed");
54STATISTIC(numCommutes , "Number of instruction commuting performed");
55STATISTIC(numExtends  , "Number of copies extended");
56STATISTIC(NumReMats   , "Number of instructions re-materialized");
57STATISTIC(NumInflated , "Number of register classes inflated");
58
59static cl::opt<bool>
60EnableJoining("join-liveintervals",
61              cl::desc("Coalesce copies (default=true)"),
62              cl::init(true));
63
64static cl::opt<bool>
65VerifyCoalescing("verify-coalescing",
66         cl::desc("Verify machine instrs before and after register coalescing"),
67         cl::Hidden);
68
69namespace {
70  class RegisterCoalescer : public MachineFunctionPass,
71                            private LiveRangeEdit::Delegate {
72    MachineFunction* MF;
73    MachineRegisterInfo* MRI;
74    const TargetMachine* TM;
75    const TargetRegisterInfo* TRI;
76    const TargetInstrInfo* TII;
77    LiveIntervals *LIS;
78    LiveDebugVariables *LDV;
79    const MachineLoopInfo* Loops;
80    AliasAnalysis *AA;
81    RegisterClassInfo RegClassInfo;
82
83    /// WorkList - Copy instructions yet to be coalesced.
84    SmallVector<MachineInstr*, 8> WorkList;
85
86    /// ErasedInstrs - Set of instruction pointers that have been erased, and
87    /// that may be present in WorkList.
88    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
89
90    /// Dead instructions that are about to be deleted.
91    SmallVector<MachineInstr*, 8> DeadDefs;
92
93    /// Virtual registers to be considered for register class inflation.
94    SmallVector<unsigned, 8> InflateRegs;
95
96    /// Recursively eliminate dead defs in DeadDefs.
97    void eliminateDeadDefs();
98
99    /// LiveRangeEdit callback.
100    void LRE_WillEraseInstruction(MachineInstr *MI);
101
102    /// joinAllIntervals - join compatible live intervals
103    void joinAllIntervals();
104
105    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
106    /// copies that cannot yet be coalesced into WorkList.
107    void copyCoalesceInMBB(MachineBasicBlock *MBB);
108
109    /// copyCoalesceWorkList - Try to coalesce all copies in WorkList after
110    /// position From. Return true if any progress was made.
111    bool copyCoalesceWorkList(unsigned From = 0);
112
113    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
114    /// which are the src/dst of the copy instruction CopyMI.  This returns
115    /// true if the copy was successfully coalesced away. If it is not
116    /// currently possible to coalesce this interval, but it may be possible if
117    /// other things get coalesced, then it returns true by reference in
118    /// 'Again'.
119    bool joinCopy(MachineInstr *TheCopy, bool &Again);
120
121    /// joinIntervals - Attempt to join these two intervals.  On failure, this
122    /// returns false.  The output "SrcInt" will not have been modified, so we
123    /// can use this information below to update aliases.
124    bool joinIntervals(CoalescerPair &CP);
125
126    /// Attempt joining with a reserved physreg.
127    bool joinReservedPhysReg(CoalescerPair &CP);
128
129    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
130    /// the source value number is defined by a copy from the destination reg
131    /// see if we can merge these two destination reg valno# into a single
132    /// value number, eliminating a copy.
133    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
134
135    /// hasOtherReachingDefs - Return true if there are definitions of IntB
136    /// other than BValNo val# that can reach uses of AValno val# of IntA.
137    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
138                              VNInfo *AValNo, VNInfo *BValNo);
139
140    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
141    /// If the source value number is defined by a commutable instruction and
142    /// its other operand is coalesced to the copy dest register, see if we
143    /// can transform the copy into a noop by commuting the definition.
144    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
145
146    /// reMaterializeTrivialDef - If the source of a copy is defined by a
147    /// trivial computation, replace the copy by rematerialize the definition.
148    bool reMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg,
149                                 MachineInstr *CopyMI);
150
151    /// canJoinPhys - Return true if a physreg copy should be joined.
152    bool canJoinPhys(CoalescerPair &CP);
153
154    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
155    /// update the subregister number if it is not zero. If DstReg is a
156    /// physical register and the existing subregister number of the def / use
157    /// being updated is not zero, make sure to set it to the correct physical
158    /// subregister.
159    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
160
161    /// eliminateUndefCopy - Handle copies of undef values.
162    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
163
164  public:
165    static char ID; // Class identification, replacement for typeinfo
166    RegisterCoalescer() : MachineFunctionPass(ID) {
167      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
168    }
169
170    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
171
172    virtual void releaseMemory();
173
174    /// runOnMachineFunction - pass entry point
175    virtual bool runOnMachineFunction(MachineFunction&);
176
177    /// print - Implement the dump method.
178    virtual void print(raw_ostream &O, const Module* = 0) const;
179  };
180} /// end anonymous namespace
181
182char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
183
184INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
185                      "Simple Register Coalescing", false, false)
186INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
187INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
188INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
189INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
191INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
192                    "Simple Register Coalescing", false, false)
193
194char RegisterCoalescer::ID = 0;
195
196static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
197  if (!a) return b;
198  if (!b) return a;
199  return tri.composeSubRegIndices(a, b);
200}
201
202static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
203                        unsigned &Src, unsigned &Dst,
204                        unsigned &SrcSub, unsigned &DstSub) {
205  if (MI->isCopy()) {
206    Dst = MI->getOperand(0).getReg();
207    DstSub = MI->getOperand(0).getSubReg();
208    Src = MI->getOperand(1).getReg();
209    SrcSub = MI->getOperand(1).getSubReg();
210  } else if (MI->isSubregToReg()) {
211    Dst = MI->getOperand(0).getReg();
212    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
213                     MI->getOperand(3).getImm());
214    Src = MI->getOperand(2).getReg();
215    SrcSub = MI->getOperand(2).getSubReg();
216  } else
217    return false;
218  return true;
219}
220
221bool CoalescerPair::setRegisters(const MachineInstr *MI) {
222  SrcReg = DstReg = 0;
223  SrcIdx = DstIdx = 0;
224  NewRC = 0;
225  Flipped = CrossClass = false;
226
227  unsigned Src, Dst, SrcSub, DstSub;
228  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
229    return false;
230  Partial = SrcSub || DstSub;
231
232  // If one register is a physreg, it must be Dst.
233  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
234    if (TargetRegisterInfo::isPhysicalRegister(Dst))
235      return false;
236    std::swap(Src, Dst);
237    std::swap(SrcSub, DstSub);
238    Flipped = true;
239  }
240
241  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
242
243  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
244    // Eliminate DstSub on a physreg.
245    if (DstSub) {
246      Dst = TRI.getSubReg(Dst, DstSub);
247      if (!Dst) return false;
248      DstSub = 0;
249    }
250
251    // Eliminate SrcSub by picking a corresponding Dst superregister.
252    if (SrcSub) {
253      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
254      if (!Dst) return false;
255      SrcSub = 0;
256    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
257      return false;
258    }
259  } else {
260    // Both registers are virtual.
261    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
262    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
263
264    // Both registers have subreg indices.
265    if (SrcSub && DstSub) {
266      // Copies between different sub-registers are never coalescable.
267      if (Src == Dst && SrcSub != DstSub)
268        return false;
269
270      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
271                                         SrcIdx, DstIdx);
272      if (!NewRC)
273        return false;
274    } else if (DstSub) {
275      // SrcReg will be merged with a sub-register of DstReg.
276      SrcIdx = DstSub;
277      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
278    } else if (SrcSub) {
279      // DstReg will be merged with a sub-register of SrcReg.
280      DstIdx = SrcSub;
281      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
282    } else {
283      // This is a straight copy without sub-registers.
284      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
285    }
286
287    // The combined constraint may be impossible to satisfy.
288    if (!NewRC)
289      return false;
290
291    // Prefer SrcReg to be a sub-register of DstReg.
292    // FIXME: Coalescer should support subregs symmetrically.
293    if (DstIdx && !SrcIdx) {
294      std::swap(Src, Dst);
295      std::swap(SrcIdx, DstIdx);
296      Flipped = !Flipped;
297    }
298
299    CrossClass = NewRC != DstRC || NewRC != SrcRC;
300  }
301  // Check our invariants
302  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
303  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
304         "Cannot have a physical SubIdx");
305  SrcReg = Src;
306  DstReg = Dst;
307  return true;
308}
309
310bool CoalescerPair::flip() {
311  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
312    return false;
313  std::swap(SrcReg, DstReg);
314  std::swap(SrcIdx, DstIdx);
315  Flipped = !Flipped;
316  return true;
317}
318
319bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
320  if (!MI)
321    return false;
322  unsigned Src, Dst, SrcSub, DstSub;
323  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
324    return false;
325
326  // Find the virtual register that is SrcReg.
327  if (Dst == SrcReg) {
328    std::swap(Src, Dst);
329    std::swap(SrcSub, DstSub);
330  } else if (Src != SrcReg) {
331    return false;
332  }
333
334  // Now check that Dst matches DstReg.
335  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
336    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
337      return false;
338    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
339    // DstSub could be set for a physreg from INSERT_SUBREG.
340    if (DstSub)
341      Dst = TRI.getSubReg(Dst, DstSub);
342    // Full copy of Src.
343    if (!SrcSub)
344      return DstReg == Dst;
345    // This is a partial register copy. Check that the parts match.
346    return TRI.getSubReg(DstReg, SrcSub) == Dst;
347  } else {
348    // DstReg is virtual.
349    if (DstReg != Dst)
350      return false;
351    // Registers match, do the subregisters line up?
352    return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub);
353  }
354}
355
356void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
357  AU.setPreservesCFG();
358  AU.addRequired<AliasAnalysis>();
359  AU.addRequired<LiveIntervals>();
360  AU.addPreserved<LiveIntervals>();
361  AU.addRequired<LiveDebugVariables>();
362  AU.addPreserved<LiveDebugVariables>();
363  AU.addPreserved<SlotIndexes>();
364  AU.addRequired<MachineLoopInfo>();
365  AU.addPreserved<MachineLoopInfo>();
366  AU.addPreservedID(MachineDominatorsID);
367  MachineFunctionPass::getAnalysisUsage(AU);
368}
369
370void RegisterCoalescer::eliminateDeadDefs() {
371  SmallVector<LiveInterval*, 8> NewRegs;
372  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
373}
374
375// Callback from eliminateDeadDefs().
376void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
377  // MI may be in WorkList. Make sure we don't visit it.
378  ErasedInstrs.insert(MI);
379}
380
381/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
382/// being the source and IntB being the dest, thus this defines a value number
383/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
384/// see if we can merge these two pieces of B into a single value number,
385/// eliminating a copy.  For example:
386///
387///  A3 = B0
388///    ...
389///  B1 = A3      <- this copy
390///
391/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
392/// value number to be replaced with B0 (which simplifies the B liveinterval).
393///
394/// This returns true if an interval was modified.
395///
396bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
397                                             MachineInstr *CopyMI) {
398  assert(!CP.isPartial() && "This doesn't work for partial copies.");
399  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
400
401  LiveInterval &IntA =
402    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
403  LiveInterval &IntB =
404    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
405  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
406
407  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
408  // the example above.
409  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
410  if (BLR == IntB.end()) return false;
411  VNInfo *BValNo = BLR->valno;
412
413  // Get the location that B is defined at.  Two options: either this value has
414  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
415  // can't process it.
416  if (BValNo->def != CopyIdx) return false;
417
418  // AValNo is the value number in A that defines the copy, A3 in the example.
419  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
420  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
421  // The live range might not exist after fun with physreg coalescing.
422  if (ALR == IntA.end()) return false;
423  VNInfo *AValNo = ALR->valno;
424
425  // If AValNo is defined as a copy from IntB, we can potentially process this.
426  // Get the instruction that defines this value number.
427  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
428  if (!CP.isCoalescable(ACopyMI))
429    return false;
430
431  // Get the LiveRange in IntB that this value number starts with.
432  LiveInterval::iterator ValLR =
433    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
434  if (ValLR == IntB.end())
435    return false;
436
437  // Make sure that the end of the live range is inside the same block as
438  // CopyMI.
439  MachineInstr *ValLREndInst =
440    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
441  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
442    return false;
443
444  // Okay, we now know that ValLR ends in the same block that the CopyMI
445  // live-range starts.  If there are no intervening live ranges between them in
446  // IntB, we can merge them.
447  if (ValLR+1 != BLR) return false;
448
449  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
450
451  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
452  // We are about to delete CopyMI, so need to remove it as the 'instruction
453  // that defines this value #'. Update the valnum with the new defining
454  // instruction #.
455  BValNo->def = FillerStart;
456
457  // Okay, we can merge them.  We need to insert a new liverange:
458  // [ValLR.end, BLR.begin) of either value number, then we merge the
459  // two value numbers.
460  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
461
462  // Okay, merge "B1" into the same value number as "B0".
463  if (BValNo != ValLR->valno)
464    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
465  DEBUG(dbgs() << "   result = " << IntB << '\n');
466
467  // If the source instruction was killing the source register before the
468  // merge, unset the isKill marker given the live range has been extended.
469  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
470  if (UIdx != -1) {
471    ValLREndInst->getOperand(UIdx).setIsKill(false);
472  }
473
474  // Rewrite the copy. If the copy instruction was killing the destination
475  // register before the merge, find the last use and trim the live range. That
476  // will also add the isKill marker.
477  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
478  if (ALR->end == CopyIdx)
479    LIS->shrinkToUses(&IntA);
480
481  ++numExtends;
482  return true;
483}
484
485/// hasOtherReachingDefs - Return true if there are definitions of IntB
486/// other than BValNo val# that can reach uses of AValno val# of IntA.
487bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
488                                             LiveInterval &IntB,
489                                             VNInfo *AValNo,
490                                             VNInfo *BValNo) {
491  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
492  // the PHI values.
493  if (LIS->hasPHIKill(IntA, AValNo))
494    return true;
495
496  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
497       AI != AE; ++AI) {
498    if (AI->valno != AValNo) continue;
499    LiveInterval::Ranges::iterator BI =
500      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
501    if (BI != IntB.ranges.begin())
502      --BI;
503    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
504      if (BI->valno == BValNo)
505        continue;
506      if (BI->start <= AI->start && BI->end > AI->start)
507        return true;
508      if (BI->start > AI->start && BI->start < AI->end)
509        return true;
510    }
511  }
512  return false;
513}
514
515/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
516/// IntA being the source and IntB being the dest, thus this defines a value
517/// number in IntB.  If the source value number (in IntA) is defined by a
518/// commutable instruction and its other operand is coalesced to the copy dest
519/// register, see if we can transform the copy into a noop by commuting the
520/// definition. For example,
521///
522///  A3 = op A2 B0<kill>
523///    ...
524///  B1 = A3      <- this copy
525///    ...
526///     = op A3   <- more uses
527///
528/// ==>
529///
530///  B2 = op B0 A2<kill>
531///    ...
532///  B1 = B2      <- now an identify copy
533///    ...
534///     = op B2   <- more uses
535///
536/// This returns true if an interval was modified.
537///
538bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
539                                                 MachineInstr *CopyMI) {
540  assert (!CP.isPhys());
541
542  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
543
544  LiveInterval &IntA =
545    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
546  LiveInterval &IntB =
547    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
548
549  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
550  // the example above.
551  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
552  if (!BValNo || BValNo->def != CopyIdx)
553    return false;
554
555  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
556
557  // AValNo is the value number in A that defines the copy, A3 in the example.
558  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
559  assert(AValNo && "COPY source not live");
560  if (AValNo->isPHIDef() || AValNo->isUnused())
561    return false;
562  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
563  if (!DefMI)
564    return false;
565  if (!DefMI->isCommutable())
566    return false;
567  // If DefMI is a two-address instruction then commuting it will change the
568  // destination register.
569  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
570  assert(DefIdx != -1);
571  unsigned UseOpIdx;
572  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
573    return false;
574  unsigned Op1, Op2, NewDstIdx;
575  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
576    return false;
577  if (Op1 == UseOpIdx)
578    NewDstIdx = Op2;
579  else if (Op2 == UseOpIdx)
580    NewDstIdx = Op1;
581  else
582    return false;
583
584  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
585  unsigned NewReg = NewDstMO.getReg();
586  if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
587    return false;
588
589  // Make sure there are no other definitions of IntB that would reach the
590  // uses which the new definition can reach.
591  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
592    return false;
593
594  // If some of the uses of IntA.reg is already coalesced away, return false.
595  // It's not possible to determine whether it's safe to perform the coalescing.
596  for (MachineRegisterInfo::use_nodbg_iterator UI =
597         MRI->use_nodbg_begin(IntA.reg),
598       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
599    MachineInstr *UseMI = &*UI;
600    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
601    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
602    if (ULR == IntA.end() || ULR->valno != AValNo)
603      continue;
604    // If this use is tied to a def, we can't rewrite the register.
605    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
606      return false;
607  }
608
609  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
610               << *DefMI);
611
612  // At this point we have decided that it is legal to do this
613  // transformation.  Start by commuting the instruction.
614  MachineBasicBlock *MBB = DefMI->getParent();
615  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
616  if (!NewMI)
617    return false;
618  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
619      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
620      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
621    return false;
622  if (NewMI != DefMI) {
623    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
624    MachineBasicBlock::iterator Pos = DefMI;
625    MBB->insert(Pos, NewMI);
626    MBB->erase(DefMI);
627  }
628  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
629  NewMI->getOperand(OpIdx).setIsKill();
630
631  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
632  // A = or A, B
633  // ...
634  // B = A
635  // ...
636  // C = A<kill>
637  // ...
638  //   = B
639
640  // Update uses of IntA of the specific Val# with IntB.
641  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
642         UE = MRI->use_end(); UI != UE;) {
643    MachineOperand &UseMO = UI.getOperand();
644    MachineInstr *UseMI = &*UI;
645    ++UI;
646    if (UseMI->isDebugValue()) {
647      // FIXME These don't have an instruction index.  Not clear we have enough
648      // info to decide whether to do this replacement or not.  For now do it.
649      UseMO.setReg(NewReg);
650      continue;
651    }
652    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
653    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
654    if (ULR == IntA.end() || ULR->valno != AValNo)
655      continue;
656    // Kill flags are no longer accurate. They are recomputed after RA.
657    UseMO.setIsKill(false);
658    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
659      UseMO.substPhysReg(NewReg, *TRI);
660    else
661      UseMO.setReg(NewReg);
662    if (UseMI == CopyMI)
663      continue;
664    if (!UseMI->isCopy())
665      continue;
666    if (UseMI->getOperand(0).getReg() != IntB.reg ||
667        UseMI->getOperand(0).getSubReg())
668      continue;
669
670    // This copy will become a noop. If it's defining a new val#, merge it into
671    // BValNo.
672    SlotIndex DefIdx = UseIdx.getRegSlot();
673    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
674    if (!DVNI)
675      continue;
676    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
677    assert(DVNI->def == DefIdx);
678    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
679    ErasedInstrs.insert(UseMI);
680    LIS->RemoveMachineInstrFromMaps(UseMI);
681    UseMI->eraseFromParent();
682  }
683
684  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
685  // is updated.
686  VNInfo *ValNo = BValNo;
687  ValNo->def = AValNo->def;
688  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
689       AI != AE; ++AI) {
690    if (AI->valno != AValNo) continue;
691    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
692  }
693  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
694
695  IntA.removeValNo(AValNo);
696  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
697  ++numCommutes;
698  return true;
699}
700
701/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
702/// computation, replace the copy by rematerialize the definition.
703bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt,
704                                                unsigned DstReg,
705                                                MachineInstr *CopyMI) {
706  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
707  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
708  assert(SrcLR != SrcInt.end() && "Live range not found!");
709  VNInfo *ValNo = SrcLR->valno;
710  if (ValNo->isPHIDef() || ValNo->isUnused())
711    return false;
712  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
713  if (!DefMI)
714    return false;
715  assert(DefMI && "Defining instruction disappeared");
716  if (!DefMI->isAsCheapAsAMove())
717    return false;
718  if (!TII->isTriviallyReMaterializable(DefMI, AA))
719    return false;
720  bool SawStore = false;
721  if (!DefMI->isSafeToMove(TII, AA, SawStore))
722    return false;
723  const MCInstrDesc &MCID = DefMI->getDesc();
724  if (MCID.getNumDefs() != 1)
725    return false;
726  if (!DefMI->isImplicitDef()) {
727    // Make sure the copy destination register class fits the instruction
728    // definition register class. The mismatch can happen as a result of earlier
729    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
730    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
731    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
732      if (MRI->getRegClass(DstReg) != RC)
733        return false;
734    } else if (!RC->contains(DstReg))
735      return false;
736  }
737
738  MachineBasicBlock *MBB = CopyMI->getParent();
739  MachineBasicBlock::iterator MII =
740    llvm::next(MachineBasicBlock::iterator(CopyMI));
741  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
742  MachineInstr *NewMI = prior(MII);
743
744  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
745  // We need to remember these so we can add intervals once we insert
746  // NewMI into SlotIndexes.
747  SmallVector<unsigned, 4> NewMIImplDefs;
748  for (unsigned i = NewMI->getDesc().getNumOperands(),
749         e = NewMI->getNumOperands(); i != e; ++i) {
750    MachineOperand &MO = NewMI->getOperand(i);
751    if (MO.isReg()) {
752      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
753             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
754      NewMIImplDefs.push_back(MO.getReg());
755    }
756  }
757
758  // CopyMI may have implicit operands, transfer them over to the newly
759  // rematerialized instruction. And update implicit def interval valnos.
760  for (unsigned i = CopyMI->getDesc().getNumOperands(),
761         e = CopyMI->getNumOperands(); i != e; ++i) {
762    MachineOperand &MO = CopyMI->getOperand(i);
763    if (MO.isReg()) {
764      assert(MO.isImplicit() && "No explicit operands after implict operands.");
765      // Discard VReg implicit defs.
766      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
767        NewMI->addOperand(MO);
768      }
769    }
770  }
771
772  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
773
774  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
775  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
776    unsigned Reg = NewMIImplDefs[i];
777    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
778      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
779        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
780  }
781
782  CopyMI->eraseFromParent();
783  ErasedInstrs.insert(CopyMI);
784  DEBUG(dbgs() << "Remat: " << *NewMI);
785  ++NumReMats;
786
787  // The source interval can become smaller because we removed a use.
788  LIS->shrinkToUses(&SrcInt, &DeadDefs);
789  if (!DeadDefs.empty())
790    eliminateDeadDefs();
791
792  return true;
793}
794
795/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
796/// values, it only removes local variables. When we have a copy like:
797///
798///   %vreg1 = COPY %vreg2<undef>
799///
800/// We delete the copy and remove the corresponding value number from %vreg1.
801/// Any uses of that value number are marked as <undef>.
802bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
803                                           const CoalescerPair &CP) {
804  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
805  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
806  if (SrcInt->liveAt(Idx))
807    return false;
808  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
809  if (DstInt->liveAt(Idx))
810    return false;
811
812  // No intervals are live-in to CopyMI - it is undef.
813  if (CP.isFlipped())
814    DstInt = SrcInt;
815  SrcInt = 0;
816
817  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
818  assert(DeadVNI && "No value defined in DstInt");
819  DstInt->removeValNo(DeadVNI);
820
821  // Find new undef uses.
822  for (MachineRegisterInfo::reg_nodbg_iterator
823         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
824       I != E; ++I) {
825    MachineOperand &MO = I.getOperand();
826    if (MO.isDef() || MO.isUndef())
827      continue;
828    MachineInstr *MI = MO.getParent();
829    SlotIndex Idx = LIS->getInstructionIndex(MI);
830    if (DstInt->liveAt(Idx))
831      continue;
832    MO.setIsUndef(true);
833    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
834  }
835  return true;
836}
837
838/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
839/// update the subregister number if it is not zero. If DstReg is a
840/// physical register and the existing subregister number of the def / use
841/// being updated is not zero, make sure to set it to the correct physical
842/// subregister.
843void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
844                                          unsigned DstReg,
845                                          unsigned SubIdx) {
846  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
847  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
848
849  // Update LiveDebugVariables.
850  LDV->renameRegister(SrcReg, DstReg, SubIdx);
851
852  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
853       MachineInstr *UseMI = I.skipInstruction();) {
854    SmallVector<unsigned,8> Ops;
855    bool Reads, Writes;
856    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
857
858    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
859    // because SrcReg is a sub-register.
860    if (DstInt && !Reads && SubIdx)
861      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
862
863    // Replace SrcReg with DstReg in all UseMI operands.
864    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
865      MachineOperand &MO = UseMI->getOperand(Ops[i]);
866
867      // Adjust <undef> flags in case of sub-register joins. We don't want to
868      // turn a full def into a read-modify-write sub-register def and vice
869      // versa.
870      if (SubIdx && MO.isDef())
871        MO.setIsUndef(!Reads);
872
873      if (DstIsPhys)
874        MO.substPhysReg(DstReg, *TRI);
875      else
876        MO.substVirtReg(DstReg, SubIdx, *TRI);
877    }
878
879    DEBUG({
880        dbgs() << "\t\tupdated: ";
881        if (!UseMI->isDebugValue())
882          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
883        dbgs() << *UseMI;
884      });
885  }
886}
887
888/// canJoinPhys - Return true if a copy involving a physreg should be joined.
889bool RegisterCoalescer::canJoinPhys(CoalescerPair &CP) {
890  /// Always join simple intervals that are defined by a single copy from a
891  /// reserved register. This doesn't increase register pressure, so it is
892  /// always beneficial.
893  if (!RegClassInfo.isReserved(CP.getDstReg())) {
894    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
895    return false;
896  }
897
898  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
899  if (CP.isFlipped() && JoinVInt.containsOneValue())
900    return true;
901
902  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
903  return false;
904}
905
906/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
907/// which are the src/dst of the copy instruction CopyMI.  This returns true
908/// if the copy was successfully coalesced away. If it is not currently
909/// possible to coalesce this interval, but it may be possible if other
910/// things get coalesced, then it returns true by reference in 'Again'.
911bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
912
913  Again = false;
914  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
915
916  CoalescerPair CP(*TRI);
917  if (!CP.setRegisters(CopyMI)) {
918    DEBUG(dbgs() << "\tNot coalescable.\n");
919    return false;
920  }
921
922  // Dead code elimination. This really should be handled by MachineDCE, but
923  // sometimes dead copies slip through, and we can't generate invalid live
924  // ranges.
925  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
926    DEBUG(dbgs() << "\tCopy is dead.\n");
927    DeadDefs.push_back(CopyMI);
928    eliminateDeadDefs();
929    return true;
930  }
931
932  // Eliminate undefs.
933  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
934    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
935    LIS->RemoveMachineInstrFromMaps(CopyMI);
936    CopyMI->eraseFromParent();
937    return false;  // Not coalescable.
938  }
939
940  // Coalesced copies are normally removed immediately, but transformations
941  // like removeCopyByCommutingDef() can inadvertently create identity copies.
942  // When that happens, just join the values and remove the copy.
943  if (CP.getSrcReg() == CP.getDstReg()) {
944    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
945    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
946    LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
947    if (VNInfo *DefVNI = LRQ.valueDefined()) {
948      VNInfo *ReadVNI = LRQ.valueIn();
949      assert(ReadVNI && "No value before copy and no <undef> flag.");
950      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
951      LI.MergeValueNumberInto(DefVNI, ReadVNI);
952      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
953    }
954    LIS->RemoveMachineInstrFromMaps(CopyMI);
955    CopyMI->eraseFromParent();
956    return true;
957  }
958
959  // Enforce policies.
960  if (CP.isPhys()) {
961    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
962                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
963                 << '\n');
964    if (!canJoinPhys(CP)) {
965      // Before giving up coalescing, if definition of source is defined by
966      // trivial computation, try rematerializing it.
967      if (!CP.isFlipped() &&
968          reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
969                                  CP.getDstReg(), CopyMI))
970        return true;
971      return false;
972    }
973  } else {
974    DEBUG({
975      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
976             << " with ";
977      if (CP.getDstIdx() && CP.getSrcIdx())
978        dbgs() << PrintReg(CP.getDstReg()) << " in "
979               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
980               << PrintReg(CP.getSrcReg()) << " in "
981               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
982      else
983        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
984               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
985    });
986
987    // When possible, let DstReg be the larger interval.
988    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
989                           LIS->getInterval(CP.getDstReg()).ranges.size())
990      CP.flip();
991  }
992
993  // Okay, attempt to join these two intervals.  On failure, this returns false.
994  // Otherwise, if one of the intervals being joined is a physreg, this method
995  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
996  // been modified, so we can use this information below to update aliases.
997  if (!joinIntervals(CP)) {
998    // Coalescing failed.
999
1000    // If definition of source is defined by trivial computation, try
1001    // rematerializing it.
1002    if (!CP.isFlipped() &&
1003        reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()),
1004                                CP.getDstReg(), CopyMI))
1005      return true;
1006
1007    // If we can eliminate the copy without merging the live ranges, do so now.
1008    if (!CP.isPartial() && !CP.isPhys()) {
1009      if (adjustCopiesBackFrom(CP, CopyMI) ||
1010          removeCopyByCommutingDef(CP, CopyMI)) {
1011        LIS->RemoveMachineInstrFromMaps(CopyMI);
1012        CopyMI->eraseFromParent();
1013        DEBUG(dbgs() << "\tTrivial!\n");
1014        return true;
1015      }
1016    }
1017
1018    // Otherwise, we are unable to join the intervals.
1019    DEBUG(dbgs() << "\tInterference!\n");
1020    Again = true;  // May be possible to coalesce later.
1021    return false;
1022  }
1023
1024  // Coalescing to a virtual register that is of a sub-register class of the
1025  // other. Make sure the resulting register is set to the right register class.
1026  if (CP.isCrossClass()) {
1027    ++numCrossRCs;
1028    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1029  }
1030
1031  // Removing sub-register copies can ease the register class constraints.
1032  // Make sure we attempt to inflate the register class of DstReg.
1033  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1034    InflateRegs.push_back(CP.getDstReg());
1035
1036  // CopyMI has been erased by joinIntervals at this point. Remove it from
1037  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1038  // to the work list. This keeps ErasedInstrs from growing needlessly.
1039  ErasedInstrs.erase(CopyMI);
1040
1041  // Rewrite all SrcReg operands to DstReg.
1042  // Also update DstReg operands to include DstIdx if it is set.
1043  if (CP.getDstIdx())
1044    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1045  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1046
1047  // SrcReg is guaranteed to be the register whose live interval that is
1048  // being merged.
1049  LIS->removeInterval(CP.getSrcReg());
1050
1051  // Update regalloc hint.
1052  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1053
1054  DEBUG({
1055    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
1056    if (!CP.isPhys())
1057      dbgs() << LIS->getInterval(CP.getDstReg());
1058     dbgs() << '\n';
1059  });
1060
1061  ++numJoins;
1062  return true;
1063}
1064
1065/// Attempt joining with a reserved physreg.
1066bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1067  assert(CP.isPhys() && "Must be a physreg copy");
1068  assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register");
1069  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1070  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1071               << '\n');
1072
1073  assert(CP.isFlipped() && RHS.containsOneValue() &&
1074         "Invalid join with reserved register");
1075
1076  // Optimization for reserved registers like ESP. We can only merge with a
1077  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1078  // The live range of the reserved register will look like a set of dead defs
1079  // - we don't properly track the live range of reserved registers.
1080
1081  // Deny any overlapping intervals.  This depends on all the reserved
1082  // register live ranges to look like dead defs.
1083  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1084    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1085      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1086      return false;
1087    }
1088
1089  // Skip any value computations, we are not adding new values to the
1090  // reserved register.  Also skip merging the live ranges, the reserved
1091  // register live range doesn't need to be accurate as long as all the
1092  // defs are there.
1093
1094  // Delete the identity copy.
1095  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
1096  LIS->RemoveMachineInstrFromMaps(CopyMI);
1097  CopyMI->eraseFromParent();
1098
1099  // We don't track kills for reserved registers.
1100  MRI->clearKillFlags(CP.getSrcReg());
1101
1102  return true;
1103}
1104
1105/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1106/// compute what the resultant value numbers for each value in the input two
1107/// ranges will be.  This is complicated by copies between the two which can
1108/// and will commonly cause multiple value numbers to be merged into one.
1109///
1110/// VN is the value number that we're trying to resolve.  InstDefiningValue
1111/// keeps track of the new InstDefiningValue assignment for the result
1112/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1113/// whether a value in this or other is a copy from the opposite set.
1114/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1115/// already been assigned.
1116///
1117/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1118/// contains the value number the copy is from.
1119///
1120static unsigned ComputeUltimateVN(VNInfo *VNI,
1121                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1122                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1123                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1124                                  SmallVector<int, 16> &ThisValNoAssignments,
1125                                  SmallVector<int, 16> &OtherValNoAssignments) {
1126  unsigned VN = VNI->id;
1127
1128  // If the VN has already been computed, just return it.
1129  if (ThisValNoAssignments[VN] >= 0)
1130    return ThisValNoAssignments[VN];
1131  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1132
1133  // If this val is not a copy from the other val, then it must be a new value
1134  // number in the destination.
1135  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1136  if (I == ThisFromOther.end()) {
1137    NewVNInfo.push_back(VNI);
1138    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1139  }
1140  VNInfo *OtherValNo = I->second;
1141
1142  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1143  // been computed, return it.
1144  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1145    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1146
1147  // Mark this value number as currently being computed, then ask what the
1148  // ultimate value # of the other value is.
1149  ThisValNoAssignments[VN] = -2;
1150  unsigned UltimateVN =
1151    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1152                      OtherValNoAssignments, ThisValNoAssignments);
1153  return ThisValNoAssignments[VN] = UltimateVN;
1154}
1155
1156
1157// Find out if we have something like
1158// A = X
1159// B = X
1160// if so, we can pretend this is actually
1161// A = X
1162// B = A
1163// which allows us to coalesce A and B.
1164// VNI is the definition of B. LR is the life range of A that includes
1165// the slot just before B. If we return true, we add "B = X" to DupCopies.
1166// This implies that A dominates B.
1167static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1168                                          const TargetRegisterInfo &tri,
1169                                          CoalescerPair &CP,
1170                                          VNInfo *VNI,
1171                                          VNInfo *OtherVNI,
1172                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1173  // FIXME: This is very conservative. For example, we don't handle
1174  // physical registers.
1175
1176  MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
1177
1178  if (!MI || CP.isPartial() || CP.isPhys())
1179    return false;
1180
1181  unsigned A = CP.getDstReg();
1182  if (!TargetRegisterInfo::isVirtualRegister(A))
1183    return false;
1184
1185  unsigned B = CP.getSrcReg();
1186  if (!TargetRegisterInfo::isVirtualRegister(B))
1187    return false;
1188
1189  MachineInstr *OtherMI = li.getInstructionFromIndex(OtherVNI->def);
1190  if (!OtherMI)
1191    return false;
1192
1193  if (MI->isImplicitDef()) {
1194    DupCopies.push_back(MI);
1195    return true;
1196  } else {
1197    if (!MI->isFullCopy())
1198      return false;
1199    unsigned Src = MI->getOperand(1).getReg();
1200    if (!TargetRegisterInfo::isVirtualRegister(Src))
1201      return false;
1202    if (!OtherMI->isFullCopy())
1203      return false;
1204    unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1205    if (!TargetRegisterInfo::isVirtualRegister(OtherSrc))
1206      return false;
1207
1208    if (Src != OtherSrc)
1209      return false;
1210
1211    // If the copies use two different value numbers of X, we cannot merge
1212    // A and B.
1213    LiveInterval &SrcInt = li.getInterval(Src);
1214    // getVNInfoBefore returns NULL for undef copies. In this case, the
1215    // optimization is still safe.
1216    if (SrcInt.getVNInfoBefore(OtherVNI->def) !=
1217        SrcInt.getVNInfoBefore(VNI->def))
1218      return false;
1219
1220    DupCopies.push_back(MI);
1221    return true;
1222  }
1223}
1224
1225/// joinIntervals - Attempt to join these two intervals.  On failure, this
1226/// returns false.
1227bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
1228  // Handle physreg joins separately.
1229  if (CP.isPhys())
1230    return joinReservedPhysReg(CP);
1231
1232  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1233  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1234               << '\n');
1235
1236  // Compute the final value assignment, assuming that the live ranges can be
1237  // coalesced.
1238  SmallVector<int, 16> LHSValNoAssignments;
1239  SmallVector<int, 16> RHSValNoAssignments;
1240  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1241  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1242  SmallVector<VNInfo*, 16> NewVNInfo;
1243
1244  SmallVector<MachineInstr*, 8> DupCopies;
1245  SmallVector<MachineInstr*, 8> DeadCopies;
1246
1247  LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1248  DEBUG(dbgs() << "\t\tLHS = " << PrintReg(CP.getDstReg(), TRI) << ' ' << LHS
1249               << '\n');
1250
1251  // Loop over the value numbers of the LHS, seeing if any are defined from
1252  // the RHS.
1253  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1254       i != e; ++i) {
1255    VNInfo *VNI = *i;
1256    if (VNI->isUnused() || VNI->isPHIDef())
1257      continue;
1258    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1259    assert(MI && "Missing def");
1260    if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
1261      continue;
1262
1263    // Figure out the value # from the RHS.
1264    VNInfo *OtherVNI = RHS.getVNInfoBefore(VNI->def);
1265    // The copy could be to an aliased physreg.
1266    if (!OtherVNI)
1267      continue;
1268
1269    // DstReg is known to be a register in the LHS interval.  If the src is
1270    // from the RHS interval, we can use its value #.
1271    if (CP.isCoalescable(MI))
1272      DeadCopies.push_back(MI);
1273    else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
1274                                            DupCopies))
1275      continue;
1276
1277    LHSValsDefinedFromRHS[VNI] = OtherVNI;
1278  }
1279
1280  // Loop over the value numbers of the RHS, seeing if any are defined from
1281  // the LHS.
1282  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1283       i != e; ++i) {
1284    VNInfo *VNI = *i;
1285    if (VNI->isUnused() || VNI->isPHIDef())
1286      continue;
1287    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1288    assert(MI && "Missing def");
1289    if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
1290      continue;
1291
1292    // Figure out the value # from the LHS.
1293    VNInfo *OtherVNI = LHS.getVNInfoBefore(VNI->def);
1294    // The copy could be to an aliased physreg.
1295    if (!OtherVNI)
1296      continue;
1297
1298    // DstReg is known to be a register in the RHS interval.  If the src is
1299    // from the LHS interval, we can use its value #.
1300    if (CP.isCoalescable(MI))
1301      DeadCopies.push_back(MI);
1302    else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
1303                                            DupCopies))
1304        continue;
1305
1306    RHSValsDefinedFromLHS[VNI] = OtherVNI;
1307  }
1308
1309  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1310  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1311  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1312
1313  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1314       i != e; ++i) {
1315    VNInfo *VNI = *i;
1316    unsigned VN = VNI->id;
1317    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1318      continue;
1319    ComputeUltimateVN(VNI, NewVNInfo,
1320                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1321                      LHSValNoAssignments, RHSValNoAssignments);
1322  }
1323  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1324       i != e; ++i) {
1325    VNInfo *VNI = *i;
1326    unsigned VN = VNI->id;
1327    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1328      continue;
1329    // If this value number isn't a copy from the LHS, it's a new number.
1330    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1331      NewVNInfo.push_back(VNI);
1332      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1333      continue;
1334    }
1335
1336    ComputeUltimateVN(VNI, NewVNInfo,
1337                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1338                      RHSValNoAssignments, LHSValNoAssignments);
1339  }
1340
1341  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1342  // interval lists to see if these intervals are coalescable.
1343  LiveInterval::const_iterator I = LHS.begin();
1344  LiveInterval::const_iterator IE = LHS.end();
1345  LiveInterval::const_iterator J = RHS.begin();
1346  LiveInterval::const_iterator JE = RHS.end();
1347
1348  // Collect interval end points that will no longer be kills.
1349  SmallVector<MachineInstr*, 8> LHSOldKills;
1350  SmallVector<MachineInstr*, 8> RHSOldKills;
1351
1352  // Skip ahead until the first place of potential sharing.
1353  if (I != IE && J != JE) {
1354    if (I->start < J->start) {
1355      I = std::upper_bound(I, IE, J->start);
1356      if (I != LHS.begin()) --I;
1357    } else if (J->start < I->start) {
1358      J = std::upper_bound(J, JE, I->start);
1359      if (J != RHS.begin()) --J;
1360    }
1361  }
1362
1363  while (I != IE && J != JE) {
1364    // Determine if these two live ranges overlap.
1365    // If so, check value # info to determine if they are really different.
1366    if (I->end > J->start && J->end > I->start) {
1367      // If the live range overlap will map to the same value number in the
1368      // result liverange, we can still coalesce them.  If not, we can't.
1369      if (LHSValNoAssignments[I->valno->id] !=
1370          RHSValNoAssignments[J->valno->id])
1371        return false;
1372
1373      // Extended live ranges should no longer be killed.
1374      if (!I->end.isBlock() && I->end < J->end)
1375        if (MachineInstr *MI = LIS->getInstructionFromIndex(I->end))
1376          LHSOldKills.push_back(MI);
1377      if (!J->end.isBlock() && J->end < I->end)
1378        if (MachineInstr *MI = LIS->getInstructionFromIndex(J->end))
1379          RHSOldKills.push_back(MI);
1380    }
1381
1382    if (I->end < J->end)
1383      ++I;
1384    else
1385      ++J;
1386  }
1387
1388  // Clear kill flags where live ranges are extended.
1389  while (!LHSOldKills.empty())
1390    LHSOldKills.pop_back_val()->clearRegisterKills(LHS.reg, TRI);
1391  while (!RHSOldKills.empty())
1392    RHSOldKills.pop_back_val()->clearRegisterKills(RHS.reg, TRI);
1393
1394  if (LHSValNoAssignments.empty())
1395    LHSValNoAssignments.push_back(-1);
1396  if (RHSValNoAssignments.empty())
1397    RHSValNoAssignments.push_back(-1);
1398
1399  // Now erase all the redundant copies.
1400  for (unsigned i = 0, e = DeadCopies.size(); i != e; ++i) {
1401    MachineInstr *MI = DeadCopies[i];
1402    if (!ErasedInstrs.insert(MI))
1403      continue;
1404    DEBUG(dbgs() << "\t\terased:\t" << LIS->getInstructionIndex(MI)
1405                 << '\t' << *MI);
1406    LIS->RemoveMachineInstrFromMaps(MI);
1407    MI->eraseFromParent();
1408  }
1409
1410  SmallVector<unsigned, 8> SourceRegisters;
1411  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1412         E = DupCopies.end(); I != E; ++I) {
1413    MachineInstr *MI = *I;
1414    if (!ErasedInstrs.insert(MI))
1415      continue;
1416
1417    // If MI is a copy, then we have pretended that the assignment to B in
1418    // A = X
1419    // B = X
1420    // was actually a copy from A. Now that we decided to coalesce A and B,
1421    // transform the code into
1422    // A = X
1423    // In the case of the implicit_def, we just have to remove it.
1424    if (!MI->isImplicitDef()) {
1425      unsigned Src = MI->getOperand(1).getReg();
1426      SourceRegisters.push_back(Src);
1427    }
1428    LIS->RemoveMachineInstrFromMaps(MI);
1429    MI->eraseFromParent();
1430  }
1431
1432  // If B = X was the last use of X in a liverange, we have to shrink it now
1433  // that B = X is gone.
1434  for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1435         E = SourceRegisters.end(); I != E; ++I) {
1436    LIS->shrinkToUses(&LIS->getInterval(*I));
1437  }
1438
1439  // If we get here, we know that we can coalesce the live ranges.  Ask the
1440  // intervals to coalesce themselves now.
1441  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1442           MRI);
1443  return true;
1444}
1445
1446namespace {
1447  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1448  // depth of the basic block (the unsigned), and then on the MBB number.
1449  struct DepthMBBCompare {
1450    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1451    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1452      // Deeper loops first
1453      if (LHS.first != RHS.first)
1454        return LHS.first > RHS.first;
1455
1456      // Prefer blocks that are more connected in the CFG. This takes care of
1457      // the most difficult copies first while intervals are short.
1458      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1459      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1460      if (cl != cr)
1461        return cl > cr;
1462
1463      // As a last resort, sort by block number.
1464      return LHS.second->getNumber() < RHS.second->getNumber();
1465    }
1466  };
1467}
1468
1469// Try joining WorkList copies starting from index From.
1470// Null out any successful joins.
1471bool RegisterCoalescer::copyCoalesceWorkList(unsigned From) {
1472  assert(From <= WorkList.size() && "Out of range");
1473  bool Progress = false;
1474  for (unsigned i = From, e = WorkList.size(); i != e; ++i) {
1475    if (!WorkList[i])
1476      continue;
1477    // Skip instruction pointers that have already been erased, for example by
1478    // dead code elimination.
1479    if (ErasedInstrs.erase(WorkList[i])) {
1480      WorkList[i] = 0;
1481      continue;
1482    }
1483    bool Again = false;
1484    bool Success = joinCopy(WorkList[i], Again);
1485    Progress |= Success;
1486    if (Success || !Again)
1487      WorkList[i] = 0;
1488  }
1489  return Progress;
1490}
1491
1492void
1493RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
1494  DEBUG(dbgs() << MBB->getName() << ":\n");
1495
1496  // Collect all copy-like instructions in MBB. Don't start coalescing anything
1497  // yet, it might invalidate the iterator.
1498  const unsigned PrevSize = WorkList.size();
1499  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1500       MII != E; ++MII)
1501    if (MII->isCopyLike())
1502      WorkList.push_back(MII);
1503
1504  // Try coalescing the collected copies immediately, and remove the nulls.
1505  // This prevents the WorkList from getting too large since most copies are
1506  // joinable on the first attempt.
1507  if (copyCoalesceWorkList(PrevSize))
1508    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
1509                               (MachineInstr*)0), WorkList.end());
1510}
1511
1512void RegisterCoalescer::joinAllIntervals() {
1513  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1514  assert(WorkList.empty() && "Old data still around.");
1515
1516  if (Loops->empty()) {
1517    // If there are no loops in the function, join intervals in function order.
1518    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1519         I != E; ++I)
1520      copyCoalesceInMBB(I);
1521  } else {
1522    // Otherwise, join intervals in inner loops before other intervals.
1523    // Unfortunately we can't just iterate over loop hierarchy here because
1524    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1525
1526    // Join intervals in the function prolog first. We want to join physical
1527    // registers with virtual registers before the intervals got too long.
1528    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1529    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1530      MachineBasicBlock *MBB = I;
1531      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1532    }
1533
1534    // Sort by loop depth.
1535    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1536
1537    // Finally, join intervals in loop nest order.
1538    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1539      copyCoalesceInMBB(MBBs[i].second);
1540  }
1541
1542  // Joining intervals can allow other intervals to be joined.  Iteratively join
1543  // until we make no progress.
1544  while (copyCoalesceWorkList())
1545    /* empty */ ;
1546}
1547
1548void RegisterCoalescer::releaseMemory() {
1549  ErasedInstrs.clear();
1550  WorkList.clear();
1551  DeadDefs.clear();
1552  InflateRegs.clear();
1553}
1554
1555bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1556  MF = &fn;
1557  MRI = &fn.getRegInfo();
1558  TM = &fn.getTarget();
1559  TRI = TM->getRegisterInfo();
1560  TII = TM->getInstrInfo();
1561  LIS = &getAnalysis<LiveIntervals>();
1562  LDV = &getAnalysis<LiveDebugVariables>();
1563  AA = &getAnalysis<AliasAnalysis>();
1564  Loops = &getAnalysis<MachineLoopInfo>();
1565
1566  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1567               << "********** Function: " << MF->getName() << '\n');
1568
1569  if (VerifyCoalescing)
1570    MF->verify(this, "Before register coalescing");
1571
1572  RegClassInfo.runOnMachineFunction(fn);
1573
1574  // Join (coalesce) intervals if requested.
1575  if (EnableJoining)
1576    joinAllIntervals();
1577
1578  // After deleting a lot of copies, register classes may be less constrained.
1579  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
1580  // DPR inflation.
1581  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1582  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1583                    InflateRegs.end());
1584  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1585  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1586    unsigned Reg = InflateRegs[i];
1587    if (MRI->reg_nodbg_empty(Reg))
1588      continue;
1589    if (MRI->recomputeRegClass(Reg, *TM)) {
1590      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1591                   << MRI->getRegClass(Reg)->getName() << '\n');
1592      ++NumInflated;
1593    }
1594  }
1595
1596  DEBUG(dump());
1597  DEBUG(LDV->dump());
1598  if (VerifyCoalescing)
1599    MF->verify(this, "After register coalescing");
1600  return true;
1601}
1602
1603/// print - Implement the dump method.
1604void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
1605   LIS->print(O, m);
1606}
1607