RegisterCoalescer.cpp revision c747acb8d97d4df51d738383b49b8115519b88fb
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regcoalescing"
17#include "RegisterCoalescer.h"
18#include "VirtRegMap.h"
19#include "LiveDebugVariables.h"
20
21#include "llvm/Pass.h"
22#include "llvm/Value.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/CodeGen/LiveIntervalAnalysis.h"
29#include "llvm/Analysis/AliasAnalysis.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstr.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/Passes.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/OwningPtr.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <cmath>
48using namespace llvm;
49
50STATISTIC(numJoins    , "Number of interval joins performed");
51STATISTIC(numCrossRCs , "Number of cross class joins performed");
52STATISTIC(numCommutes , "Number of instruction commuting performed");
53STATISTIC(numExtends  , "Number of copies extended");
54STATISTIC(NumReMats   , "Number of instructions re-materialized");
55STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
56STATISTIC(numAborts   , "Number of times interval joining aborted");
57
58static cl::opt<bool>
59EnableJoining("join-liveintervals",
60              cl::desc("Coalesce copies (default=true)"),
61              cl::init(true));
62
63static cl::opt<bool>
64DisableCrossClassJoin("disable-cross-class-join",
65               cl::desc("Avoid coalescing cross register class copies"),
66               cl::init(false), cl::Hidden);
67
68static cl::opt<bool>
69EnablePhysicalJoin("join-physregs",
70                   cl::desc("Join physical register copies"),
71                   cl::init(false), cl::Hidden);
72
73static cl::opt<bool>
74VerifyCoalescing("verify-coalescing",
75         cl::desc("Verify machine instrs before and after register coalescing"),
76         cl::Hidden);
77
78INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
79                      "Simple Register Coalescing", false, false)
80INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
81INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
82INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
83INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
84INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
85INITIALIZE_PASS_DEPENDENCY(PHIElimination)
86INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
87INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
88INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
89                    "Simple Register Coalescing", false, false)
90
91char RegisterCoalescer::ID = 0;
92
93static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
94  if (!a) return b;
95  if (!b) return a;
96  return tri.composeSubRegIndices(a, b);
97}
98
99static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
100                        unsigned &Src, unsigned &Dst,
101                        unsigned &SrcSub, unsigned &DstSub) {
102  if (MI->isCopy()) {
103    Dst = MI->getOperand(0).getReg();
104    DstSub = MI->getOperand(0).getSubReg();
105    Src = MI->getOperand(1).getReg();
106    SrcSub = MI->getOperand(1).getSubReg();
107  } else if (MI->isSubregToReg()) {
108    Dst = MI->getOperand(0).getReg();
109    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
110                     MI->getOperand(3).getImm());
111    Src = MI->getOperand(2).getReg();
112    SrcSub = MI->getOperand(2).getSubReg();
113  } else
114    return false;
115  return true;
116}
117
118bool CoalescerPair::setRegisters(const MachineInstr *MI) {
119  srcReg_ = dstReg_ = subIdx_ = 0;
120  newRC_ = 0;
121  flipped_ = crossClass_ = false;
122
123  unsigned Src, Dst, SrcSub, DstSub;
124  if (!isMoveInstr(tri_, MI, Src, Dst, SrcSub, DstSub))
125    return false;
126  partial_ = SrcSub || DstSub;
127
128  // If one register is a physreg, it must be Dst.
129  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
130    if (TargetRegisterInfo::isPhysicalRegister(Dst))
131      return false;
132    std::swap(Src, Dst);
133    std::swap(SrcSub, DstSub);
134    flipped_ = true;
135  }
136
137  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
138
139  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
140    // Eliminate DstSub on a physreg.
141    if (DstSub) {
142      Dst = tri_.getSubReg(Dst, DstSub);
143      if (!Dst) return false;
144      DstSub = 0;
145    }
146
147    // Eliminate SrcSub by picking a corresponding Dst superregister.
148    if (SrcSub) {
149      Dst = tri_.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
150      if (!Dst) return false;
151      SrcSub = 0;
152    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
153      return false;
154    }
155  } else {
156    // Both registers are virtual.
157
158    // Both registers have subreg indices.
159    if (SrcSub && DstSub) {
160      // For now we only handle the case of identical indices in commensurate
161      // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
162      // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
163      if (SrcSub != DstSub)
164        return false;
165      const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
166      const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
167      if (!getCommonSubClass(DstRC, SrcRC))
168        return false;
169      SrcSub = DstSub = 0;
170    }
171
172    // There can be no SrcSub.
173    if (SrcSub) {
174      std::swap(Src, Dst);
175      DstSub = SrcSub;
176      SrcSub = 0;
177      assert(!flipped_ && "Unexpected flip");
178      flipped_ = true;
179    }
180
181    // Find the new register class.
182    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
183    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
184    if (DstSub)
185      newRC_ = tri_.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
186    else
187      newRC_ = getCommonSubClass(DstRC, SrcRC);
188    if (!newRC_)
189      return false;
190    crossClass_ = newRC_ != DstRC || newRC_ != SrcRC;
191  }
192  // Check our invariants
193  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
194  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
195         "Cannot have a physical SubIdx");
196  srcReg_ = Src;
197  dstReg_ = Dst;
198  subIdx_ = DstSub;
199  return true;
200}
201
202bool CoalescerPair::flip() {
203  if (subIdx_ || TargetRegisterInfo::isPhysicalRegister(dstReg_))
204    return false;
205  std::swap(srcReg_, dstReg_);
206  flipped_ = !flipped_;
207  return true;
208}
209
210bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
211  if (!MI)
212    return false;
213  unsigned Src, Dst, SrcSub, DstSub;
214  if (!isMoveInstr(tri_, MI, Src, Dst, SrcSub, DstSub))
215    return false;
216
217  // Find the virtual register that is srcReg_.
218  if (Dst == srcReg_) {
219    std::swap(Src, Dst);
220    std::swap(SrcSub, DstSub);
221  } else if (Src != srcReg_) {
222    return false;
223  }
224
225  // Now check that Dst matches dstReg_.
226  if (TargetRegisterInfo::isPhysicalRegister(dstReg_)) {
227    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
228      return false;
229    assert(!subIdx_ && "Inconsistent CoalescerPair state.");
230    // DstSub could be set for a physreg from INSERT_SUBREG.
231    if (DstSub)
232      Dst = tri_.getSubReg(Dst, DstSub);
233    // Full copy of Src.
234    if (!SrcSub)
235      return dstReg_ == Dst;
236    // This is a partial register copy. Check that the parts match.
237    return tri_.getSubReg(dstReg_, SrcSub) == Dst;
238  } else {
239    // dstReg_ is virtual.
240    if (dstReg_ != Dst)
241      return false;
242    // Registers match, do the subregisters line up?
243    return compose(tri_, subIdx_, SrcSub) == DstSub;
244  }
245}
246
247void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
248  AU.setPreservesCFG();
249  AU.addRequired<AliasAnalysis>();
250  AU.addRequired<LiveIntervals>();
251  AU.addPreserved<LiveIntervals>();
252  AU.addRequired<LiveDebugVariables>();
253  AU.addPreserved<LiveDebugVariables>();
254  AU.addPreserved<SlotIndexes>();
255  AU.addRequired<MachineLoopInfo>();
256  AU.addPreserved<MachineLoopInfo>();
257  AU.addPreservedID(MachineDominatorsID);
258  AU.addPreservedID(StrongPHIEliminationID);
259  AU.addPreservedID(PHIEliminationID);
260  AU.addPreservedID(TwoAddressInstructionPassID);
261  MachineFunctionPass::getAnalysisUsage(AU);
262}
263
264void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
265  /// Joined copies are not deleted immediately, but kept in JoinedCopies.
266  JoinedCopies.insert(CopyMI);
267
268  /// Mark all register operands of CopyMI as <undef> so they won't affect dead
269  /// code elimination.
270  for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
271       E = CopyMI->operands_end(); I != E; ++I)
272    if (I->isReg())
273      I->setIsUndef(true);
274}
275
276/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
277/// being the source and IntB being the dest, thus this defines a value number
278/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
279/// see if we can merge these two pieces of B into a single value number,
280/// eliminating a copy.  For example:
281///
282///  A3 = B0
283///    ...
284///  B1 = A3      <- this copy
285///
286/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
287/// value number to be replaced with B0 (which simplifies the B liveinterval).
288///
289/// This returns true if an interval was modified.
290///
291bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
292                                                    MachineInstr *CopyMI) {
293  // Bail if there is no dst interval - can happen when merging physical subreg
294  // operations.
295  if (!li_->hasInterval(CP.getDstReg()))
296    return false;
297
298  LiveInterval &IntA =
299    li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
300  LiveInterval &IntB =
301    li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
302  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
303
304  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
305  // the example above.
306  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
307  if (BLR == IntB.end()) return false;
308  VNInfo *BValNo = BLR->valno;
309
310  // Get the location that B is defined at.  Two options: either this value has
311  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
312  // can't process it.
313  if (!BValNo->isDefByCopy()) return false;
314  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
315
316  // AValNo is the value number in A that defines the copy, A3 in the example.
317  SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
318  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
319  // The live range might not exist after fun with physreg coalescing.
320  if (ALR == IntA.end()) return false;
321  VNInfo *AValNo = ALR->valno;
322  // If it's re-defined by an early clobber somewhere in the live range, then
323  // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
324  // See PR3149:
325  // 172     %ECX<def> = MOV32rr %reg1039<kill>
326  // 180     INLINEASM <es:subl $5,$1
327  //         sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
328  //         %EAX<kill>,
329  // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
330  // 188     %EAX<def> = MOV32rr %EAX<kill>
331  // 196     %ECX<def> = MOV32rr %ECX<kill>
332  // 204     %ECX<def> = MOV32rr %ECX<kill>
333  // 212     %EAX<def> = MOV32rr %EAX<kill>
334  // 220     %EAX<def> = MOV32rr %EAX
335  // 228     %reg1039<def> = MOV32rr %ECX<kill>
336  // The early clobber operand ties ECX input to the ECX def.
337  //
338  // The live interval of ECX is represented as this:
339  // %reg20,inf = [46,47:1)[174,230:0)  0@174-(230) 1@46-(47)
340  // The coalescer has no idea there was a def in the middle of [174,230].
341  if (AValNo->hasRedefByEC())
342    return false;
343
344  // If AValNo is defined as a copy from IntB, we can potentially process this.
345  // Get the instruction that defines this value number.
346  if (!CP.isCoalescable(AValNo->getCopy()))
347    return false;
348
349  // Get the LiveRange in IntB that this value number starts with.
350  LiveInterval::iterator ValLR =
351    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
352  if (ValLR == IntB.end())
353    return false;
354
355  // Make sure that the end of the live range is inside the same block as
356  // CopyMI.
357  MachineInstr *ValLREndInst =
358    li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
359  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
360    return false;
361
362  // Okay, we now know that ValLR ends in the same block that the CopyMI
363  // live-range starts.  If there are no intervening live ranges between them in
364  // IntB, we can merge them.
365  if (ValLR+1 != BLR) return false;
366
367  // If a live interval is a physical register, conservatively check if any
368  // of its aliases is overlapping the live interval of the virtual register.
369  // If so, do not coalesce.
370  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
371    for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
372      if (li_->hasInterval(*AS) && IntA.overlaps(li_->getInterval(*AS))) {
373        DEBUG({
374            dbgs() << "\t\tInterfere with alias ";
375            li_->getInterval(*AS).print(dbgs(), tri_);
376          });
377        return false;
378      }
379  }
380
381  DEBUG({
382      dbgs() << "Extending: ";
383      IntB.print(dbgs(), tri_);
384    });
385
386  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
387  // We are about to delete CopyMI, so need to remove it as the 'instruction
388  // that defines this value #'. Update the valnum with the new defining
389  // instruction #.
390  BValNo->def  = FillerStart;
391  BValNo->setCopy(0);
392
393  // Okay, we can merge them.  We need to insert a new liverange:
394  // [ValLR.end, BLR.begin) of either value number, then we merge the
395  // two value numbers.
396  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
397
398  // If the IntB live range is assigned to a physical register, and if that
399  // physreg has sub-registers, update their live intervals as well.
400  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
401    for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
402      if (!li_->hasInterval(*SR))
403        continue;
404      LiveInterval &SRLI = li_->getInterval(*SR);
405      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
406                              SRLI.getNextValue(FillerStart, 0,
407                                                li_->getVNInfoAllocator())));
408    }
409  }
410
411  // Okay, merge "B1" into the same value number as "B0".
412  if (BValNo != ValLR->valno) {
413    // If B1 is killed by a PHI, then the merged live range must also be killed
414    // by the same PHI, as B0 and B1 can not overlap.
415    bool HasPHIKill = BValNo->hasPHIKill();
416    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
417    if (HasPHIKill)
418      ValLR->valno->setHasPHIKill(true);
419  }
420  DEBUG({
421      dbgs() << "   result = ";
422      IntB.print(dbgs(), tri_);
423      dbgs() << "\n";
424    });
425
426  // If the source instruction was killing the source register before the
427  // merge, unset the isKill marker given the live range has been extended.
428  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
429  if (UIdx != -1) {
430    ValLREndInst->getOperand(UIdx).setIsKill(false);
431  }
432
433  // If the copy instruction was killing the destination register before the
434  // merge, find the last use and trim the live range. That will also add the
435  // isKill marker.
436  if (ALR->end == CopyIdx)
437    li_->shrinkToUses(&IntA);
438
439  ++numExtends;
440  return true;
441}
442
443/// HasOtherReachingDefs - Return true if there are definitions of IntB
444/// other than BValNo val# that can reach uses of AValno val# of IntA.
445bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
446                                                    LiveInterval &IntB,
447                                                    VNInfo *AValNo,
448                                                    VNInfo *BValNo) {
449  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
450       AI != AE; ++AI) {
451    if (AI->valno != AValNo) continue;
452    LiveInterval::Ranges::iterator BI =
453      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
454    if (BI != IntB.ranges.begin())
455      --BI;
456    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
457      if (BI->valno == BValNo)
458        continue;
459      if (BI->start <= AI->start && BI->end > AI->start)
460        return true;
461      if (BI->start > AI->start && BI->start < AI->end)
462        return true;
463    }
464  }
465  return false;
466}
467
468/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
469/// IntA being the source and IntB being the dest, thus this defines a value
470/// number in IntB.  If the source value number (in IntA) is defined by a
471/// commutable instruction and its other operand is coalesced to the copy dest
472/// register, see if we can transform the copy into a noop by commuting the
473/// definition. For example,
474///
475///  A3 = op A2 B0<kill>
476///    ...
477///  B1 = A3      <- this copy
478///    ...
479///     = op A3   <- more uses
480///
481/// ==>
482///
483///  B2 = op B0 A2<kill>
484///    ...
485///  B1 = B2      <- now an identify copy
486///    ...
487///     = op B2   <- more uses
488///
489/// This returns true if an interval was modified.
490///
491bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
492                                                        MachineInstr *CopyMI) {
493  // FIXME: For now, only eliminate the copy by commuting its def when the
494  // source register is a virtual register. We want to guard against cases
495  // where the copy is a back edge copy and commuting the def lengthen the
496  // live interval of the source register to the entire loop.
497  if (CP.isPhys() && CP.isFlipped())
498    return false;
499
500  // Bail if there is no dst interval.
501  if (!li_->hasInterval(CP.getDstReg()))
502    return false;
503
504  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
505
506  LiveInterval &IntA =
507    li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
508  LiveInterval &IntB =
509    li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
510
511  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
512  // the example above.
513  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
514  if (!BValNo || !BValNo->isDefByCopy())
515    return false;
516
517  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
518
519  // AValNo is the value number in A that defines the copy, A3 in the example.
520  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getUseIndex());
521  assert(AValNo && "COPY source not live");
522
523  // If other defs can reach uses of this def, then it's not safe to perform
524  // the optimization.
525  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
526    return false;
527  MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
528  if (!DefMI)
529    return false;
530  const MCInstrDesc &MCID = DefMI->getDesc();
531  if (!MCID.isCommutable())
532    return false;
533  // If DefMI is a two-address instruction then commuting it will change the
534  // destination register.
535  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
536  assert(DefIdx != -1);
537  unsigned UseOpIdx;
538  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
539    return false;
540  unsigned Op1, Op2, NewDstIdx;
541  if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
542    return false;
543  if (Op1 == UseOpIdx)
544    NewDstIdx = Op2;
545  else if (Op2 == UseOpIdx)
546    NewDstIdx = Op1;
547  else
548    return false;
549
550  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
551  unsigned NewReg = NewDstMO.getReg();
552  if (NewReg != IntB.reg || !NewDstMO.isKill())
553    return false;
554
555  // Make sure there are no other definitions of IntB that would reach the
556  // uses which the new definition can reach.
557  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
558    return false;
559
560  // Abort if the aliases of IntB.reg have values that are not simply the
561  // clobbers from the superreg.
562  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
563    for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
564      if (li_->hasInterval(*AS) &&
565          HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
566        return false;
567
568  // If some of the uses of IntA.reg is already coalesced away, return false.
569  // It's not possible to determine whether it's safe to perform the coalescing.
570  for (MachineRegisterInfo::use_nodbg_iterator UI =
571         mri_->use_nodbg_begin(IntA.reg),
572       UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
573    MachineInstr *UseMI = &*UI;
574    SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
575    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
576    if (ULR == IntA.end())
577      continue;
578    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
579      return false;
580  }
581
582  DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
583               << *DefMI);
584
585  // At this point we have decided that it is legal to do this
586  // transformation.  Start by commuting the instruction.
587  MachineBasicBlock *MBB = DefMI->getParent();
588  MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
589  if (!NewMI)
590    return false;
591  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
592      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
593      !mri_->constrainRegClass(IntB.reg, mri_->getRegClass(IntA.reg)))
594    return false;
595  if (NewMI != DefMI) {
596    li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
597    MBB->insert(DefMI, NewMI);
598    MBB->erase(DefMI);
599  }
600  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
601  NewMI->getOperand(OpIdx).setIsKill();
602
603  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
604  // A = or A, B
605  // ...
606  // B = A
607  // ...
608  // C = A<kill>
609  // ...
610  //   = B
611
612  // Update uses of IntA of the specific Val# with IntB.
613  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
614         UE = mri_->use_end(); UI != UE;) {
615    MachineOperand &UseMO = UI.getOperand();
616    MachineInstr *UseMI = &*UI;
617    ++UI;
618    if (JoinedCopies.count(UseMI))
619      continue;
620    if (UseMI->isDebugValue()) {
621      // FIXME These don't have an instruction index.  Not clear we have enough
622      // info to decide whether to do this replacement or not.  For now do it.
623      UseMO.setReg(NewReg);
624      continue;
625    }
626    SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
627    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
628    if (ULR == IntA.end() || ULR->valno != AValNo)
629      continue;
630    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
631      UseMO.substPhysReg(NewReg, *tri_);
632    else
633      UseMO.setReg(NewReg);
634    if (UseMI == CopyMI)
635      continue;
636    if (!UseMI->isCopy())
637      continue;
638    if (UseMI->getOperand(0).getReg() != IntB.reg ||
639        UseMI->getOperand(0).getSubReg())
640      continue;
641
642    // This copy will become a noop. If it's defining a new val#, merge it into
643    // BValNo.
644    SlotIndex DefIdx = UseIdx.getDefIndex();
645    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
646    if (!DVNI)
647      continue;
648    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
649    assert(DVNI->def == DefIdx);
650    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
651    markAsJoined(UseMI);
652  }
653
654  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
655  // is updated.
656  VNInfo *ValNo = BValNo;
657  ValNo->def = AValNo->def;
658  ValNo->setCopy(0);
659  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
660       AI != AE; ++AI) {
661    if (AI->valno != AValNo) continue;
662    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
663  }
664  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
665
666  IntA.removeValNo(AValNo);
667  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
668  ++numCommutes;
669  return true;
670}
671
672/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
673/// computation, replace the copy by rematerialize the definition.
674bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
675                                                       bool preserveSrcInt,
676                                                       unsigned DstReg,
677                                                       unsigned DstSubIdx,
678                                                       MachineInstr *CopyMI) {
679  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
680  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
681  assert(SrcLR != SrcInt.end() && "Live range not found!");
682  VNInfo *ValNo = SrcLR->valno;
683  // If other defs can reach uses of this def, then it's not safe to perform
684  // the optimization.
685  if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
686    return false;
687  MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
688  if (!DefMI)
689    return false;
690  assert(DefMI && "Defining instruction disappeared");
691  const MCInstrDesc &MCID = DefMI->getDesc();
692  if (!MCID.isAsCheapAsAMove())
693    return false;
694  if (!tii_->isTriviallyReMaterializable(DefMI, AA))
695    return false;
696  bool SawStore = false;
697  if (!DefMI->isSafeToMove(tii_, AA, SawStore))
698    return false;
699  if (MCID.getNumDefs() != 1)
700    return false;
701  if (!DefMI->isImplicitDef()) {
702    // Make sure the copy destination register class fits the instruction
703    // definition register class. The mismatch can happen as a result of earlier
704    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
705    const TargetRegisterClass *RC = tii_->getRegClass(MCID, 0, tri_);
706    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
707      if (mri_->getRegClass(DstReg) != RC)
708        return false;
709    } else if (!RC->contains(DstReg))
710      return false;
711  }
712
713  // If destination register has a sub-register index on it, make sure it
714  // matches the instruction register class.
715  if (DstSubIdx) {
716    const MCInstrDesc &MCID = DefMI->getDesc();
717    if (MCID.getNumDefs() != 1)
718      return false;
719    const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
720    const TargetRegisterClass *DstSubRC =
721      DstRC->getSubRegisterRegClass(DstSubIdx);
722    const TargetRegisterClass *DefRC = tii_->getRegClass(MCID, 0, tri_);
723    if (DefRC == DstRC)
724      DstSubIdx = 0;
725    else if (DefRC != DstSubRC)
726      return false;
727  }
728
729  RemoveCopyFlag(DstReg, CopyMI);
730
731  MachineBasicBlock *MBB = CopyMI->getParent();
732  MachineBasicBlock::iterator MII =
733    llvm::next(MachineBasicBlock::iterator(CopyMI));
734  tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
735  MachineInstr *NewMI = prior(MII);
736
737  // CopyMI may have implicit operands, transfer them over to the newly
738  // rematerialized instruction. And update implicit def interval valnos.
739  for (unsigned i = CopyMI->getDesc().getNumOperands(),
740         e = CopyMI->getNumOperands(); i != e; ++i) {
741    MachineOperand &MO = CopyMI->getOperand(i);
742    if (MO.isReg() && MO.isImplicit())
743      NewMI->addOperand(MO);
744    if (MO.isDef())
745      RemoveCopyFlag(MO.getReg(), CopyMI);
746  }
747
748  NewMI->copyImplicitOps(CopyMI);
749  li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
750  CopyMI->eraseFromParent();
751  ReMatCopies.insert(CopyMI);
752  ReMatDefs.insert(DefMI);
753  DEBUG(dbgs() << "Remat: " << *NewMI);
754  ++NumReMats;
755
756  // The source interval can become smaller because we removed a use.
757  if (preserveSrcInt)
758    li_->shrinkToUses(&SrcInt);
759
760  return true;
761}
762
763/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
764/// update the subregister number if it is not zero. If DstReg is a
765/// physical register and the existing subregister number of the def / use
766/// being updated is not zero, make sure to set it to the correct physical
767/// subregister.
768void
769RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
770  bool DstIsPhys = CP.isPhys();
771  unsigned SrcReg = CP.getSrcReg();
772  unsigned DstReg = CP.getDstReg();
773  unsigned SubIdx = CP.getSubIdx();
774
775  // Update LiveDebugVariables.
776  ldv_->renameRegister(SrcReg, DstReg, SubIdx);
777
778  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
779       MachineInstr *UseMI = I.skipInstruction();) {
780    // A PhysReg copy that won't be coalesced can perhaps be rematerialized
781    // instead.
782    if (DstIsPhys) {
783      if (UseMI->isCopy() &&
784          !UseMI->getOperand(1).getSubReg() &&
785          !UseMI->getOperand(0).getSubReg() &&
786          UseMI->getOperand(1).getReg() == SrcReg &&
787          UseMI->getOperand(0).getReg() != SrcReg &&
788          UseMI->getOperand(0).getReg() != DstReg &&
789          !JoinedCopies.count(UseMI) &&
790          ReMaterializeTrivialDef(li_->getInterval(SrcReg), false,
791                                  UseMI->getOperand(0).getReg(), 0, UseMI))
792        continue;
793    }
794
795    SmallVector<unsigned,8> Ops;
796    bool Reads, Writes;
797    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
798    bool Kills = false, Deads = false;
799
800    // Replace SrcReg with DstReg in all UseMI operands.
801    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
802      MachineOperand &MO = UseMI->getOperand(Ops[i]);
803      Kills |= MO.isKill();
804      Deads |= MO.isDead();
805
806      if (DstIsPhys)
807        MO.substPhysReg(DstReg, *tri_);
808      else
809        MO.substVirtReg(DstReg, SubIdx, *tri_);
810    }
811
812    // This instruction is a copy that will be removed.
813    if (JoinedCopies.count(UseMI))
814      continue;
815
816    if (SubIdx) {
817      // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
818      // read-modify-write of DstReg.
819      if (Deads)
820        UseMI->addRegisterDead(DstReg, tri_);
821      else if (!Reads && Writes)
822        UseMI->addRegisterDefined(DstReg, tri_);
823
824      // Kill flags apply to the whole physical register.
825      if (DstIsPhys && Kills)
826        UseMI->addRegisterKilled(DstReg, tri_);
827    }
828
829    DEBUG({
830        dbgs() << "\t\tupdated: ";
831        if (!UseMI->isDebugValue())
832          dbgs() << li_->getInstructionIndex(UseMI) << "\t";
833        dbgs() << *UseMI;
834      });
835  }
836}
837
838/// removeIntervalIfEmpty - Check if the live interval of a physical register
839/// is empty, if so remove it and also remove the empty intervals of its
840/// sub-registers. Return true if live interval is removed.
841static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
842                                  const TargetRegisterInfo *tri_) {
843  if (li.empty()) {
844    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
845      for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
846        if (!li_->hasInterval(*SR))
847          continue;
848        LiveInterval &sli = li_->getInterval(*SR);
849        if (sli.empty())
850          li_->removeInterval(*SR);
851      }
852    li_->removeInterval(li.reg);
853    return true;
854  }
855  return false;
856}
857
858/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
859/// the val# it defines. If the live interval becomes empty, remove it as well.
860bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
861                                             MachineInstr *DefMI) {
862  SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
863  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
864  if (DefIdx != MLR->valno->def)
865    return false;
866  li.removeValNo(MLR->valno);
867  return removeIntervalIfEmpty(li, li_, tri_);
868}
869
870void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg,
871                                              const MachineInstr *CopyMI) {
872  SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
873  if (li_->hasInterval(DstReg)) {
874    LiveInterval &LI = li_->getInterval(DstReg);
875    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
876      if (LR->valno->def == DefIdx)
877        LR->valno->setCopy(0);
878  }
879  if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
880    return;
881  for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
882    if (!li_->hasInterval(*AS))
883      continue;
884    LiveInterval &LI = li_->getInterval(*AS);
885    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
886      if (LR->valno->def == DefIdx)
887        LR->valno->setCopy(0);
888  }
889}
890
891/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
892/// We need to be careful about coalescing a source physical register with a
893/// virtual register. Once the coalescing is done, it cannot be broken and these
894/// are not spillable! If the destination interval uses are far away, think
895/// twice about coalescing them!
896bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
897  bool Allocatable = li_->isAllocatable(CP.getDstReg());
898  LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
899
900  /// Always join simple intervals that are defined by a single copy from a
901  /// reserved register. This doesn't increase register pressure, so it is
902  /// always beneficial.
903  if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
904    return true;
905
906  if (!EnablePhysicalJoin) {
907    DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
908    return false;
909  }
910
911  // Only coalesce to allocatable physreg, we don't want to risk modifying
912  // reserved registers.
913  if (!Allocatable) {
914    DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
915    return false;  // Not coalescable.
916  }
917
918  // Don't join with physregs that have a ridiculous number of live
919  // ranges. The data structure performance is really bad when that
920  // happens.
921  if (li_->hasInterval(CP.getDstReg()) &&
922      li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
923    ++numAborts;
924    DEBUG(dbgs()
925          << "\tPhysical register live interval too complicated, abort!\n");
926    return false;
927  }
928
929  // FIXME: Why are we skipping this test for partial copies?
930  //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
931  if (!CP.isPartial()) {
932    const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
933    unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
934    unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
935    if (Length > Threshold) {
936      ++numAborts;
937      DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
938      return false;
939    }
940  }
941  return true;
942}
943
944/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
945/// two virtual registers from different register classes.
946bool
947RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
948                                             unsigned DstReg,
949                                             const TargetRegisterClass *SrcRC,
950                                             const TargetRegisterClass *DstRC,
951                                             const TargetRegisterClass *NewRC) {
952  unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
953  // This heuristics is good enough in practice, but it's obviously not *right*.
954  // 4 is a magic number that works well enough for x86, ARM, etc. It filter
955  // out all but the most restrictive register classes.
956  if (NewRCCount > 4 ||
957      // Early exit if the function is fairly small, coalesce aggressively if
958      // that's the case. For really special register classes with 3 or
959      // fewer registers, be a bit more careful.
960      (li_->getFuncInstructionCount() / NewRCCount) < 8)
961    return true;
962  LiveInterval &SrcInt = li_->getInterval(SrcReg);
963  LiveInterval &DstInt = li_->getInterval(DstReg);
964  unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
965  unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
966
967  // Coalesce aggressively if the intervals are small compared to the number of
968  // registers in the new class. The number 4 is fairly arbitrary, chosen to be
969  // less aggressive than the 8 used for the whole function size.
970  const unsigned ThresSize = 4 * NewRCCount;
971  if (SrcSize <= ThresSize && DstSize <= ThresSize)
972    return true;
973
974  // Estimate *register use density*. If it doubles or more, abort.
975  unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
976                                   mri_->use_nodbg_end());
977  unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
978                                   mri_->use_nodbg_end());
979  unsigned NewUses = SrcUses + DstUses;
980  unsigned NewSize = SrcSize + DstSize;
981  if (SrcRC != NewRC && SrcSize > ThresSize) {
982    unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
983    if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
984      return false;
985  }
986  if (DstRC != NewRC && DstSize > ThresSize) {
987    unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
988    if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
989      return false;
990  }
991  return true;
992}
993
994
995/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
996/// which are the src/dst of the copy instruction CopyMI.  This returns true
997/// if the copy was successfully coalesced away. If it is not currently
998/// possible to coalesce this interval, but it may be possible if other
999/// things get coalesced, then it returns true by reference in 'Again'.
1000bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
1001
1002  Again = false;
1003  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1004    return false; // Already done.
1005
1006  DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1007
1008  CoalescerPair CP(*tii_, *tri_);
1009  if (!CP.setRegisters(CopyMI)) {
1010    DEBUG(dbgs() << "\tNot coalescable.\n");
1011    return false;
1012  }
1013
1014  // If they are already joined we continue.
1015  if (CP.getSrcReg() == CP.getDstReg()) {
1016    markAsJoined(CopyMI);
1017    DEBUG(dbgs() << "\tCopy already coalesced.\n");
1018    return false;  // Not coalescable.
1019  }
1020
1021  DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), tri_)
1022               << " with " << PrintReg(CP.getDstReg(), tri_, CP.getSubIdx())
1023               << "\n");
1024
1025  // Enforce policies.
1026  if (CP.isPhys()) {
1027    if (!shouldJoinPhys(CP)) {
1028      // Before giving up coalescing, if definition of source is defined by
1029      // trivial computation, try rematerializing it.
1030      if (!CP.isFlipped() &&
1031          ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
1032                                  CP.getDstReg(), 0, CopyMI))
1033        return true;
1034      return false;
1035    }
1036  } else {
1037    // Avoid constraining virtual register regclass too much.
1038    if (CP.isCrossClass()) {
1039      DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
1040      if (DisableCrossClassJoin) {
1041        DEBUG(dbgs() << "\tCross-class joins disabled.\n");
1042        return false;
1043      }
1044      if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
1045                                 mri_->getRegClass(CP.getSrcReg()),
1046                                 mri_->getRegClass(CP.getDstReg()),
1047                                 CP.getNewRC())) {
1048        DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
1049        Again = true;  // May be possible to coalesce later.
1050        return false;
1051      }
1052    }
1053
1054    // When possible, let DstReg be the larger interval.
1055    if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
1056                           li_->getInterval(CP.getDstReg()).ranges.size())
1057      CP.flip();
1058  }
1059
1060  // Okay, attempt to join these two intervals.  On failure, this returns false.
1061  // Otherwise, if one of the intervals being joined is a physreg, this method
1062  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1063  // been modified, so we can use this information below to update aliases.
1064  if (!JoinIntervals(CP)) {
1065    // Coalescing failed.
1066
1067    // If definition of source is defined by trivial computation, try
1068    // rematerializing it.
1069    if (!CP.isFlipped() &&
1070        ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
1071                                CP.getDstReg(), 0, CopyMI))
1072      return true;
1073
1074    // If we can eliminate the copy without merging the live ranges, do so now.
1075    if (!CP.isPartial()) {
1076      if (AdjustCopiesBackFrom(CP, CopyMI) ||
1077          RemoveCopyByCommutingDef(CP, CopyMI)) {
1078        markAsJoined(CopyMI);
1079        DEBUG(dbgs() << "\tTrivial!\n");
1080        return true;
1081      }
1082    }
1083
1084    // Otherwise, we are unable to join the intervals.
1085    DEBUG(dbgs() << "\tInterference!\n");
1086    Again = true;  // May be possible to coalesce later.
1087    return false;
1088  }
1089
1090  // Coalescing to a virtual register that is of a sub-register class of the
1091  // other. Make sure the resulting register is set to the right register class.
1092  if (CP.isCrossClass()) {
1093    ++numCrossRCs;
1094    mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
1095  }
1096
1097  // Remember to delete the copy instruction.
1098  markAsJoined(CopyMI);
1099
1100  UpdateRegDefsUses(CP);
1101
1102  // If we have extended the live range of a physical register, make sure we
1103  // update live-in lists as well.
1104  if (CP.isPhys()) {
1105    SmallVector<MachineBasicBlock*, 16> BlockSeq;
1106    // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
1107    // ranges for this, and they are preserved.
1108    LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
1109    for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
1110         I != E; ++I ) {
1111      li_->findLiveInMBBs(I->start, I->end, BlockSeq);
1112      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
1113        MachineBasicBlock &block = *BlockSeq[idx];
1114        if (!block.isLiveIn(CP.getDstReg()))
1115          block.addLiveIn(CP.getDstReg());
1116      }
1117      BlockSeq.clear();
1118    }
1119  }
1120
1121  // SrcReg is guarateed to be the register whose live interval that is
1122  // being merged.
1123  li_->removeInterval(CP.getSrcReg());
1124
1125  // Update regalloc hint.
1126  tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
1127
1128  DEBUG({
1129    LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
1130    dbgs() << "\tJoined. Result = ";
1131    DstInt.print(dbgs(), tri_);
1132    dbgs() << "\n";
1133  });
1134
1135  ++numJoins;
1136  return true;
1137}
1138
1139/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1140/// compute what the resultant value numbers for each value in the input two
1141/// ranges will be.  This is complicated by copies between the two which can
1142/// and will commonly cause multiple value numbers to be merged into one.
1143///
1144/// VN is the value number that we're trying to resolve.  InstDefiningValue
1145/// keeps track of the new InstDefiningValue assignment for the result
1146/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1147/// whether a value in this or other is a copy from the opposite set.
1148/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1149/// already been assigned.
1150///
1151/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1152/// contains the value number the copy is from.
1153///
1154static unsigned ComputeUltimateVN(VNInfo *VNI,
1155                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1156                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1157                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1158                                  SmallVector<int, 16> &ThisValNoAssignments,
1159                                  SmallVector<int, 16> &OtherValNoAssignments) {
1160  unsigned VN = VNI->id;
1161
1162  // If the VN has already been computed, just return it.
1163  if (ThisValNoAssignments[VN] >= 0)
1164    return ThisValNoAssignments[VN];
1165  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1166
1167  // If this val is not a copy from the other val, then it must be a new value
1168  // number in the destination.
1169  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1170  if (I == ThisFromOther.end()) {
1171    NewVNInfo.push_back(VNI);
1172    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1173  }
1174  VNInfo *OtherValNo = I->second;
1175
1176  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1177  // been computed, return it.
1178  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1179    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1180
1181  // Mark this value number as currently being computed, then ask what the
1182  // ultimate value # of the other value is.
1183  ThisValNoAssignments[VN] = -2;
1184  unsigned UltimateVN =
1185    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1186                      OtherValNoAssignments, ThisValNoAssignments);
1187  return ThisValNoAssignments[VN] = UltimateVN;
1188}
1189
1190
1191// Find out if we have something like
1192// A = X
1193// B = X
1194// if so, we can pretend this is actually
1195// A = X
1196// B = A
1197// which allows us to coalesce A and B.
1198// MI is the definition of B. LR is the life range of A that includes
1199// the slot just before B. If we return true, we add "B = X" to DupCopies.
1200static bool RegistersDefinedFromSameValue(const TargetRegisterInfo &tri,
1201                                          CoalescerPair &CP, MachineInstr *MI,
1202                                          LiveRange *LR,
1203                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1204  // FIXME: This is very conservative. For example, we don't handle
1205  // physical registers.
1206
1207  if (!MI->isFullCopy() || CP.isPartial() || CP.isPhys())
1208    return false;
1209
1210  unsigned Dst = MI->getOperand(0).getReg();
1211  unsigned Src = MI->getOperand(1).getReg();
1212
1213  if (!TargetRegisterInfo::isVirtualRegister(Src) ||
1214      !TargetRegisterInfo::isVirtualRegister(Dst))
1215    return false;
1216
1217  unsigned A = CP.getDstReg();
1218  unsigned B = CP.getSrcReg();
1219
1220  if (B == Dst)
1221    std::swap(A, B);
1222  assert(Dst == A);
1223
1224  VNInfo *Other = LR->valno;
1225  if (!Other->isDefByCopy())
1226    return false;
1227  const MachineInstr *OtherMI = Other->getCopy();
1228
1229  if (!OtherMI->isFullCopy())
1230    return false;
1231
1232  unsigned OtherDst = OtherMI->getOperand(0).getReg();
1233  unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1234
1235  if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
1236      !TargetRegisterInfo::isVirtualRegister(OtherDst))
1237    return false;
1238
1239  assert(OtherDst == B);
1240
1241  if (Src != OtherSrc)
1242    return false;
1243
1244  DupCopies.push_back(MI);
1245
1246  return true;
1247}
1248
1249/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1250/// returns false.
1251bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
1252  LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
1253  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
1254
1255  // If a live interval is a physical register, check for interference with any
1256  // aliases. The interference check implemented here is a bit more conservative
1257  // than the full interfeence check below. We allow overlapping live ranges
1258  // only when one is a copy of the other.
1259  if (CP.isPhys()) {
1260    for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
1261      if (!li_->hasInterval(*AS))
1262        continue;
1263      const LiveInterval &LHS = li_->getInterval(*AS);
1264      LiveInterval::const_iterator LI = LHS.begin();
1265      for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
1266           RI != RE; ++RI) {
1267        LI = std::lower_bound(LI, LHS.end(), RI->start);
1268        // Does LHS have an overlapping live range starting before RI?
1269        if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
1270            (RI->start != RI->valno->def ||
1271             !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
1272          DEBUG({
1273            dbgs() << "\t\tInterference from alias: ";
1274            LHS.print(dbgs(), tri_);
1275            dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
1276          });
1277          return false;
1278        }
1279
1280        // Check that LHS ranges beginning in this range are copies.
1281        for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
1282          if (LI->start != LI->valno->def ||
1283              !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
1284            DEBUG({
1285              dbgs() << "\t\tInterference from alias: ";
1286              LHS.print(dbgs(), tri_);
1287              dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
1288            });
1289            return false;
1290          }
1291        }
1292      }
1293    }
1294  }
1295
1296  // Compute the final value assignment, assuming that the live ranges can be
1297  // coalesced.
1298  SmallVector<int, 16> LHSValNoAssignments;
1299  SmallVector<int, 16> RHSValNoAssignments;
1300  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1301  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1302  SmallVector<VNInfo*, 16> NewVNInfo;
1303
1304  SmallVector<MachineInstr*, 8> DupCopies;
1305
1306  LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
1307  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
1308
1309  // Loop over the value numbers of the LHS, seeing if any are defined from
1310  // the RHS.
1311  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1312       i != e; ++i) {
1313    VNInfo *VNI = *i;
1314    if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
1315      continue;
1316
1317    // Never join with a register that has EarlyClobber redefs.
1318    if (VNI->hasRedefByEC())
1319      return false;
1320
1321    // Figure out the value # from the RHS.
1322    LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1323    // The copy could be to an aliased physreg.
1324    if (!lr) continue;
1325
1326    // DstReg is known to be a register in the LHS interval.  If the src is
1327    // from the RHS interval, we can use its value #.
1328    MachineInstr *MI = VNI->getCopy();
1329    if (!CP.isCoalescable(MI) &&
1330        !RegistersDefinedFromSameValue(*tri_, CP, MI, lr, DupCopies))
1331      continue;
1332
1333    LHSValsDefinedFromRHS[VNI] = lr->valno;
1334  }
1335
1336  // Loop over the value numbers of the RHS, seeing if any are defined from
1337  // the LHS.
1338  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1339       i != e; ++i) {
1340    VNInfo *VNI = *i;
1341    if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
1342      continue;
1343
1344    // Never join with a register that has EarlyClobber redefs.
1345    if (VNI->hasRedefByEC())
1346      return false;
1347
1348    // Figure out the value # from the LHS.
1349    LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1350    // The copy could be to an aliased physreg.
1351    if (!lr) continue;
1352
1353    // DstReg is known to be a register in the RHS interval.  If the src is
1354    // from the LHS interval, we can use its value #.
1355    MachineInstr *MI = VNI->getCopy();
1356    if (!CP.isCoalescable(MI) &&
1357        !RegistersDefinedFromSameValue(*tri_, CP, MI, lr, DupCopies))
1358        continue;
1359
1360    RHSValsDefinedFromLHS[VNI] = lr->valno;
1361  }
1362
1363  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1364  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1365  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1366
1367  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1368       i != e; ++i) {
1369    VNInfo *VNI = *i;
1370    unsigned VN = VNI->id;
1371    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1372      continue;
1373    ComputeUltimateVN(VNI, NewVNInfo,
1374                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1375                      LHSValNoAssignments, RHSValNoAssignments);
1376  }
1377  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1378       i != e; ++i) {
1379    VNInfo *VNI = *i;
1380    unsigned VN = VNI->id;
1381    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1382      continue;
1383    // If this value number isn't a copy from the LHS, it's a new number.
1384    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1385      NewVNInfo.push_back(VNI);
1386      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1387      continue;
1388    }
1389
1390    ComputeUltimateVN(VNI, NewVNInfo,
1391                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1392                      RHSValNoAssignments, LHSValNoAssignments);
1393  }
1394
1395  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1396  // interval lists to see if these intervals are coalescable.
1397  LiveInterval::const_iterator I = LHS.begin();
1398  LiveInterval::const_iterator IE = LHS.end();
1399  LiveInterval::const_iterator J = RHS.begin();
1400  LiveInterval::const_iterator JE = RHS.end();
1401
1402  // Skip ahead until the first place of potential sharing.
1403  if (I != IE && J != JE) {
1404    if (I->start < J->start) {
1405      I = std::upper_bound(I, IE, J->start);
1406      if (I != LHS.begin()) --I;
1407    } else if (J->start < I->start) {
1408      J = std::upper_bound(J, JE, I->start);
1409      if (J != RHS.begin()) --J;
1410    }
1411  }
1412
1413  while (I != IE && J != JE) {
1414    // Determine if these two live ranges overlap.
1415    bool Overlaps;
1416    if (I->start < J->start) {
1417      Overlaps = I->end > J->start;
1418    } else {
1419      Overlaps = J->end > I->start;
1420    }
1421
1422    // If so, check value # info to determine if they are really different.
1423    if (Overlaps) {
1424      // If the live range overlap will map to the same value number in the
1425      // result liverange, we can still coalesce them.  If not, we can't.
1426      if (LHSValNoAssignments[I->valno->id] !=
1427          RHSValNoAssignments[J->valno->id])
1428        return false;
1429      // If it's re-defined by an early clobber somewhere in the live range,
1430      // then conservatively abort coalescing.
1431      if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
1432        return false;
1433    }
1434
1435    if (I->end < J->end)
1436      ++I;
1437    else
1438      ++J;
1439  }
1440
1441  // Update kill info. Some live ranges are extended due to copy coalescing.
1442  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1443         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1444    VNInfo *VNI = I->first;
1445    unsigned LHSValID = LHSValNoAssignments[VNI->id];
1446    if (VNI->hasPHIKill())
1447      NewVNInfo[LHSValID]->setHasPHIKill(true);
1448  }
1449
1450  // Update kill info. Some live ranges are extended due to copy coalescing.
1451  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1452         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1453    VNInfo *VNI = I->first;
1454    unsigned RHSValID = RHSValNoAssignments[VNI->id];
1455    if (VNI->hasPHIKill())
1456      NewVNInfo[RHSValID]->setHasPHIKill(true);
1457  }
1458
1459  if (LHSValNoAssignments.empty())
1460    LHSValNoAssignments.push_back(-1);
1461  if (RHSValNoAssignments.empty())
1462    RHSValNoAssignments.push_back(-1);
1463
1464  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1465         E = DupCopies.end(); I != E; ++I) {
1466    MachineInstr *MI = *I;
1467
1468    // We have pretended that the assignment to B in
1469    // A = X
1470    // B = X
1471    // was actually a copy from A. Now that we decided to coalesce A and B,
1472    // transform the code into
1473    // A = X
1474    // X = X
1475    // and mark the X as coalesced to keep the illusion.
1476    unsigned Src = MI->getOperand(1).getReg();
1477    MI->getOperand(0).substVirtReg(Src, 0, *tri_);
1478
1479    markAsJoined(MI);
1480  }
1481
1482  // If we get here, we know that we can coalesce the live ranges.  Ask the
1483  // intervals to coalesce themselves now.
1484  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1485           mri_);
1486  return true;
1487}
1488
1489namespace {
1490  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1491  // depth of the basic block (the unsigned), and then on the MBB number.
1492  struct DepthMBBCompare {
1493    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1494    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1495      // Deeper loops first
1496      if (LHS.first != RHS.first)
1497        return LHS.first > RHS.first;
1498
1499      // Prefer blocks that are more connected in the CFG. This takes care of
1500      // the most difficult copies first while intervals are short.
1501      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1502      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1503      if (cl != cr)
1504        return cl > cr;
1505
1506      // As a last resort, sort by block number.
1507      return LHS.second->getNumber() < RHS.second->getNumber();
1508    }
1509  };
1510}
1511
1512void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
1513                                            std::vector<MachineInstr*> &TryAgain) {
1514  DEBUG(dbgs() << MBB->getName() << ":\n");
1515
1516  SmallVector<MachineInstr*, 8> VirtCopies;
1517  SmallVector<MachineInstr*, 8> PhysCopies;
1518  SmallVector<MachineInstr*, 8> ImpDefCopies;
1519  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1520       MII != E;) {
1521    MachineInstr *Inst = MII++;
1522
1523    // If this isn't a copy nor a extract_subreg, we can't join intervals.
1524    unsigned SrcReg, DstReg;
1525    if (Inst->isCopy()) {
1526      DstReg = Inst->getOperand(0).getReg();
1527      SrcReg = Inst->getOperand(1).getReg();
1528    } else if (Inst->isSubregToReg()) {
1529      DstReg = Inst->getOperand(0).getReg();
1530      SrcReg = Inst->getOperand(2).getReg();
1531    } else
1532      continue;
1533
1534    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1535    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1536    if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
1537      ImpDefCopies.push_back(Inst);
1538    else if (SrcIsPhys || DstIsPhys)
1539      PhysCopies.push_back(Inst);
1540    else
1541      VirtCopies.push_back(Inst);
1542  }
1543
1544  // Try coalescing implicit copies and insert_subreg <undef> first,
1545  // followed by copies to / from physical registers, then finally copies
1546  // from virtual registers to virtual registers.
1547  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
1548    MachineInstr *TheCopy = ImpDefCopies[i];
1549    bool Again = false;
1550    if (!JoinCopy(TheCopy, Again))
1551      if (Again)
1552        TryAgain.push_back(TheCopy);
1553  }
1554  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
1555    MachineInstr *TheCopy = PhysCopies[i];
1556    bool Again = false;
1557    if (!JoinCopy(TheCopy, Again))
1558      if (Again)
1559        TryAgain.push_back(TheCopy);
1560  }
1561  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
1562    MachineInstr *TheCopy = VirtCopies[i];
1563    bool Again = false;
1564    if (!JoinCopy(TheCopy, Again))
1565      if (Again)
1566        TryAgain.push_back(TheCopy);
1567  }
1568}
1569
1570void RegisterCoalescer::joinIntervals() {
1571  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1572
1573  std::vector<MachineInstr*> TryAgainList;
1574  if (loopInfo->empty()) {
1575    // If there are no loops in the function, join intervals in function order.
1576    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1577         I != E; ++I)
1578      CopyCoalesceInMBB(I, TryAgainList);
1579  } else {
1580    // Otherwise, join intervals in inner loops before other intervals.
1581    // Unfortunately we can't just iterate over loop hierarchy here because
1582    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1583
1584    // Join intervals in the function prolog first. We want to join physical
1585    // registers with virtual registers before the intervals got too long.
1586    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1587    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
1588      MachineBasicBlock *MBB = I;
1589      MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
1590    }
1591
1592    // Sort by loop depth.
1593    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1594
1595    // Finally, join intervals in loop nest order.
1596    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1597      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
1598  }
1599
1600  // Joining intervals can allow other intervals to be joined.  Iteratively join
1601  // until we make no progress.
1602  bool ProgressMade = true;
1603  while (ProgressMade) {
1604    ProgressMade = false;
1605
1606    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1607      MachineInstr *&TheCopy = TryAgainList[i];
1608      if (!TheCopy)
1609        continue;
1610
1611      bool Again = false;
1612      bool Success = JoinCopy(TheCopy, Again);
1613      if (Success || !Again) {
1614        TheCopy= 0;   // Mark this one as done.
1615        ProgressMade = true;
1616      }
1617    }
1618  }
1619}
1620
1621void RegisterCoalescer::releaseMemory() {
1622  JoinedCopies.clear();
1623  ReMatCopies.clear();
1624  ReMatDefs.clear();
1625}
1626
1627bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1628  mf_ = &fn;
1629  mri_ = &fn.getRegInfo();
1630  tm_ = &fn.getTarget();
1631  tri_ = tm_->getRegisterInfo();
1632  tii_ = tm_->getInstrInfo();
1633  li_ = &getAnalysis<LiveIntervals>();
1634  ldv_ = &getAnalysis<LiveDebugVariables>();
1635  AA = &getAnalysis<AliasAnalysis>();
1636  loopInfo = &getAnalysis<MachineLoopInfo>();
1637
1638  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1639               << "********** Function: "
1640               << ((Value*)mf_->getFunction())->getName() << '\n');
1641
1642  if (VerifyCoalescing)
1643    mf_->verify(this, "Before register coalescing");
1644
1645  RegClassInfo.runOnMachineFunction(fn);
1646
1647  // Join (coalesce) intervals if requested.
1648  if (EnableJoining) {
1649    joinIntervals();
1650    DEBUG({
1651        dbgs() << "********** INTERVALS POST JOINING **********\n";
1652        for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
1653             I != E; ++I){
1654          I->second->print(dbgs(), tri_);
1655          dbgs() << "\n";
1656        }
1657      });
1658  }
1659
1660  // Perform a final pass over the instructions and compute spill weights
1661  // and remove identity moves.
1662  SmallVector<unsigned, 4> DeadDefs;
1663  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
1664       mbbi != mbbe; ++mbbi) {
1665    MachineBasicBlock* mbb = mbbi;
1666    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1667         mii != mie; ) {
1668      MachineInstr *MI = mii;
1669      if (JoinedCopies.count(MI)) {
1670        // Delete all coalesced copies.
1671        bool DoDelete = true;
1672        assert(MI->isCopyLike() && "Unrecognized copy instruction");
1673        unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
1674        if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1675            MI->getNumOperands() > 2)
1676          // Do not delete extract_subreg, insert_subreg of physical
1677          // registers unless the definition is dead. e.g.
1678          // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1679          // or else the scavenger may complain. LowerSubregs will
1680          // delete them later.
1681          DoDelete = false;
1682
1683        if (MI->allDefsAreDead()) {
1684          if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1685              li_->hasInterval(SrcReg))
1686            li_->shrinkToUses(&li_->getInterval(SrcReg));
1687          DoDelete = true;
1688        }
1689        if (!DoDelete) {
1690          // We need the instruction to adjust liveness, so make it a KILL.
1691          if (MI->isSubregToReg()) {
1692            MI->RemoveOperand(3);
1693            MI->RemoveOperand(1);
1694          }
1695          MI->setDesc(tii_->get(TargetOpcode::KILL));
1696          mii = llvm::next(mii);
1697        } else {
1698          li_->RemoveMachineInstrFromMaps(MI);
1699          mii = mbbi->erase(mii);
1700          ++numPeep;
1701        }
1702        continue;
1703      }
1704
1705      // Now check if this is a remat'ed def instruction which is now dead.
1706      if (ReMatDefs.count(MI)) {
1707        bool isDead = true;
1708        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1709          const MachineOperand &MO = MI->getOperand(i);
1710          if (!MO.isReg())
1711            continue;
1712          unsigned Reg = MO.getReg();
1713          if (!Reg)
1714            continue;
1715          if (TargetRegisterInfo::isVirtualRegister(Reg))
1716            DeadDefs.push_back(Reg);
1717          if (MO.isDead())
1718            continue;
1719          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
1720              !mri_->use_nodbg_empty(Reg)) {
1721            isDead = false;
1722            break;
1723          }
1724        }
1725        if (isDead) {
1726          while (!DeadDefs.empty()) {
1727            unsigned DeadDef = DeadDefs.back();
1728            DeadDefs.pop_back();
1729            RemoveDeadDef(li_->getInterval(DeadDef), MI);
1730          }
1731          li_->RemoveMachineInstrFromMaps(mii);
1732          mii = mbbi->erase(mii);
1733          continue;
1734        } else
1735          DeadDefs.clear();
1736      }
1737
1738      ++mii;
1739
1740      // Check for now unnecessary kill flags.
1741      if (li_->isNotInMIMap(MI)) continue;
1742      SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
1743      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1744        MachineOperand &MO = MI->getOperand(i);
1745        if (!MO.isReg() || !MO.isKill()) continue;
1746        unsigned reg = MO.getReg();
1747        if (!reg || !li_->hasInterval(reg)) continue;
1748        if (!li_->getInterval(reg).killedAt(DefIdx)) {
1749          MO.setIsKill(false);
1750          continue;
1751        }
1752        // When leaving a kill flag on a physreg, check if any subregs should
1753        // remain alive.
1754        if (!TargetRegisterInfo::isPhysicalRegister(reg))
1755          continue;
1756        for (const unsigned *SR = tri_->getSubRegisters(reg);
1757             unsigned S = *SR; ++SR)
1758          if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
1759            MI->addRegisterDefined(S, tri_);
1760      }
1761    }
1762  }
1763
1764  DEBUG(dump());
1765  DEBUG(ldv_->dump());
1766  if (VerifyCoalescing)
1767    mf_->verify(this, "After register coalescing");
1768  return true;
1769}
1770
1771/// print - Implement the dump method.
1772void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
1773   li_->print(O, m);
1774}
1775
1776RegisterCoalescer *llvm::createRegisterCoalescer() {
1777  return new RegisterCoalescer();
1778}
1779