RegisterCoalescer.cpp revision c5c2fcd307695c40b00a64152d83c7af13c446c0
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "RegisterClassInfo.h"
20#include "VirtRegMap.h"
21
22#include "llvm/Pass.h"
23#include "llvm/Value.h"
24#include "llvm/CodeGen/LiveIntervalAnalysis.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/ADT/OwningPtr.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48#include <cmath>
49using namespace llvm;
50
51STATISTIC(numJoins    , "Number of interval joins performed");
52STATISTIC(numCrossRCs , "Number of cross class joins performed");
53STATISTIC(numCommutes , "Number of instruction commuting performed");
54STATISTIC(numExtends  , "Number of copies extended");
55STATISTIC(NumReMats   , "Number of instructions re-materialized");
56STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
57STATISTIC(numAborts   , "Number of times interval joining aborted");
58STATISTIC(NumInflated , "Number of register classes inflated");
59
60static cl::opt<bool>
61EnableJoining("join-liveintervals",
62              cl::desc("Coalesce copies (default=true)"),
63              cl::init(true));
64
65static cl::opt<bool>
66DisableCrossClassJoin("disable-cross-class-join",
67               cl::desc("Avoid coalescing cross register class copies"),
68               cl::init(false), cl::Hidden);
69
70static cl::opt<bool>
71EnablePhysicalJoin("join-physregs",
72                   cl::desc("Join physical register copies"),
73                   cl::init(false), cl::Hidden);
74
75static cl::opt<bool>
76VerifyCoalescing("verify-coalescing",
77         cl::desc("Verify machine instrs before and after register coalescing"),
78         cl::Hidden);
79
80namespace {
81  class RegisterCoalescer : public MachineFunctionPass {
82    MachineFunction* MF;
83    MachineRegisterInfo* MRI;
84    const TargetMachine* TM;
85    const TargetRegisterInfo* TRI;
86    const TargetInstrInfo* TII;
87    LiveIntervals *LIS;
88    LiveDebugVariables *LDV;
89    const MachineLoopInfo* Loops;
90    AliasAnalysis *AA;
91    RegisterClassInfo RegClassInfo;
92
93    /// JoinedCopies - Keep track of copies eliminated due to coalescing.
94    ///
95    SmallPtrSet<MachineInstr*, 32> JoinedCopies;
96
97    /// ReMatCopies - Keep track of copies eliminated due to remat.
98    ///
99    SmallPtrSet<MachineInstr*, 32> ReMatCopies;
100
101    /// ReMatDefs - Keep track of definition instructions which have
102    /// been remat'ed.
103    SmallPtrSet<MachineInstr*, 8> ReMatDefs;
104
105    /// joinIntervals - join compatible live intervals
106    void joinIntervals();
107
108    /// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting
109    /// copies that cannot yet be coalesced into the "TryAgain" list.
110    void CopyCoalesceInMBB(MachineBasicBlock *MBB,
111                           std::vector<MachineInstr*> &TryAgain);
112
113    /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
114    /// which are the src/dst of the copy instruction CopyMI.  This returns
115    /// true if the copy was successfully coalesced away. If it is not
116    /// currently possible to coalesce this interval, but it may be possible if
117    /// other things get coalesced, then it returns true by reference in
118    /// 'Again'.
119    bool JoinCopy(MachineInstr *TheCopy, bool &Again);
120
121    /// JoinIntervals - Attempt to join these two intervals.  On failure, this
122    /// returns false.  The output "SrcInt" will not have been modified, so we
123    /// can use this information below to update aliases.
124    bool JoinIntervals(CoalescerPair &CP);
125
126    /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
127    /// the source value number is defined by a copy from the destination reg
128    /// see if we can merge these two destination reg valno# into a single
129    /// value number, eliminating a copy.
130    bool AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
131
132    /// HasOtherReachingDefs - Return true if there are definitions of IntB
133    /// other than BValNo val# that can reach uses of AValno val# of IntA.
134    bool HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
135                              VNInfo *AValNo, VNInfo *BValNo);
136
137    /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy.
138    /// If the source value number is defined by a commutable instruction and
139    /// its other operand is coalesced to the copy dest register, see if we
140    /// can transform the copy into a noop by commuting the definition.
141    bool RemoveCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
142
143    /// ReMaterializeTrivialDef - If the source of a copy is defined by a
144    /// trivial computation, replace the copy by rematerialize the definition.
145    /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
146    bool ReMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
147                                 unsigned DstReg, MachineInstr *CopyMI);
148
149    /// shouldJoinPhys - Return true if a physreg copy should be joined.
150    bool shouldJoinPhys(CoalescerPair &CP);
151
152    /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
153    /// two virtual registers from different register classes.
154    bool isWinToJoinCrossClass(unsigned SrcReg,
155                               unsigned DstReg,
156                               const TargetRegisterClass *SrcRC,
157                               const TargetRegisterClass *DstRC,
158                               const TargetRegisterClass *NewRC);
159
160    /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
161    /// update the subregister number if it is not zero. If DstReg is a
162    /// physical register and the existing subregister number of the def / use
163    /// being updated is not zero, make sure to set it to the correct physical
164    /// subregister.
165    void UpdateRegDefsUses(const CoalescerPair &CP);
166
167    /// RemoveDeadDef - If a def of a live interval is now determined dead,
168    /// remove the val# it defines. If the live interval becomes empty, remove
169    /// it as well.
170    bool RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI);
171
172    /// RemoveCopyFlag - If DstReg is no longer defined by CopyMI, clear the
173    /// VNInfo copy flag for DstReg and all aliases.
174    void RemoveCopyFlag(unsigned DstReg, const MachineInstr *CopyMI);
175
176    /// markAsJoined - Remember that CopyMI has already been joined.
177    void markAsJoined(MachineInstr *CopyMI);
178
179    /// eliminateUndefCopy - Handle copies of undef values.
180    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
181
182  public:
183    static char ID; // Class identification, replacement for typeinfo
184    RegisterCoalescer() : MachineFunctionPass(ID) {
185      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
186    }
187
188    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
189
190    virtual void releaseMemory();
191
192    /// runOnMachineFunction - pass entry point
193    virtual bool runOnMachineFunction(MachineFunction&);
194
195    /// print - Implement the dump method.
196    virtual void print(raw_ostream &O, const Module* = 0) const;
197  };
198} /// end anonymous namespace
199
200char &llvm::RegisterCoalescerPassID = RegisterCoalescer::ID;
201
202INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
203                      "Simple Register Coalescing", false, false)
204INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
205INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
206INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
207INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
208INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
209INITIALIZE_PASS_DEPENDENCY(PHIElimination)
210INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
211INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
212INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
213                    "Simple Register Coalescing", false, false)
214
215char RegisterCoalescer::ID = 0;
216
217static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
218  if (!a) return b;
219  if (!b) return a;
220  return tri.composeSubRegIndices(a, b);
221}
222
223static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
224                        unsigned &Src, unsigned &Dst,
225                        unsigned &SrcSub, unsigned &DstSub) {
226  if (MI->isCopy()) {
227    Dst = MI->getOperand(0).getReg();
228    DstSub = MI->getOperand(0).getSubReg();
229    Src = MI->getOperand(1).getReg();
230    SrcSub = MI->getOperand(1).getSubReg();
231  } else if (MI->isSubregToReg()) {
232    Dst = MI->getOperand(0).getReg();
233    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
234                     MI->getOperand(3).getImm());
235    Src = MI->getOperand(2).getReg();
236    SrcSub = MI->getOperand(2).getSubReg();
237  } else
238    return false;
239  return true;
240}
241
242bool CoalescerPair::setRegisters(const MachineInstr *MI) {
243  SrcReg = DstReg = SubIdx = 0;
244  NewRC = 0;
245  Flipped = CrossClass = false;
246
247  unsigned Src, Dst, SrcSub, DstSub;
248  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
249    return false;
250  Partial = SrcSub || DstSub;
251
252  // If one register is a physreg, it must be Dst.
253  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
254    if (TargetRegisterInfo::isPhysicalRegister(Dst))
255      return false;
256    std::swap(Src, Dst);
257    std::swap(SrcSub, DstSub);
258    Flipped = true;
259  }
260
261  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
262
263  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
264    // Eliminate DstSub on a physreg.
265    if (DstSub) {
266      Dst = TRI.getSubReg(Dst, DstSub);
267      if (!Dst) return false;
268      DstSub = 0;
269    }
270
271    // Eliminate SrcSub by picking a corresponding Dst superregister.
272    if (SrcSub) {
273      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
274      if (!Dst) return false;
275      SrcSub = 0;
276    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
277      return false;
278    }
279  } else {
280    // Both registers are virtual.
281
282    // Both registers have subreg indices.
283    if (SrcSub && DstSub) {
284      // For now we only handle the case of identical indices in commensurate
285      // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
286      // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
287      if (SrcSub != DstSub)
288        return false;
289      const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
290      const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
291      if (!TRI.getCommonSubClass(DstRC, SrcRC))
292        return false;
293      SrcSub = DstSub = 0;
294    }
295
296    // There can be no SrcSub.
297    if (SrcSub) {
298      std::swap(Src, Dst);
299      DstSub = SrcSub;
300      SrcSub = 0;
301      assert(!Flipped && "Unexpected flip");
302      Flipped = true;
303    }
304
305    // Find the new register class.
306    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
307    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
308    if (DstSub)
309      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
310    else
311      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
312    if (!NewRC)
313      return false;
314    CrossClass = NewRC != DstRC || NewRC != SrcRC;
315  }
316  // Check our invariants
317  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
318  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
319         "Cannot have a physical SubIdx");
320  SrcReg = Src;
321  DstReg = Dst;
322  SubIdx = DstSub;
323  return true;
324}
325
326bool CoalescerPair::flip() {
327  if (SubIdx || TargetRegisterInfo::isPhysicalRegister(DstReg))
328    return false;
329  std::swap(SrcReg, DstReg);
330  Flipped = !Flipped;
331  return true;
332}
333
334bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
335  if (!MI)
336    return false;
337  unsigned Src, Dst, SrcSub, DstSub;
338  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
339    return false;
340
341  // Find the virtual register that is SrcReg.
342  if (Dst == SrcReg) {
343    std::swap(Src, Dst);
344    std::swap(SrcSub, DstSub);
345  } else if (Src != SrcReg) {
346    return false;
347  }
348
349  // Now check that Dst matches DstReg.
350  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
351    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
352      return false;
353    assert(!SubIdx && "Inconsistent CoalescerPair state.");
354    // DstSub could be set for a physreg from INSERT_SUBREG.
355    if (DstSub)
356      Dst = TRI.getSubReg(Dst, DstSub);
357    // Full copy of Src.
358    if (!SrcSub)
359      return DstReg == Dst;
360    // This is a partial register copy. Check that the parts match.
361    return TRI.getSubReg(DstReg, SrcSub) == Dst;
362  } else {
363    // DstReg is virtual.
364    if (DstReg != Dst)
365      return false;
366    // Registers match, do the subregisters line up?
367    return compose(TRI, SubIdx, SrcSub) == DstSub;
368  }
369}
370
371void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
372  AU.setPreservesCFG();
373  AU.addRequired<AliasAnalysis>();
374  AU.addRequired<LiveIntervals>();
375  AU.addPreserved<LiveIntervals>();
376  AU.addRequired<LiveDebugVariables>();
377  AU.addPreserved<LiveDebugVariables>();
378  AU.addPreserved<SlotIndexes>();
379  AU.addRequired<MachineLoopInfo>();
380  AU.addPreserved<MachineLoopInfo>();
381  AU.addPreservedID(MachineDominatorsID);
382  AU.addPreservedID(StrongPHIEliminationID);
383  AU.addPreservedID(PHIEliminationID);
384  AU.addPreservedID(TwoAddressInstructionPassID);
385  MachineFunctionPass::getAnalysisUsage(AU);
386}
387
388void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
389  /// Joined copies are not deleted immediately, but kept in JoinedCopies.
390  JoinedCopies.insert(CopyMI);
391
392  /// Mark all register operands of CopyMI as <undef> so they won't affect dead
393  /// code elimination.
394  for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
395       E = CopyMI->operands_end(); I != E; ++I)
396    if (I->isReg())
397      I->setIsUndef(true);
398}
399
400/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
401/// being the source and IntB being the dest, thus this defines a value number
402/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
403/// see if we can merge these two pieces of B into a single value number,
404/// eliminating a copy.  For example:
405///
406///  A3 = B0
407///    ...
408///  B1 = A3      <- this copy
409///
410/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
411/// value number to be replaced with B0 (which simplifies the B liveinterval).
412///
413/// This returns true if an interval was modified.
414///
415bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
416                                                    MachineInstr *CopyMI) {
417  // Bail if there is no dst interval - can happen when merging physical subreg
418  // operations.
419  if (!LIS->hasInterval(CP.getDstReg()))
420    return false;
421
422  LiveInterval &IntA =
423    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
424  LiveInterval &IntB =
425    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
426  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
427
428  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
429  // the example above.
430  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
431  if (BLR == IntB.end()) return false;
432  VNInfo *BValNo = BLR->valno;
433
434  // Get the location that B is defined at.  Two options: either this value has
435  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
436  // can't process it.
437  if (!BValNo->isDefByCopy()) return false;
438  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
439
440  // AValNo is the value number in A that defines the copy, A3 in the example.
441  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
442  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
443  // The live range might not exist after fun with physreg coalescing.
444  if (ALR == IntA.end()) return false;
445  VNInfo *AValNo = ALR->valno;
446  // If it's re-defined by an early clobber somewhere in the live range, then
447  // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
448  // See PR3149:
449  // 172     %ECX<def> = MOV32rr %reg1039<kill>
450  // 180     INLINEASM <es:subl $5,$1
451  //         sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
452  //         %EAX<kill>,
453  // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
454  // 188     %EAX<def> = MOV32rr %EAX<kill>
455  // 196     %ECX<def> = MOV32rr %ECX<kill>
456  // 204     %ECX<def> = MOV32rr %ECX<kill>
457  // 212     %EAX<def> = MOV32rr %EAX<kill>
458  // 220     %EAX<def> = MOV32rr %EAX
459  // 228     %reg1039<def> = MOV32rr %ECX<kill>
460  // The early clobber operand ties ECX input to the ECX def.
461  //
462  // The live interval of ECX is represented as this:
463  // %reg20,inf = [46,47:1)[174,230:0)  0@174-(230) 1@46-(47)
464  // The coalescer has no idea there was a def in the middle of [174,230].
465  if (AValNo->hasRedefByEC())
466    return false;
467
468  // If AValNo is defined as a copy from IntB, we can potentially process this.
469  // Get the instruction that defines this value number.
470  if (!CP.isCoalescable(AValNo->getCopy()))
471    return false;
472
473  // Get the LiveRange in IntB that this value number starts with.
474  LiveInterval::iterator ValLR =
475    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
476  if (ValLR == IntB.end())
477    return false;
478
479  // Make sure that the end of the live range is inside the same block as
480  // CopyMI.
481  MachineInstr *ValLREndInst =
482    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
483  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
484    return false;
485
486  // Okay, we now know that ValLR ends in the same block that the CopyMI
487  // live-range starts.  If there are no intervening live ranges between them in
488  // IntB, we can merge them.
489  if (ValLR+1 != BLR) return false;
490
491  // If a live interval is a physical register, conservatively check if any
492  // of its aliases is overlapping the live interval of the virtual register.
493  // If so, do not coalesce.
494  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
495    for (const unsigned *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
496      if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
497        DEBUG({
498            dbgs() << "\t\tInterfere with alias ";
499            LIS->getInterval(*AS).print(dbgs(), TRI);
500          });
501        return false;
502      }
503  }
504
505  DEBUG({
506      dbgs() << "Extending: ";
507      IntB.print(dbgs(), TRI);
508    });
509
510  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
511  // We are about to delete CopyMI, so need to remove it as the 'instruction
512  // that defines this value #'. Update the valnum with the new defining
513  // instruction #.
514  BValNo->def  = FillerStart;
515  BValNo->setCopy(0);
516
517  // Okay, we can merge them.  We need to insert a new liverange:
518  // [ValLR.end, BLR.begin) of either value number, then we merge the
519  // two value numbers.
520  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
521
522  // If the IntB live range is assigned to a physical register, and if that
523  // physreg has sub-registers, update their live intervals as well.
524  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
525    for (const unsigned *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
526      if (!LIS->hasInterval(*SR))
527        continue;
528      LiveInterval &SRLI = LIS->getInterval(*SR);
529      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
530                              SRLI.getNextValue(FillerStart, 0,
531                                                LIS->getVNInfoAllocator())));
532    }
533  }
534
535  // Okay, merge "B1" into the same value number as "B0".
536  if (BValNo != ValLR->valno) {
537    // If B1 is killed by a PHI, then the merged live range must also be killed
538    // by the same PHI, as B0 and B1 can not overlap.
539    bool HasPHIKill = BValNo->hasPHIKill();
540    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
541    if (HasPHIKill)
542      ValLR->valno->setHasPHIKill(true);
543  }
544  DEBUG({
545      dbgs() << "   result = ";
546      IntB.print(dbgs(), TRI);
547      dbgs() << "\n";
548    });
549
550  // If the source instruction was killing the source register before the
551  // merge, unset the isKill marker given the live range has been extended.
552  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
553  if (UIdx != -1) {
554    ValLREndInst->getOperand(UIdx).setIsKill(false);
555  }
556
557  // Rewrite the copy. If the copy instruction was killing the destination
558  // register before the merge, find the last use and trim the live range. That
559  // will also add the isKill marker.
560  CopyMI->substituteRegister(IntA.reg, IntB.reg, CP.getSubIdx(),
561                             *TRI);
562  if (ALR->end == CopyIdx)
563    LIS->shrinkToUses(&IntA);
564
565  ++numExtends;
566  return true;
567}
568
569/// HasOtherReachingDefs - Return true if there are definitions of IntB
570/// other than BValNo val# that can reach uses of AValno val# of IntA.
571bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
572                                                    LiveInterval &IntB,
573                                                    VNInfo *AValNo,
574                                                    VNInfo *BValNo) {
575  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
576       AI != AE; ++AI) {
577    if (AI->valno != AValNo) continue;
578    LiveInterval::Ranges::iterator BI =
579      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
580    if (BI != IntB.ranges.begin())
581      --BI;
582    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
583      if (BI->valno == BValNo)
584        continue;
585      if (BI->start <= AI->start && BI->end > AI->start)
586        return true;
587      if (BI->start > AI->start && BI->start < AI->end)
588        return true;
589    }
590  }
591  return false;
592}
593
594/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
595/// IntA being the source and IntB being the dest, thus this defines a value
596/// number in IntB.  If the source value number (in IntA) is defined by a
597/// commutable instruction and its other operand is coalesced to the copy dest
598/// register, see if we can transform the copy into a noop by commuting the
599/// definition. For example,
600///
601///  A3 = op A2 B0<kill>
602///    ...
603///  B1 = A3      <- this copy
604///    ...
605///     = op A3   <- more uses
606///
607/// ==>
608///
609///  B2 = op B0 A2<kill>
610///    ...
611///  B1 = B2      <- now an identify copy
612///    ...
613///     = op B2   <- more uses
614///
615/// This returns true if an interval was modified.
616///
617bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
618                                                        MachineInstr *CopyMI) {
619  // FIXME: For now, only eliminate the copy by commuting its def when the
620  // source register is a virtual register. We want to guard against cases
621  // where the copy is a back edge copy and commuting the def lengthen the
622  // live interval of the source register to the entire loop.
623  if (CP.isPhys() && CP.isFlipped())
624    return false;
625
626  // Bail if there is no dst interval.
627  if (!LIS->hasInterval(CP.getDstReg()))
628    return false;
629
630  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
631
632  LiveInterval &IntA =
633    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
634  LiveInterval &IntB =
635    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
636
637  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
638  // the example above.
639  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
640  if (!BValNo || !BValNo->isDefByCopy())
641    return false;
642
643  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
644
645  // AValNo is the value number in A that defines the copy, A3 in the example.
646  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
647  assert(AValNo && "COPY source not live");
648
649  // If other defs can reach uses of this def, then it's not safe to perform
650  // the optimization.
651  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
652    return false;
653  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
654  if (!DefMI)
655    return false;
656  if (!DefMI->isCommutable())
657    return false;
658  // If DefMI is a two-address instruction then commuting it will change the
659  // destination register.
660  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
661  assert(DefIdx != -1);
662  unsigned UseOpIdx;
663  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
664    return false;
665  unsigned Op1, Op2, NewDstIdx;
666  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
667    return false;
668  if (Op1 == UseOpIdx)
669    NewDstIdx = Op2;
670  else if (Op2 == UseOpIdx)
671    NewDstIdx = Op1;
672  else
673    return false;
674
675  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
676  unsigned NewReg = NewDstMO.getReg();
677  if (NewReg != IntB.reg || !NewDstMO.isKill())
678    return false;
679
680  // Make sure there are no other definitions of IntB that would reach the
681  // uses which the new definition can reach.
682  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
683    return false;
684
685  // Abort if the aliases of IntB.reg have values that are not simply the
686  // clobbers from the superreg.
687  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
688    for (const unsigned *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
689      if (LIS->hasInterval(*AS) &&
690          HasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
691        return false;
692
693  // If some of the uses of IntA.reg is already coalesced away, return false.
694  // It's not possible to determine whether it's safe to perform the coalescing.
695  for (MachineRegisterInfo::use_nodbg_iterator UI =
696         MRI->use_nodbg_begin(IntA.reg),
697       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
698    MachineInstr *UseMI = &*UI;
699    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
700    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
701    if (ULR == IntA.end())
702      continue;
703    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
704      return false;
705  }
706
707  DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
708               << *DefMI);
709
710  // At this point we have decided that it is legal to do this
711  // transformation.  Start by commuting the instruction.
712  MachineBasicBlock *MBB = DefMI->getParent();
713  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
714  if (!NewMI)
715    return false;
716  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
717      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
718      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
719    return false;
720  if (NewMI != DefMI) {
721    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
722    MachineBasicBlock::iterator Pos = DefMI;
723    MBB->insert(Pos, NewMI);
724    MBB->erase(DefMI);
725  }
726  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
727  NewMI->getOperand(OpIdx).setIsKill();
728
729  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
730  // A = or A, B
731  // ...
732  // B = A
733  // ...
734  // C = A<kill>
735  // ...
736  //   = B
737
738  // Update uses of IntA of the specific Val# with IntB.
739  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
740         UE = MRI->use_end(); UI != UE;) {
741    MachineOperand &UseMO = UI.getOperand();
742    MachineInstr *UseMI = &*UI;
743    ++UI;
744    if (JoinedCopies.count(UseMI))
745      continue;
746    if (UseMI->isDebugValue()) {
747      // FIXME These don't have an instruction index.  Not clear we have enough
748      // info to decide whether to do this replacement or not.  For now do it.
749      UseMO.setReg(NewReg);
750      continue;
751    }
752    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
753    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
754    if (ULR == IntA.end() || ULR->valno != AValNo)
755      continue;
756    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
757      UseMO.substPhysReg(NewReg, *TRI);
758    else
759      UseMO.setReg(NewReg);
760    if (UseMI == CopyMI)
761      continue;
762    if (!UseMI->isCopy())
763      continue;
764    if (UseMI->getOperand(0).getReg() != IntB.reg ||
765        UseMI->getOperand(0).getSubReg())
766      continue;
767
768    // This copy will become a noop. If it's defining a new val#, merge it into
769    // BValNo.
770    SlotIndex DefIdx = UseIdx.getRegSlot();
771    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
772    if (!DVNI)
773      continue;
774    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
775    assert(DVNI->def == DefIdx);
776    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
777    markAsJoined(UseMI);
778  }
779
780  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
781  // is updated.
782  VNInfo *ValNo = BValNo;
783  ValNo->def = AValNo->def;
784  ValNo->setCopy(0);
785  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
786       AI != AE; ++AI) {
787    if (AI->valno != AValNo) continue;
788    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
789  }
790  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
791
792  IntA.removeValNo(AValNo);
793  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
794  ++numCommutes;
795  return true;
796}
797
798/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
799/// computation, replace the copy by rematerialize the definition.
800bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
801                                                       bool preserveSrcInt,
802                                                       unsigned DstReg,
803                                                       MachineInstr *CopyMI) {
804  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
805  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
806  assert(SrcLR != SrcInt.end() && "Live range not found!");
807  VNInfo *ValNo = SrcLR->valno;
808  if (ValNo->isPHIDef() || ValNo->isUnused())
809    return false;
810  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
811  if (!DefMI)
812    return false;
813  assert(DefMI && "Defining instruction disappeared");
814  if (!DefMI->isAsCheapAsAMove())
815    return false;
816  if (!TII->isTriviallyReMaterializable(DefMI, AA))
817    return false;
818  bool SawStore = false;
819  if (!DefMI->isSafeToMove(TII, AA, SawStore))
820    return false;
821  const MCInstrDesc &MCID = DefMI->getDesc();
822  if (MCID.getNumDefs() != 1)
823    return false;
824  if (!DefMI->isImplicitDef()) {
825    // Make sure the copy destination register class fits the instruction
826    // definition register class. The mismatch can happen as a result of earlier
827    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
828    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI);
829    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
830      if (MRI->getRegClass(DstReg) != RC)
831        return false;
832    } else if (!RC->contains(DstReg))
833      return false;
834  }
835
836  RemoveCopyFlag(DstReg, CopyMI);
837
838  MachineBasicBlock *MBB = CopyMI->getParent();
839  MachineBasicBlock::iterator MII =
840    llvm::next(MachineBasicBlock::iterator(CopyMI));
841  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
842  MachineInstr *NewMI = prior(MII);
843
844  // CopyMI may have implicit operands, transfer them over to the newly
845  // rematerialized instruction. And update implicit def interval valnos.
846  for (unsigned i = CopyMI->getDesc().getNumOperands(),
847         e = CopyMI->getNumOperands(); i != e; ++i) {
848    MachineOperand &MO = CopyMI->getOperand(i);
849    if (MO.isReg() && MO.isImplicit())
850      NewMI->addOperand(MO);
851    if (MO.isDef())
852      RemoveCopyFlag(MO.getReg(), CopyMI);
853  }
854
855  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
856  CopyMI->eraseFromParent();
857  ReMatCopies.insert(CopyMI);
858  ReMatDefs.insert(DefMI);
859  DEBUG(dbgs() << "Remat: " << *NewMI);
860  ++NumReMats;
861
862  // The source interval can become smaller because we removed a use.
863  if (preserveSrcInt)
864    LIS->shrinkToUses(&SrcInt);
865
866  return true;
867}
868
869/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
870/// values, it only removes local variables. When we have a copy like:
871///
872///   %vreg1 = COPY %vreg2<undef>
873///
874/// We delete the copy and remove the corresponding value number from %vreg1.
875/// Any uses of that value number are marked as <undef>.
876bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
877                                           const CoalescerPair &CP) {
878  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
879  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
880  if (SrcInt->liveAt(Idx))
881    return false;
882  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
883  if (DstInt->liveAt(Idx))
884    return false;
885
886  // No intervals are live-in to CopyMI - it is undef.
887  if (CP.isFlipped())
888    DstInt = SrcInt;
889  SrcInt = 0;
890
891  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
892  assert(DeadVNI && "No value defined in DstInt");
893  DstInt->removeValNo(DeadVNI);
894
895  // Find new undef uses.
896  for (MachineRegisterInfo::reg_nodbg_iterator
897         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
898       I != E; ++I) {
899    MachineOperand &MO = I.getOperand();
900    if (MO.isDef() || MO.isUndef())
901      continue;
902    MachineInstr *MI = MO.getParent();
903    SlotIndex Idx = LIS->getInstructionIndex(MI);
904    if (DstInt->liveAt(Idx))
905      continue;
906    MO.setIsUndef(true);
907    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
908  }
909  return true;
910}
911
912/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
913/// update the subregister number if it is not zero. If DstReg is a
914/// physical register and the existing subregister number of the def / use
915/// being updated is not zero, make sure to set it to the correct physical
916/// subregister.
917void
918RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
919  bool DstIsPhys = CP.isPhys();
920  unsigned SrcReg = CP.getSrcReg();
921  unsigned DstReg = CP.getDstReg();
922  unsigned SubIdx = CP.getSubIdx();
923
924  // Update LiveDebugVariables.
925  LDV->renameRegister(SrcReg, DstReg, SubIdx);
926
927  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
928       MachineInstr *UseMI = I.skipInstruction();) {
929    // A PhysReg copy that won't be coalesced can perhaps be rematerialized
930    // instead.
931    if (DstIsPhys) {
932      if (UseMI->isFullCopy() &&
933          UseMI->getOperand(1).getReg() == SrcReg &&
934          UseMI->getOperand(0).getReg() != SrcReg &&
935          UseMI->getOperand(0).getReg() != DstReg &&
936          !JoinedCopies.count(UseMI) &&
937          ReMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
938                                  UseMI->getOperand(0).getReg(), UseMI))
939        continue;
940    }
941
942    SmallVector<unsigned,8> Ops;
943    bool Reads, Writes;
944    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
945    bool Kills = false, Deads = false;
946
947    // Replace SrcReg with DstReg in all UseMI operands.
948    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
949      MachineOperand &MO = UseMI->getOperand(Ops[i]);
950      Kills |= MO.isKill();
951      Deads |= MO.isDead();
952
953      // Make sure we don't create read-modify-write defs accidentally.  We
954      // assume here that a SrcReg def cannot be joined into a live DstReg.  If
955      // RegisterCoalescer starts tracking partially live registers, we will
956      // need to check the actual LiveInterval to determine if DstReg is live
957      // here.
958      if (SubIdx && !Reads)
959        MO.setIsUndef();
960
961      if (DstIsPhys)
962        MO.substPhysReg(DstReg, *TRI);
963      else
964        MO.substVirtReg(DstReg, SubIdx, *TRI);
965    }
966
967    // This instruction is a copy that will be removed.
968    if (JoinedCopies.count(UseMI))
969      continue;
970
971    if (SubIdx) {
972      // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
973      // read-modify-write of DstReg.
974      if (Deads)
975        UseMI->addRegisterDead(DstReg, TRI);
976      else if (!Reads && Writes)
977        UseMI->addRegisterDefined(DstReg, TRI);
978
979      // Kill flags apply to the whole physical register.
980      if (DstIsPhys && Kills)
981        UseMI->addRegisterKilled(DstReg, TRI);
982    }
983
984    DEBUG({
985        dbgs() << "\t\tupdated: ";
986        if (!UseMI->isDebugValue())
987          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
988        dbgs() << *UseMI;
989      });
990  }
991}
992
993/// removeIntervalIfEmpty - Check if the live interval of a physical register
994/// is empty, if so remove it and also remove the empty intervals of its
995/// sub-registers. Return true if live interval is removed.
996static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
997                                  const TargetRegisterInfo *TRI) {
998  if (li.empty()) {
999    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
1000      for (const unsigned* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
1001        if (!LIS->hasInterval(*SR))
1002          continue;
1003        LiveInterval &sli = LIS->getInterval(*SR);
1004        if (sli.empty())
1005          LIS->removeInterval(*SR);
1006      }
1007    LIS->removeInterval(li.reg);
1008    return true;
1009  }
1010  return false;
1011}
1012
1013/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
1014/// the val# it defines. If the live interval becomes empty, remove it as well.
1015bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
1016                                             MachineInstr *DefMI) {
1017  SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot();
1018  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
1019  if (DefIdx != MLR->valno->def)
1020    return false;
1021  li.removeValNo(MLR->valno);
1022  return removeIntervalIfEmpty(li, LIS, TRI);
1023}
1024
1025void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg,
1026                                              const MachineInstr *CopyMI) {
1027  SlotIndex DefIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
1028  if (LIS->hasInterval(DstReg)) {
1029    LiveInterval &LI = LIS->getInterval(DstReg);
1030    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
1031      if (LR->valno->def == DefIdx)
1032        LR->valno->setCopy(0);
1033  }
1034  if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
1035    return;
1036  for (const unsigned* AS = TRI->getAliasSet(DstReg); *AS; ++AS) {
1037    if (!LIS->hasInterval(*AS))
1038      continue;
1039    LiveInterval &LI = LIS->getInterval(*AS);
1040    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
1041      if (LR->valno->def == DefIdx)
1042        LR->valno->setCopy(0);
1043  }
1044}
1045
1046/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
1047/// We need to be careful about coalescing a source physical register with a
1048/// virtual register. Once the coalescing is done, it cannot be broken and these
1049/// are not spillable! If the destination interval uses are far away, think
1050/// twice about coalescing them!
1051bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
1052  bool Allocatable = LIS->isAllocatable(CP.getDstReg());
1053  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1054
1055  /// Always join simple intervals that are defined by a single copy from a
1056  /// reserved register. This doesn't increase register pressure, so it is
1057  /// always beneficial.
1058  if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
1059    return true;
1060
1061  if (!EnablePhysicalJoin) {
1062    DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
1063    return false;
1064  }
1065
1066  // Only coalesce to allocatable physreg, we don't want to risk modifying
1067  // reserved registers.
1068  if (!Allocatable) {
1069    DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
1070    return false;  // Not coalescable.
1071  }
1072
1073  // Don't join with physregs that have a ridiculous number of live
1074  // ranges. The data structure performance is really bad when that
1075  // happens.
1076  if (LIS->hasInterval(CP.getDstReg()) &&
1077      LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
1078    ++numAborts;
1079    DEBUG(dbgs()
1080          << "\tPhysical register live interval too complicated, abort!\n");
1081    return false;
1082  }
1083
1084  // FIXME: Why are we skipping this test for partial copies?
1085  //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
1086  if (!CP.isPartial()) {
1087    const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
1088    unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
1089    unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
1090    if (Length > Threshold) {
1091      ++numAborts;
1092      DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
1093      return false;
1094    }
1095  }
1096  return true;
1097}
1098
1099/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1100/// two virtual registers from different register classes.
1101bool
1102RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
1103                                             unsigned DstReg,
1104                                             const TargetRegisterClass *SrcRC,
1105                                             const TargetRegisterClass *DstRC,
1106                                             const TargetRegisterClass *NewRC) {
1107  unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
1108  // This heuristics is good enough in practice, but it's obviously not *right*.
1109  // 4 is a magic number that works well enough for x86, ARM, etc. It filter
1110  // out all but the most restrictive register classes.
1111  if (NewRCCount > 4 ||
1112      // Early exit if the function is fairly small, coalesce aggressively if
1113      // that's the case. For really special register classes with 3 or
1114      // fewer registers, be a bit more careful.
1115      (LIS->getFuncInstructionCount() / NewRCCount) < 8)
1116    return true;
1117  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1118  LiveInterval &DstInt = LIS->getInterval(DstReg);
1119  unsigned SrcSize = LIS->getApproximateInstructionCount(SrcInt);
1120  unsigned DstSize = LIS->getApproximateInstructionCount(DstInt);
1121
1122  // Coalesce aggressively if the intervals are small compared to the number of
1123  // registers in the new class. The number 4 is fairly arbitrary, chosen to be
1124  // less aggressive than the 8 used for the whole function size.
1125  const unsigned ThresSize = 4 * NewRCCount;
1126  if (SrcSize <= ThresSize && DstSize <= ThresSize)
1127    return true;
1128
1129  // Estimate *register use density*. If it doubles or more, abort.
1130  unsigned SrcUses = std::distance(MRI->use_nodbg_begin(SrcReg),
1131                                   MRI->use_nodbg_end());
1132  unsigned DstUses = std::distance(MRI->use_nodbg_begin(DstReg),
1133                                   MRI->use_nodbg_end());
1134  unsigned NewUses = SrcUses + DstUses;
1135  unsigned NewSize = SrcSize + DstSize;
1136  if (SrcRC != NewRC && SrcSize > ThresSize) {
1137    unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
1138    if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
1139      return false;
1140  }
1141  if (DstRC != NewRC && DstSize > ThresSize) {
1142    unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
1143    if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
1144      return false;
1145  }
1146  return true;
1147}
1148
1149
1150/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1151/// which are the src/dst of the copy instruction CopyMI.  This returns true
1152/// if the copy was successfully coalesced away. If it is not currently
1153/// possible to coalesce this interval, but it may be possible if other
1154/// things get coalesced, then it returns true by reference in 'Again'.
1155bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
1156
1157  Again = false;
1158  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1159    return false; // Already done.
1160
1161  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1162
1163  CoalescerPair CP(*TII, *TRI);
1164  if (!CP.setRegisters(CopyMI)) {
1165    DEBUG(dbgs() << "\tNot coalescable.\n");
1166    return false;
1167  }
1168
1169  // If they are already joined we continue.
1170  if (CP.getSrcReg() == CP.getDstReg()) {
1171    markAsJoined(CopyMI);
1172    DEBUG(dbgs() << "\tCopy already coalesced.\n");
1173    return false;  // Not coalescable.
1174  }
1175
1176  // Eliminate undefs.
1177  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1178    markAsJoined(CopyMI);
1179    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1180    return false;  // Not coalescable.
1181  }
1182
1183  DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1184               << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSubIdx())
1185               << "\n");
1186
1187  // Enforce policies.
1188  if (CP.isPhys()) {
1189    if (!shouldJoinPhys(CP)) {
1190      // Before giving up coalescing, if definition of source is defined by
1191      // trivial computation, try rematerializing it.
1192      if (!CP.isFlipped() &&
1193          ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1194                                  CP.getDstReg(), CopyMI))
1195        return true;
1196      return false;
1197    }
1198  } else {
1199    // Avoid constraining virtual register regclass too much.
1200    if (CP.isCrossClass()) {
1201      DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
1202      if (DisableCrossClassJoin) {
1203        DEBUG(dbgs() << "\tCross-class joins disabled.\n");
1204        return false;
1205      }
1206      if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
1207                                 MRI->getRegClass(CP.getSrcReg()),
1208                                 MRI->getRegClass(CP.getDstReg()),
1209                                 CP.getNewRC())) {
1210        DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
1211        Again = true;  // May be possible to coalesce later.
1212        return false;
1213      }
1214    }
1215
1216    // When possible, let DstReg be the larger interval.
1217    if (!CP.getSubIdx() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1218                           LIS->getInterval(CP.getDstReg()).ranges.size())
1219      CP.flip();
1220  }
1221
1222  // Okay, attempt to join these two intervals.  On failure, this returns false.
1223  // Otherwise, if one of the intervals being joined is a physreg, this method
1224  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1225  // been modified, so we can use this information below to update aliases.
1226  if (!JoinIntervals(CP)) {
1227    // Coalescing failed.
1228
1229    // If definition of source is defined by trivial computation, try
1230    // rematerializing it.
1231    if (!CP.isFlipped() &&
1232        ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1233                                CP.getDstReg(), CopyMI))
1234      return true;
1235
1236    // If we can eliminate the copy without merging the live ranges, do so now.
1237    if (!CP.isPartial()) {
1238      if (AdjustCopiesBackFrom(CP, CopyMI) ||
1239          RemoveCopyByCommutingDef(CP, CopyMI)) {
1240        markAsJoined(CopyMI);
1241        DEBUG(dbgs() << "\tTrivial!\n");
1242        return true;
1243      }
1244    }
1245
1246    // Otherwise, we are unable to join the intervals.
1247    DEBUG(dbgs() << "\tInterference!\n");
1248    Again = true;  // May be possible to coalesce later.
1249    return false;
1250  }
1251
1252  // Coalescing to a virtual register that is of a sub-register class of the
1253  // other. Make sure the resulting register is set to the right register class.
1254  if (CP.isCrossClass()) {
1255    ++numCrossRCs;
1256    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1257  }
1258
1259  // Remember to delete the copy instruction.
1260  markAsJoined(CopyMI);
1261
1262  UpdateRegDefsUses(CP);
1263
1264  // If we have extended the live range of a physical register, make sure we
1265  // update live-in lists as well.
1266  if (CP.isPhys()) {
1267    SmallVector<MachineBasicBlock*, 16> BlockSeq;
1268    // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
1269    // ranges for this, and they are preserved.
1270    LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
1271    for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
1272         I != E; ++I ) {
1273      LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
1274      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
1275        MachineBasicBlock &block = *BlockSeq[idx];
1276        if (!block.isLiveIn(CP.getDstReg()))
1277          block.addLiveIn(CP.getDstReg());
1278      }
1279      BlockSeq.clear();
1280    }
1281  }
1282
1283  // SrcReg is guaranteed to be the register whose live interval that is
1284  // being merged.
1285  LIS->removeInterval(CP.getSrcReg());
1286
1287  // Update regalloc hint.
1288  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1289
1290  DEBUG({
1291    LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
1292    dbgs() << "\tJoined. Result = ";
1293    DstInt.print(dbgs(), TRI);
1294    dbgs() << "\n";
1295  });
1296
1297  ++numJoins;
1298  return true;
1299}
1300
1301/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1302/// compute what the resultant value numbers for each value in the input two
1303/// ranges will be.  This is complicated by copies between the two which can
1304/// and will commonly cause multiple value numbers to be merged into one.
1305///
1306/// VN is the value number that we're trying to resolve.  InstDefiningValue
1307/// keeps track of the new InstDefiningValue assignment for the result
1308/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1309/// whether a value in this or other is a copy from the opposite set.
1310/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1311/// already been assigned.
1312///
1313/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1314/// contains the value number the copy is from.
1315///
1316static unsigned ComputeUltimateVN(VNInfo *VNI,
1317                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1318                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1319                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1320                                  SmallVector<int, 16> &ThisValNoAssignments,
1321                                  SmallVector<int, 16> &OtherValNoAssignments) {
1322  unsigned VN = VNI->id;
1323
1324  // If the VN has already been computed, just return it.
1325  if (ThisValNoAssignments[VN] >= 0)
1326    return ThisValNoAssignments[VN];
1327  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1328
1329  // If this val is not a copy from the other val, then it must be a new value
1330  // number in the destination.
1331  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1332  if (I == ThisFromOther.end()) {
1333    NewVNInfo.push_back(VNI);
1334    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1335  }
1336  VNInfo *OtherValNo = I->second;
1337
1338  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1339  // been computed, return it.
1340  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1341    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1342
1343  // Mark this value number as currently being computed, then ask what the
1344  // ultimate value # of the other value is.
1345  ThisValNoAssignments[VN] = -2;
1346  unsigned UltimateVN =
1347    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1348                      OtherValNoAssignments, ThisValNoAssignments);
1349  return ThisValNoAssignments[VN] = UltimateVN;
1350}
1351
1352
1353// Find out if we have something like
1354// A = X
1355// B = X
1356// if so, we can pretend this is actually
1357// A = X
1358// B = A
1359// which allows us to coalesce A and B.
1360// VNI is the definition of B. LR is the life range of A that includes
1361// the slot just before B. If we return true, we add "B = X" to DupCopies.
1362// This implies that A dominates B.
1363static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1364                                          const TargetRegisterInfo &tri,
1365                                          CoalescerPair &CP,
1366                                          VNInfo *VNI,
1367                                          LiveRange *LR,
1368                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1369  // FIXME: This is very conservative. For example, we don't handle
1370  // physical registers.
1371
1372  MachineInstr *MI = VNI->getCopy();
1373
1374  if (!MI->isFullCopy() || CP.isPartial() || CP.isPhys())
1375    return false;
1376
1377  unsigned Dst = MI->getOperand(0).getReg();
1378  unsigned Src = MI->getOperand(1).getReg();
1379
1380  if (!TargetRegisterInfo::isVirtualRegister(Src) ||
1381      !TargetRegisterInfo::isVirtualRegister(Dst))
1382    return false;
1383
1384  unsigned A = CP.getDstReg();
1385  unsigned B = CP.getSrcReg();
1386
1387  if (B == Dst)
1388    std::swap(A, B);
1389  assert(Dst == A);
1390
1391  VNInfo *Other = LR->valno;
1392  if (!Other->isDefByCopy())
1393    return false;
1394  const MachineInstr *OtherMI = Other->getCopy();
1395
1396  if (!OtherMI->isFullCopy())
1397    return false;
1398
1399  unsigned OtherDst = OtherMI->getOperand(0).getReg();
1400  unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1401
1402  if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
1403      !TargetRegisterInfo::isVirtualRegister(OtherDst))
1404    return false;
1405
1406  assert(OtherDst == B);
1407
1408  if (Src != OtherSrc)
1409    return false;
1410
1411  // If the copies use two different value numbers of X, we cannot merge
1412  // A and B.
1413  LiveInterval &SrcInt = li.getInterval(Src);
1414  // getVNInfoBefore returns NULL for undef copies. In this case, the
1415  // optimization is still safe.
1416  if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def))
1417    return false;
1418
1419  DupCopies.push_back(MI);
1420
1421  return true;
1422}
1423
1424// Loop over the value numbers of the Dst interval and record the values that
1425// are defined by a copy from the Src interval.
1426static void FindValuesCopiedFrom(
1427                              LiveIntervals& lis,
1428                              const TargetRegisterInfo& tri,
1429                              CoalescerPair& CP,
1430                              LiveInterval &Dst, LiveInterval &Src,
1431                              DenseMap<VNInfo*, VNInfo*>& DstValsDefinedFromSrc,
1432                              SmallVector<MachineInstr*, 8>& DupCopies) {
1433
1434  for (LiveInterval::vni_iterator i = Dst.vni_begin(), e = Dst.vni_end();
1435       i != e; ++i) {
1436    VNInfo *VNI = *i;
1437    if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
1438      continue;
1439
1440    // Never join with a register that has EarlyClobber redefs.
1441    if (VNI->hasRedefByEC())
1442      return false;
1443
1444    // Figure out the value # from the Src.
1445    LiveRange *lr = Src.getLiveRangeContaining(VNI->def.getPrevSlot());
1446    // The copy could be to an aliased physreg.
1447    if (!lr) continue;
1448
1449    // DstReg is known to be a register in the Dst interval.  If the src is
1450    // from the Src interval, we can use its value #.
1451    MachineInstr *MI = VNI->getCopy();
1452    if (!CP.isCoalescable(MI) &&
1453        !RegistersDefinedFromSameValue(lis, tri, CP, VNI, lr, DupCopies))
1454      continue;
1455
1456    DstValsDefinedFromSrc[VNI] = lr->valno;
1457  }
1458}
1459
1460/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1461/// returns false.
1462bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
1463  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1464  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1465
1466  // If a live interval is a physical register, check for interference with any
1467  // aliases. The interference check implemented here is a bit more conservative
1468  // than the full interfeence check below. We allow overlapping live ranges
1469  // only when one is a copy of the other.
1470  if (CP.isPhys()) {
1471    // Optimization for reserved registers like ESP.
1472    // We can only merge with a reserved physreg if RHS has a single value that
1473    // is a copy of CP.DstReg().  The live range of the reserved register will
1474    // look like a set of dead defs - we don't properly track the live range of
1475    // reserved registers.
1476    if (RegClassInfo.isReserved(CP.getDstReg())) {
1477      assert(CP.isFlipped() && RHS.containsOneValue() &&
1478             "Invalid join with reserved register");
1479      // Deny any overlapping intervals.  This depends on all the reserved
1480      // register live ranges to look like dead defs.
1481      for (const unsigned *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
1482        if (!LIS->hasInterval(*AS))
1483          continue;
1484        if (RHS.overlaps(LIS->getInterval(*AS))) {
1485          DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
1486          return false;
1487        }
1488      }
1489      // Skip any value computations, we are not adding new values to the
1490      // reserved register.  Also skip merging the live ranges, the reserved
1491      // register live range doesn't need to be accurate as long as all the
1492      // defs are there.
1493      return true;
1494    }
1495
1496    for (const unsigned *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
1497      if (!LIS->hasInterval(*AS))
1498        continue;
1499      const LiveInterval &LHS = LIS->getInterval(*AS);
1500      LiveInterval::const_iterator LI = LHS.begin();
1501      for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
1502           RI != RE; ++RI) {
1503        LI = std::lower_bound(LI, LHS.end(), RI->start);
1504        // Does LHS have an overlapping live range starting before RI?
1505        if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
1506            (RI->start != RI->valno->def ||
1507             !CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
1508          DEBUG({
1509            dbgs() << "\t\tInterference from alias: ";
1510            LHS.print(dbgs(), TRI);
1511            dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
1512          });
1513          return false;
1514        }
1515
1516        // Check that LHS ranges beginning in this range are copies.
1517        for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
1518          if (LI->start != LI->valno->def ||
1519              !CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
1520            DEBUG({
1521              dbgs() << "\t\tInterference from alias: ";
1522              LHS.print(dbgs(), TRI);
1523              dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
1524            });
1525            return false;
1526          }
1527        }
1528      }
1529    }
1530  }
1531
1532  // Compute the final value assignment, assuming that the live ranges can be
1533  // coalesced.
1534  SmallVector<int, 16> LHSValNoAssignments;
1535  SmallVector<int, 16> RHSValNoAssignments;
1536  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1537  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1538  SmallVector<VNInfo*, 16> NewVNInfo;
1539
1540  SmallVector<MachineInstr*, 8> DupCopies;
1541
1542  LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1543  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
1544
1545  // Build a map of LHS values defined by copies from RHS and vice-versa.
1546  FindValuesCopiedFrom(*LIS, *TRI, CP, LHS, RHS, LHSValsDefinedFromRHS, DupCopies);
1547  FindValuesCopiedFrom(*LIS, *TRI, CP, RHS, LHS, RHSValsDefinedFromLHS, DupCopies);
1548
1549  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1550  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1551  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1552
1553  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1554       i != e; ++i) {
1555    VNInfo *VNI = *i;
1556    unsigned VN = VNI->id;
1557    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1558      continue;
1559    ComputeUltimateVN(VNI, NewVNInfo,
1560                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1561                      LHSValNoAssignments, RHSValNoAssignments);
1562  }
1563  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1564       i != e; ++i) {
1565    VNInfo *VNI = *i;
1566    unsigned VN = VNI->id;
1567    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1568      continue;
1569    // If this value number isn't a copy from the LHS, it's a new number.
1570    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1571      NewVNInfo.push_back(VNI);
1572      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1573      continue;
1574    }
1575
1576    ComputeUltimateVN(VNI, NewVNInfo,
1577                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1578                      RHSValNoAssignments, LHSValNoAssignments);
1579  }
1580
1581  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1582  // interval lists to see if these intervals are coalescable.
1583  LiveInterval::const_iterator I = LHS.begin();
1584  LiveInterval::const_iterator IE = LHS.end();
1585  LiveInterval::const_iterator J = RHS.begin();
1586  LiveInterval::const_iterator JE = RHS.end();
1587
1588  // Skip ahead until the first place of potential sharing.
1589  if (I != IE && J != JE) {
1590    if (I->start < J->start) {
1591      I = std::upper_bound(I, IE, J->start);
1592      if (I != LHS.begin()) --I;
1593    } else if (J->start < I->start) {
1594      J = std::upper_bound(J, JE, I->start);
1595      if (J != RHS.begin()) --J;
1596    }
1597  }
1598
1599  while (I != IE && J != JE) {
1600    // Determine if these two live ranges overlap.
1601    bool Overlaps;
1602    if (I->start < J->start) {
1603      Overlaps = I->end > J->start;
1604    } else {
1605      Overlaps = J->end > I->start;
1606    }
1607
1608    // If so, check value # info to determine if they are really different.
1609    if (Overlaps) {
1610      // If the live range overlap will map to the same value number in the
1611      // result liverange, we can still coalesce them.  If not, we can't.
1612      if (LHSValNoAssignments[I->valno->id] !=
1613          RHSValNoAssignments[J->valno->id])
1614        return false;
1615      // If it's re-defined by an early clobber somewhere in the live range,
1616      // then conservatively abort coalescing.
1617      if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
1618        return false;
1619    }
1620
1621    if (I->end < J->end)
1622      ++I;
1623    else
1624      ++J;
1625  }
1626
1627  // Update kill info. Some live ranges are extended due to copy coalescing.
1628  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1629         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1630    VNInfo *VNI = I->first;
1631    unsigned LHSValID = LHSValNoAssignments[VNI->id];
1632    if (VNI->hasPHIKill())
1633      NewVNInfo[LHSValID]->setHasPHIKill(true);
1634  }
1635
1636  // Update kill info. Some live ranges are extended due to copy coalescing.
1637  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1638         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1639    VNInfo *VNI = I->first;
1640    unsigned RHSValID = RHSValNoAssignments[VNI->id];
1641    if (VNI->hasPHIKill())
1642      NewVNInfo[RHSValID]->setHasPHIKill(true);
1643  }
1644
1645  if (LHSValNoAssignments.empty())
1646    LHSValNoAssignments.push_back(-1);
1647  if (RHSValNoAssignments.empty())
1648    RHSValNoAssignments.push_back(-1);
1649
1650  SmallVector<unsigned, 8> SourceRegisters;
1651  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1652         E = DupCopies.end(); I != E; ++I) {
1653    MachineInstr *MI = *I;
1654
1655    // We have pretended that the assignment to B in
1656    // A = X
1657    // B = X
1658    // was actually a copy from A. Now that we decided to coalesce A and B,
1659    // transform the code into
1660    // A = X
1661    // X = X
1662    // and mark the X as coalesced to keep the illusion.
1663    unsigned Src = MI->getOperand(1).getReg();
1664    SourceRegisters.push_back(Src);
1665    MI->getOperand(0).substVirtReg(Src, 0, *TRI);
1666
1667    markAsJoined(MI);
1668  }
1669
1670  // If B = X was the last use of X in a liverange, we have to shrink it now
1671  // that B = X is gone.
1672  for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1673         E = SourceRegisters.end(); I != E; ++I) {
1674    LIS->shrinkToUses(&LIS->getInterval(*I));
1675  }
1676
1677  // If we get here, we know that we can coalesce the live ranges.  Ask the
1678  // intervals to coalesce themselves now.
1679  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1680           MRI);
1681  return true;
1682}
1683
1684namespace {
1685  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1686  // depth of the basic block (the unsigned), and then on the MBB number.
1687  struct DepthMBBCompare {
1688    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1689    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1690      // Deeper loops first
1691      if (LHS.first != RHS.first)
1692        return LHS.first > RHS.first;
1693
1694      // Prefer blocks that are more connected in the CFG. This takes care of
1695      // the most difficult copies first while intervals are short.
1696      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1697      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1698      if (cl != cr)
1699        return cl > cr;
1700
1701      // As a last resort, sort by block number.
1702      return LHS.second->getNumber() < RHS.second->getNumber();
1703    }
1704  };
1705}
1706
1707void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
1708                                            std::vector<MachineInstr*> &TryAgain) {
1709  DEBUG(dbgs() << MBB->getName() << ":\n");
1710
1711  SmallVector<MachineInstr*, 8> VirtCopies;
1712  SmallVector<MachineInstr*, 8> PhysCopies;
1713  SmallVector<MachineInstr*, 8> ImpDefCopies;
1714  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1715       MII != E;) {
1716    MachineInstr *Inst = MII++;
1717
1718    // If this isn't a copy nor a extract_subreg, we can't join intervals.
1719    unsigned SrcReg, DstReg;
1720    if (Inst->isCopy()) {
1721      DstReg = Inst->getOperand(0).getReg();
1722      SrcReg = Inst->getOperand(1).getReg();
1723    } else if (Inst->isSubregToReg()) {
1724      DstReg = Inst->getOperand(0).getReg();
1725      SrcReg = Inst->getOperand(2).getReg();
1726    } else
1727      continue;
1728
1729    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1730    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1731    if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
1732      ImpDefCopies.push_back(Inst);
1733    else if (SrcIsPhys || DstIsPhys)
1734      PhysCopies.push_back(Inst);
1735    else
1736      VirtCopies.push_back(Inst);
1737  }
1738
1739  // Try coalescing implicit copies and insert_subreg <undef> first,
1740  // followed by copies to / from physical registers, then finally copies
1741  // from virtual registers to virtual registers.
1742  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
1743    MachineInstr *TheCopy = ImpDefCopies[i];
1744    bool Again = false;
1745    if (!JoinCopy(TheCopy, Again))
1746      if (Again)
1747        TryAgain.push_back(TheCopy);
1748  }
1749  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
1750    MachineInstr *TheCopy = PhysCopies[i];
1751    bool Again = false;
1752    if (!JoinCopy(TheCopy, Again))
1753      if (Again)
1754        TryAgain.push_back(TheCopy);
1755  }
1756  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
1757    MachineInstr *TheCopy = VirtCopies[i];
1758    bool Again = false;
1759    if (!JoinCopy(TheCopy, Again))
1760      if (Again)
1761        TryAgain.push_back(TheCopy);
1762  }
1763}
1764
1765void RegisterCoalescer::joinIntervals() {
1766  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1767
1768  std::vector<MachineInstr*> TryAgainList;
1769  if (Loops->empty()) {
1770    // If there are no loops in the function, join intervals in function order.
1771    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1772         I != E; ++I)
1773      CopyCoalesceInMBB(I, TryAgainList);
1774  } else {
1775    // Otherwise, join intervals in inner loops before other intervals.
1776    // Unfortunately we can't just iterate over loop hierarchy here because
1777    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1778
1779    // Join intervals in the function prolog first. We want to join physical
1780    // registers with virtual registers before the intervals got too long.
1781    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1782    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1783      MachineBasicBlock *MBB = I;
1784      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1785    }
1786
1787    // Sort by loop depth.
1788    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1789
1790    // Finally, join intervals in loop nest order.
1791    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1792      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
1793  }
1794
1795  // Joining intervals can allow other intervals to be joined.  Iteratively join
1796  // until we make no progress.
1797  bool ProgressMade = true;
1798  while (ProgressMade) {
1799    ProgressMade = false;
1800
1801    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1802      MachineInstr *&TheCopy = TryAgainList[i];
1803      if (!TheCopy)
1804        continue;
1805
1806      bool Again = false;
1807      bool Success = JoinCopy(TheCopy, Again);
1808      if (Success || !Again) {
1809        TheCopy= 0;   // Mark this one as done.
1810        ProgressMade = true;
1811      }
1812    }
1813  }
1814}
1815
1816void RegisterCoalescer::releaseMemory() {
1817  JoinedCopies.clear();
1818  ReMatCopies.clear();
1819  ReMatDefs.clear();
1820}
1821
1822bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1823  MF = &fn;
1824  MRI = &fn.getRegInfo();
1825  TM = &fn.getTarget();
1826  TRI = TM->getRegisterInfo();
1827  TII = TM->getInstrInfo();
1828  LIS = &getAnalysis<LiveIntervals>();
1829  LDV = &getAnalysis<LiveDebugVariables>();
1830  AA = &getAnalysis<AliasAnalysis>();
1831  Loops = &getAnalysis<MachineLoopInfo>();
1832
1833  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1834               << "********** Function: "
1835               << ((Value*)MF->getFunction())->getName() << '\n');
1836
1837  if (VerifyCoalescing)
1838    MF->verify(this, "Before register coalescing");
1839
1840  RegClassInfo.runOnMachineFunction(fn);
1841
1842  // Join (coalesce) intervals if requested.
1843  if (EnableJoining) {
1844    joinIntervals();
1845    DEBUG({
1846        dbgs() << "********** INTERVALS POST JOINING **********\n";
1847        for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
1848             I != E; ++I){
1849          I->second->print(dbgs(), TRI);
1850          dbgs() << "\n";
1851        }
1852      });
1853  }
1854
1855  // Perform a final pass over the instructions and compute spill weights
1856  // and remove identity moves.
1857  SmallVector<unsigned, 4> DeadDefs, InflateRegs;
1858  for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
1859       mbbi != mbbe; ++mbbi) {
1860    MachineBasicBlock* mbb = mbbi;
1861    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1862         mii != mie; ) {
1863      MachineInstr *MI = mii;
1864      if (JoinedCopies.count(MI)) {
1865        // Delete all coalesced copies.
1866        bool DoDelete = true;
1867        assert(MI->isCopyLike() && "Unrecognized copy instruction");
1868        unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
1869        unsigned DstReg = MI->getOperand(0).getReg();
1870
1871        // Collect candidates for register class inflation.
1872        if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1873            RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg)))
1874          InflateRegs.push_back(SrcReg);
1875        if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
1876            RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg)))
1877          InflateRegs.push_back(DstReg);
1878
1879        if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1880            MI->getNumOperands() > 2)
1881          // Do not delete extract_subreg, insert_subreg of physical
1882          // registers unless the definition is dead. e.g.
1883          // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1884          // or else the scavenger may complain. LowerSubregs will
1885          // delete them later.
1886          DoDelete = false;
1887
1888        if (MI->allDefsAreDead()) {
1889          if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1890              LIS->hasInterval(SrcReg))
1891            LIS->shrinkToUses(&LIS->getInterval(SrcReg));
1892          DoDelete = true;
1893        }
1894        if (!DoDelete) {
1895          // We need the instruction to adjust liveness, so make it a KILL.
1896          if (MI->isSubregToReg()) {
1897            MI->RemoveOperand(3);
1898            MI->RemoveOperand(1);
1899          }
1900          MI->setDesc(TII->get(TargetOpcode::KILL));
1901          mii = llvm::next(mii);
1902        } else {
1903          LIS->RemoveMachineInstrFromMaps(MI);
1904          mii = mbbi->erase(mii);
1905          ++numPeep;
1906        }
1907        continue;
1908      }
1909
1910      // Now check if this is a remat'ed def instruction which is now dead.
1911      if (ReMatDefs.count(MI)) {
1912        bool isDead = true;
1913        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1914          const MachineOperand &MO = MI->getOperand(i);
1915          if (!MO.isReg())
1916            continue;
1917          unsigned Reg = MO.getReg();
1918          if (!Reg)
1919            continue;
1920          DeadDefs.push_back(Reg);
1921          if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1922            // Remat may also enable register class inflation.
1923            if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)))
1924              InflateRegs.push_back(Reg);
1925          }
1926          if (MO.isDead())
1927            continue;
1928          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
1929              !MRI->use_nodbg_empty(Reg)) {
1930            isDead = false;
1931            break;
1932          }
1933        }
1934        if (isDead) {
1935          while (!DeadDefs.empty()) {
1936            unsigned DeadDef = DeadDefs.back();
1937            DeadDefs.pop_back();
1938            RemoveDeadDef(LIS->getInterval(DeadDef), MI);
1939          }
1940          LIS->RemoveMachineInstrFromMaps(mii);
1941          mii = mbbi->erase(mii);
1942          continue;
1943        } else
1944          DeadDefs.clear();
1945      }
1946
1947      ++mii;
1948
1949      // Check for now unnecessary kill flags.
1950      if (LIS->isNotInMIMap(MI)) continue;
1951      SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
1952      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1953        MachineOperand &MO = MI->getOperand(i);
1954        if (!MO.isReg() || !MO.isKill()) continue;
1955        unsigned reg = MO.getReg();
1956        if (!reg || !LIS->hasInterval(reg)) continue;
1957        if (!LIS->getInterval(reg).killedAt(DefIdx)) {
1958          MO.setIsKill(false);
1959          continue;
1960        }
1961        // When leaving a kill flag on a physreg, check if any subregs should
1962        // remain alive.
1963        if (!TargetRegisterInfo::isPhysicalRegister(reg))
1964          continue;
1965        for (const unsigned *SR = TRI->getSubRegisters(reg);
1966             unsigned S = *SR; ++SR)
1967          if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
1968            MI->addRegisterDefined(S, TRI);
1969      }
1970    }
1971  }
1972
1973  // After deleting a lot of copies, register classes may be less constrained.
1974  // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 ->
1975  // DPR inflation.
1976  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1977  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1978                    InflateRegs.end());
1979  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1980  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1981    unsigned Reg = InflateRegs[i];
1982    if (MRI->reg_nodbg_empty(Reg))
1983      continue;
1984    if (MRI->recomputeRegClass(Reg, *TM)) {
1985      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1986                   << MRI->getRegClass(Reg)->getName() << '\n');
1987      ++NumInflated;
1988    }
1989  }
1990
1991  DEBUG(dump());
1992  DEBUG(LDV->dump());
1993  if (VerifyCoalescing)
1994    MF->verify(this, "After register coalescing");
1995  return true;
1996}
1997
1998/// print - Implement the dump method.
1999void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2000   LIS->print(O, m);
2001}
2002