RegisterCoalescer.cpp revision ceacd6da8c31106333952f6dc4fd6e6aa98312f1
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "RegisterClassInfo.h"
20#include "VirtRegMap.h"
21
22#include "llvm/Pass.h"
23#include "llvm/Value.h"
24#include "llvm/CodeGen/LiveIntervalAnalysis.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/ADT/OwningPtr.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48#include <cmath>
49using namespace llvm;
50
51STATISTIC(numJoins    , "Number of interval joins performed");
52STATISTIC(numCrossRCs , "Number of cross class joins performed");
53STATISTIC(numCommutes , "Number of instruction commuting performed");
54STATISTIC(numExtends  , "Number of copies extended");
55STATISTIC(NumReMats   , "Number of instructions re-materialized");
56STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
57STATISTIC(numAborts   , "Number of times interval joining aborted");
58STATISTIC(NumInflated , "Number of register classes inflated");
59
60static cl::opt<bool>
61EnableJoining("join-liveintervals",
62              cl::desc("Coalesce copies (default=true)"),
63              cl::init(true));
64
65static cl::opt<bool>
66EnablePhysicalJoin("join-physregs",
67                   cl::desc("Join physical register copies"),
68                   cl::init(false), cl::Hidden);
69
70static cl::opt<bool>
71VerifyCoalescing("verify-coalescing",
72         cl::desc("Verify machine instrs before and after register coalescing"),
73         cl::Hidden);
74
75namespace {
76  class RegisterCoalescer : public MachineFunctionPass {
77    MachineFunction* MF;
78    MachineRegisterInfo* MRI;
79    const TargetMachine* TM;
80    const TargetRegisterInfo* TRI;
81    const TargetInstrInfo* TII;
82    LiveIntervals *LIS;
83    LiveDebugVariables *LDV;
84    const MachineLoopInfo* Loops;
85    AliasAnalysis *AA;
86    RegisterClassInfo RegClassInfo;
87
88    /// JoinedCopies - Keep track of copies eliminated due to coalescing.
89    ///
90    SmallPtrSet<MachineInstr*, 32> JoinedCopies;
91
92    /// ReMatCopies - Keep track of copies eliminated due to remat.
93    ///
94    SmallPtrSet<MachineInstr*, 32> ReMatCopies;
95
96    /// ReMatDefs - Keep track of definition instructions which have
97    /// been remat'ed.
98    SmallPtrSet<MachineInstr*, 8> ReMatDefs;
99
100    /// joinAllIntervals - join compatible live intervals
101    void joinAllIntervals();
102
103    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
104    /// copies that cannot yet be coalesced into the "TryAgain" list.
105    void copyCoalesceInMBB(MachineBasicBlock *MBB,
106                           std::vector<MachineInstr*> &TryAgain);
107
108    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
109    /// which are the src/dst of the copy instruction CopyMI.  This returns
110    /// true if the copy was successfully coalesced away. If it is not
111    /// currently possible to coalesce this interval, but it may be possible if
112    /// other things get coalesced, then it returns true by reference in
113    /// 'Again'.
114    bool joinCopy(MachineInstr *TheCopy, bool &Again);
115
116    /// joinIntervals - Attempt to join these two intervals.  On failure, this
117    /// returns false.  The output "SrcInt" will not have been modified, so we
118    /// can use this information below to update aliases.
119    bool joinIntervals(CoalescerPair &CP);
120
121    /// Attempt joining with a reserved physreg.
122    bool joinReservedPhysReg(CoalescerPair &CP);
123
124    /// Check for interference with a normal unreserved physreg.
125    bool canJoinPhysReg(CoalescerPair &CP);
126
127    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
128    /// the source value number is defined by a copy from the destination reg
129    /// see if we can merge these two destination reg valno# into a single
130    /// value number, eliminating a copy.
131    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
132
133    /// hasOtherReachingDefs - Return true if there are definitions of IntB
134    /// other than BValNo val# that can reach uses of AValno val# of IntA.
135    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
136                              VNInfo *AValNo, VNInfo *BValNo);
137
138    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
139    /// If the source value number is defined by a commutable instruction and
140    /// its other operand is coalesced to the copy dest register, see if we
141    /// can transform the copy into a noop by commuting the definition.
142    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
143
144    /// reMaterializeTrivialDef - If the source of a copy is defined by a
145    /// trivial computation, replace the copy by rematerialize the definition.
146    /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
147    bool reMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
148                                 unsigned DstReg, MachineInstr *CopyMI);
149
150    /// shouldJoinPhys - Return true if a physreg copy should be joined.
151    bool shouldJoinPhys(CoalescerPair &CP);
152
153    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
154    /// update the subregister number if it is not zero. If DstReg is a
155    /// physical register and the existing subregister number of the def / use
156    /// being updated is not zero, make sure to set it to the correct physical
157    /// subregister.
158    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
159
160    /// removeDeadDef - If a def of a live interval is now determined dead,
161    /// remove the val# it defines. If the live interval becomes empty, remove
162    /// it as well.
163    bool removeDeadDef(LiveInterval &li, MachineInstr *DefMI);
164
165    /// markAsJoined - Remember that CopyMI has already been joined.
166    void markAsJoined(MachineInstr *CopyMI);
167
168    /// eliminateUndefCopy - Handle copies of undef values.
169    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
170
171  public:
172    static char ID; // Class identification, replacement for typeinfo
173    RegisterCoalescer() : MachineFunctionPass(ID) {
174      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
175    }
176
177    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
178
179    virtual void releaseMemory();
180
181    /// runOnMachineFunction - pass entry point
182    virtual bool runOnMachineFunction(MachineFunction&);
183
184    /// print - Implement the dump method.
185    virtual void print(raw_ostream &O, const Module* = 0) const;
186  };
187} /// end anonymous namespace
188
189char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
190
191INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
192                      "Simple Register Coalescing", false, false)
193INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
194INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
195INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
196INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
197INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
198INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
199                    "Simple Register Coalescing", false, false)
200
201char RegisterCoalescer::ID = 0;
202
203static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
204  if (!a) return b;
205  if (!b) return a;
206  return tri.composeSubRegIndices(a, b);
207}
208
209static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
210                        unsigned &Src, unsigned &Dst,
211                        unsigned &SrcSub, unsigned &DstSub) {
212  if (MI->isCopy()) {
213    Dst = MI->getOperand(0).getReg();
214    DstSub = MI->getOperand(0).getSubReg();
215    Src = MI->getOperand(1).getReg();
216    SrcSub = MI->getOperand(1).getSubReg();
217  } else if (MI->isSubregToReg()) {
218    Dst = MI->getOperand(0).getReg();
219    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
220                     MI->getOperand(3).getImm());
221    Src = MI->getOperand(2).getReg();
222    SrcSub = MI->getOperand(2).getSubReg();
223  } else
224    return false;
225  return true;
226}
227
228bool CoalescerPair::setRegisters(const MachineInstr *MI) {
229  SrcReg = DstReg = 0;
230  SrcIdx = DstIdx = 0;
231  NewRC = 0;
232  Flipped = CrossClass = false;
233
234  unsigned Src, Dst, SrcSub, DstSub;
235  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
236    return false;
237  Partial = SrcSub || DstSub;
238
239  // If one register is a physreg, it must be Dst.
240  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
241    if (TargetRegisterInfo::isPhysicalRegister(Dst))
242      return false;
243    std::swap(Src, Dst);
244    std::swap(SrcSub, DstSub);
245    Flipped = true;
246  }
247
248  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
249
250  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
251    // Eliminate DstSub on a physreg.
252    if (DstSub) {
253      Dst = TRI.getSubReg(Dst, DstSub);
254      if (!Dst) return false;
255      DstSub = 0;
256    }
257
258    // Eliminate SrcSub by picking a corresponding Dst superregister.
259    if (SrcSub) {
260      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
261      if (!Dst) return false;
262      SrcSub = 0;
263    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
264      return false;
265    }
266  } else {
267    // Both registers are virtual.
268    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
269    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
270
271    // Both registers have subreg indices.
272    if (SrcSub && DstSub) {
273      // Copies between different sub-registers are never coalescable.
274      if (Src == Dst && SrcSub != DstSub)
275        return false;
276
277      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
278                                         SrcIdx, DstIdx);
279      if (!NewRC)
280        return false;
281
282      // We cannot handle the case where both Src and Dst would be a
283      // sub-register. Yet.
284      if (SrcIdx && DstIdx) {
285        DEBUG(dbgs() << "\tCannot handle " << NewRC->getName()
286                     << " with subregs " << TRI.getSubRegIndexName(SrcIdx)
287                     << " and " << TRI.getSubRegIndexName(DstIdx) << '\n');
288        return false;
289      }
290    } else if (DstSub) {
291      // SrcReg will be merged with a sub-register of DstReg.
292      SrcIdx = DstSub;
293      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
294    } else if (SrcSub) {
295      // DstReg will be merged with a sub-register of SrcReg.
296      DstIdx = SrcSub;
297      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
298    } else {
299      // This is a straight copy without sub-registers.
300      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
301    }
302
303    // The combined constraint may be impossible to satisfy.
304    if (!NewRC)
305      return false;
306
307    // Prefer SrcReg to be a sub-register of DstReg.
308    // FIXME: Coalescer should support subregs symmetrically.
309    if (DstIdx && !SrcIdx) {
310      std::swap(Src, Dst);
311      std::swap(SrcIdx, DstIdx);
312      Flipped = !Flipped;
313    }
314
315    CrossClass = NewRC != DstRC || NewRC != SrcRC;
316  }
317  // Check our invariants
318  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
319  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
320         "Cannot have a physical SubIdx");
321  SrcReg = Src;
322  DstReg = Dst;
323  return true;
324}
325
326bool CoalescerPair::flip() {
327  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
328    return false;
329  std::swap(SrcReg, DstReg);
330  std::swap(SrcIdx, DstIdx);
331  Flipped = !Flipped;
332  return true;
333}
334
335bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
336  if (!MI)
337    return false;
338  unsigned Src, Dst, SrcSub, DstSub;
339  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
340    return false;
341
342  // Find the virtual register that is SrcReg.
343  if (Dst == SrcReg) {
344    std::swap(Src, Dst);
345    std::swap(SrcSub, DstSub);
346  } else if (Src != SrcReg) {
347    return false;
348  }
349
350  // Now check that Dst matches DstReg.
351  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
352    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
353      return false;
354    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
355    // DstSub could be set for a physreg from INSERT_SUBREG.
356    if (DstSub)
357      Dst = TRI.getSubReg(Dst, DstSub);
358    // Full copy of Src.
359    if (!SrcSub)
360      return DstReg == Dst;
361    // This is a partial register copy. Check that the parts match.
362    return TRI.getSubReg(DstReg, SrcSub) == Dst;
363  } else {
364    // DstReg is virtual.
365    if (DstReg != Dst)
366      return false;
367    // Registers match, do the subregisters line up?
368    return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub);
369  }
370}
371
372void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
373  AU.setPreservesCFG();
374  AU.addRequired<AliasAnalysis>();
375  AU.addRequired<LiveIntervals>();
376  AU.addPreserved<LiveIntervals>();
377  AU.addRequired<LiveDebugVariables>();
378  AU.addPreserved<LiveDebugVariables>();
379  AU.addPreserved<SlotIndexes>();
380  AU.addRequired<MachineLoopInfo>();
381  AU.addPreserved<MachineLoopInfo>();
382  AU.addPreservedID(MachineDominatorsID);
383  MachineFunctionPass::getAnalysisUsage(AU);
384}
385
386void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
387  /// Joined copies are not deleted immediately, but kept in JoinedCopies.
388  JoinedCopies.insert(CopyMI);
389
390  /// Mark all register operands of CopyMI as <undef> so they won't affect dead
391  /// code elimination.
392  for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
393       E = CopyMI->operands_end(); I != E; ++I)
394    if (I->isReg())
395      I->setIsUndef(true);
396}
397
398/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
399/// being the source and IntB being the dest, thus this defines a value number
400/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
401/// see if we can merge these two pieces of B into a single value number,
402/// eliminating a copy.  For example:
403///
404///  A3 = B0
405///    ...
406///  B1 = A3      <- this copy
407///
408/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
409/// value number to be replaced with B0 (which simplifies the B liveinterval).
410///
411/// This returns true if an interval was modified.
412///
413bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
414                                             MachineInstr *CopyMI) {
415  assert(!CP.isPartial() && "This doesn't work for partial copies.");
416
417  // Bail if there is no dst interval - can happen when merging physical subreg
418  // operations.
419  if (!LIS->hasInterval(CP.getDstReg()))
420    return false;
421
422  LiveInterval &IntA =
423    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
424  LiveInterval &IntB =
425    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
426  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
427
428  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
429  // the example above.
430  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
431  if (BLR == IntB.end()) return false;
432  VNInfo *BValNo = BLR->valno;
433
434  // Get the location that B is defined at.  Two options: either this value has
435  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
436  // can't process it.
437  if (BValNo->def != CopyIdx) return false;
438
439  // AValNo is the value number in A that defines the copy, A3 in the example.
440  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
441  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
442  // The live range might not exist after fun with physreg coalescing.
443  if (ALR == IntA.end()) return false;
444  VNInfo *AValNo = ALR->valno;
445
446  // If AValNo is defined as a copy from IntB, we can potentially process this.
447  // Get the instruction that defines this value number.
448  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
449  if (!CP.isCoalescable(ACopyMI))
450    return false;
451
452  // Get the LiveRange in IntB that this value number starts with.
453  LiveInterval::iterator ValLR =
454    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
455  if (ValLR == IntB.end())
456    return false;
457
458  // Make sure that the end of the live range is inside the same block as
459  // CopyMI.
460  MachineInstr *ValLREndInst =
461    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
462  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
463    return false;
464
465  // Okay, we now know that ValLR ends in the same block that the CopyMI
466  // live-range starts.  If there are no intervening live ranges between them in
467  // IntB, we can merge them.
468  if (ValLR+1 != BLR) return false;
469
470  // If a live interval is a physical register, conservatively check if any
471  // of its aliases is overlapping the live interval of the virtual register.
472  // If so, do not coalesce.
473  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
474    for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
475      if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
476        DEBUG({
477            dbgs() << "\t\tInterfere with alias ";
478            LIS->getInterval(*AS).print(dbgs(), TRI);
479          });
480        return false;
481      }
482  }
483
484  DEBUG({
485      dbgs() << "Extending: ";
486      IntB.print(dbgs(), TRI);
487    });
488
489  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
490  // We are about to delete CopyMI, so need to remove it as the 'instruction
491  // that defines this value #'. Update the valnum with the new defining
492  // instruction #.
493  BValNo->def = FillerStart;
494
495  // Okay, we can merge them.  We need to insert a new liverange:
496  // [ValLR.end, BLR.begin) of either value number, then we merge the
497  // two value numbers.
498  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
499
500  // If the IntB live range is assigned to a physical register, and if that
501  // physreg has sub-registers, update their live intervals as well.
502  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
503    for (const uint16_t *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
504      if (!LIS->hasInterval(*SR))
505        continue;
506      LiveInterval &SRLI = LIS->getInterval(*SR);
507      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
508                              SRLI.getNextValue(FillerStart,
509                                                LIS->getVNInfoAllocator())));
510    }
511  }
512
513  // Okay, merge "B1" into the same value number as "B0".
514  if (BValNo != ValLR->valno) {
515    // If B1 is killed by a PHI, then the merged live range must also be killed
516    // by the same PHI, as B0 and B1 can not overlap.
517    bool HasPHIKill = BValNo->hasPHIKill();
518    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
519    if (HasPHIKill)
520      ValLR->valno->setHasPHIKill(true);
521  }
522  DEBUG({
523      dbgs() << "   result = ";
524      IntB.print(dbgs(), TRI);
525      dbgs() << "\n";
526    });
527
528  // If the source instruction was killing the source register before the
529  // merge, unset the isKill marker given the live range has been extended.
530  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
531  if (UIdx != -1) {
532    ValLREndInst->getOperand(UIdx).setIsKill(false);
533  }
534
535  // Rewrite the copy. If the copy instruction was killing the destination
536  // register before the merge, find the last use and trim the live range. That
537  // will also add the isKill marker.
538  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
539  if (ALR->end == CopyIdx)
540    LIS->shrinkToUses(&IntA);
541
542  ++numExtends;
543  return true;
544}
545
546/// hasOtherReachingDefs - Return true if there are definitions of IntB
547/// other than BValNo val# that can reach uses of AValno val# of IntA.
548bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
549                                             LiveInterval &IntB,
550                                             VNInfo *AValNo,
551                                             VNInfo *BValNo) {
552  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
553       AI != AE; ++AI) {
554    if (AI->valno != AValNo) continue;
555    LiveInterval::Ranges::iterator BI =
556      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
557    if (BI != IntB.ranges.begin())
558      --BI;
559    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
560      if (BI->valno == BValNo)
561        continue;
562      if (BI->start <= AI->start && BI->end > AI->start)
563        return true;
564      if (BI->start > AI->start && BI->start < AI->end)
565        return true;
566    }
567  }
568  return false;
569}
570
571/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
572/// IntA being the source and IntB being the dest, thus this defines a value
573/// number in IntB.  If the source value number (in IntA) is defined by a
574/// commutable instruction and its other operand is coalesced to the copy dest
575/// register, see if we can transform the copy into a noop by commuting the
576/// definition. For example,
577///
578///  A3 = op A2 B0<kill>
579///    ...
580///  B1 = A3      <- this copy
581///    ...
582///     = op A3   <- more uses
583///
584/// ==>
585///
586///  B2 = op B0 A2<kill>
587///    ...
588///  B1 = B2      <- now an identify copy
589///    ...
590///     = op B2   <- more uses
591///
592/// This returns true if an interval was modified.
593///
594bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
595                                                 MachineInstr *CopyMI) {
596  // FIXME: For now, only eliminate the copy by commuting its def when the
597  // source register is a virtual register. We want to guard against cases
598  // where the copy is a back edge copy and commuting the def lengthen the
599  // live interval of the source register to the entire loop.
600  if (CP.isPhys() && CP.isFlipped())
601    return false;
602
603  // Bail if there is no dst interval.
604  if (!LIS->hasInterval(CP.getDstReg()))
605    return false;
606
607  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
608
609  LiveInterval &IntA =
610    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
611  LiveInterval &IntB =
612    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
613
614  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
615  // the example above.
616  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
617  if (!BValNo || BValNo->def != CopyIdx)
618    return false;
619
620  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
621
622  // AValNo is the value number in A that defines the copy, A3 in the example.
623  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
624  assert(AValNo && "COPY source not live");
625
626  // If other defs can reach uses of this def, then it's not safe to perform
627  // the optimization.
628  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
629    return false;
630  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
631  if (!DefMI)
632    return false;
633  if (!DefMI->isCommutable())
634    return false;
635  // If DefMI is a two-address instruction then commuting it will change the
636  // destination register.
637  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
638  assert(DefIdx != -1);
639  unsigned UseOpIdx;
640  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
641    return false;
642  unsigned Op1, Op2, NewDstIdx;
643  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
644    return false;
645  if (Op1 == UseOpIdx)
646    NewDstIdx = Op2;
647  else if (Op2 == UseOpIdx)
648    NewDstIdx = Op1;
649  else
650    return false;
651
652  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
653  unsigned NewReg = NewDstMO.getReg();
654  if (NewReg != IntB.reg || !NewDstMO.isKill())
655    return false;
656
657  // Make sure there are no other definitions of IntB that would reach the
658  // uses which the new definition can reach.
659  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
660    return false;
661
662  // Abort if the aliases of IntB.reg have values that are not simply the
663  // clobbers from the superreg.
664  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
665    for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
666      if (LIS->hasInterval(*AS) &&
667          hasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
668        return false;
669
670  // If some of the uses of IntA.reg is already coalesced away, return false.
671  // It's not possible to determine whether it's safe to perform the coalescing.
672  for (MachineRegisterInfo::use_nodbg_iterator UI =
673         MRI->use_nodbg_begin(IntA.reg),
674       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
675    MachineInstr *UseMI = &*UI;
676    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
677    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
678    if (ULR == IntA.end())
679      continue;
680    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
681      return false;
682  }
683
684  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
685               << *DefMI);
686
687  // At this point we have decided that it is legal to do this
688  // transformation.  Start by commuting the instruction.
689  MachineBasicBlock *MBB = DefMI->getParent();
690  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
691  if (!NewMI)
692    return false;
693  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
694      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
695      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
696    return false;
697  if (NewMI != DefMI) {
698    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
699    MachineBasicBlock::iterator Pos = DefMI;
700    MBB->insert(Pos, NewMI);
701    MBB->erase(DefMI);
702  }
703  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
704  NewMI->getOperand(OpIdx).setIsKill();
705
706  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
707  // A = or A, B
708  // ...
709  // B = A
710  // ...
711  // C = A<kill>
712  // ...
713  //   = B
714
715  // Update uses of IntA of the specific Val# with IntB.
716  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
717         UE = MRI->use_end(); UI != UE;) {
718    MachineOperand &UseMO = UI.getOperand();
719    MachineInstr *UseMI = &*UI;
720    ++UI;
721    if (JoinedCopies.count(UseMI))
722      continue;
723    if (UseMI->isDebugValue()) {
724      // FIXME These don't have an instruction index.  Not clear we have enough
725      // info to decide whether to do this replacement or not.  For now do it.
726      UseMO.setReg(NewReg);
727      continue;
728    }
729    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
730    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
731    if (ULR == IntA.end() || ULR->valno != AValNo)
732      continue;
733    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
734      UseMO.substPhysReg(NewReg, *TRI);
735    else
736      UseMO.setReg(NewReg);
737    if (UseMI == CopyMI)
738      continue;
739    if (!UseMI->isCopy())
740      continue;
741    if (UseMI->getOperand(0).getReg() != IntB.reg ||
742        UseMI->getOperand(0).getSubReg())
743      continue;
744
745    // This copy will become a noop. If it's defining a new val#, merge it into
746    // BValNo.
747    SlotIndex DefIdx = UseIdx.getRegSlot();
748    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
749    if (!DVNI)
750      continue;
751    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
752    assert(DVNI->def == DefIdx);
753    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
754    markAsJoined(UseMI);
755  }
756
757  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
758  // is updated.
759  VNInfo *ValNo = BValNo;
760  ValNo->def = AValNo->def;
761  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
762       AI != AE; ++AI) {
763    if (AI->valno != AValNo) continue;
764    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
765  }
766  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
767
768  IntA.removeValNo(AValNo);
769  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
770  ++numCommutes;
771  return true;
772}
773
774/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
775/// computation, replace the copy by rematerialize the definition.
776bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt,
777                                                bool preserveSrcInt,
778                                                unsigned DstReg,
779                                                MachineInstr *CopyMI) {
780  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
781  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
782  assert(SrcLR != SrcInt.end() && "Live range not found!");
783  VNInfo *ValNo = SrcLR->valno;
784  if (ValNo->isPHIDef() || ValNo->isUnused())
785    return false;
786  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
787  if (!DefMI)
788    return false;
789  assert(DefMI && "Defining instruction disappeared");
790  if (!DefMI->isAsCheapAsAMove())
791    return false;
792  if (!TII->isTriviallyReMaterializable(DefMI, AA))
793    return false;
794  bool SawStore = false;
795  if (!DefMI->isSafeToMove(TII, AA, SawStore))
796    return false;
797  const MCInstrDesc &MCID = DefMI->getDesc();
798  if (MCID.getNumDefs() != 1)
799    return false;
800  if (!DefMI->isImplicitDef()) {
801    // Make sure the copy destination register class fits the instruction
802    // definition register class. The mismatch can happen as a result of earlier
803    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
804    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
805    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
806      if (MRI->getRegClass(DstReg) != RC)
807        return false;
808    } else if (!RC->contains(DstReg))
809      return false;
810  }
811
812  MachineBasicBlock *MBB = CopyMI->getParent();
813  MachineBasicBlock::iterator MII =
814    llvm::next(MachineBasicBlock::iterator(CopyMI));
815  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
816  MachineInstr *NewMI = prior(MII);
817
818  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
819  // We need to remember these so we can add intervals once we insert
820  // NewMI into SlotIndexes.
821  SmallVector<unsigned, 4> NewMIImplDefs;
822  for (unsigned i = NewMI->getDesc().getNumOperands(),
823         e = NewMI->getNumOperands(); i != e; ++i) {
824    MachineOperand &MO = NewMI->getOperand(i);
825    if (MO.isReg()) {
826      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
827             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
828      NewMIImplDefs.push_back(MO.getReg());
829    }
830  }
831
832  // CopyMI may have implicit operands, transfer them over to the newly
833  // rematerialized instruction. And update implicit def interval valnos.
834  for (unsigned i = CopyMI->getDesc().getNumOperands(),
835         e = CopyMI->getNumOperands(); i != e; ++i) {
836    MachineOperand &MO = CopyMI->getOperand(i);
837    if (MO.isReg()) {
838      assert(MO.isImplicit() && "No explicit operands after implict operands.");
839      // Discard VReg implicit defs.
840      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
841        NewMI->addOperand(MO);
842      }
843    }
844  }
845
846  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
847
848  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
849  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
850    unsigned reg = NewMIImplDefs[i];
851    LiveInterval &li = LIS->getInterval(reg);
852    VNInfo *DeadDefVN = li.getNextValue(NewMIIdx.getRegSlot(),
853                                        LIS->getVNInfoAllocator());
854    LiveRange lr(NewMIIdx.getRegSlot(), NewMIIdx.getDeadSlot(), DeadDefVN);
855    li.addRange(lr);
856  }
857
858  CopyMI->eraseFromParent();
859  ReMatCopies.insert(CopyMI);
860  ReMatDefs.insert(DefMI);
861  DEBUG(dbgs() << "Remat: " << *NewMI);
862  ++NumReMats;
863
864  // The source interval can become smaller because we removed a use.
865  if (preserveSrcInt)
866    LIS->shrinkToUses(&SrcInt);
867
868  return true;
869}
870
871/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
872/// values, it only removes local variables. When we have a copy like:
873///
874///   %vreg1 = COPY %vreg2<undef>
875///
876/// We delete the copy and remove the corresponding value number from %vreg1.
877/// Any uses of that value number are marked as <undef>.
878bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
879                                           const CoalescerPair &CP) {
880  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
881  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
882  if (SrcInt->liveAt(Idx))
883    return false;
884  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
885  if (DstInt->liveAt(Idx))
886    return false;
887
888  // No intervals are live-in to CopyMI - it is undef.
889  if (CP.isFlipped())
890    DstInt = SrcInt;
891  SrcInt = 0;
892
893  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
894  assert(DeadVNI && "No value defined in DstInt");
895  DstInt->removeValNo(DeadVNI);
896
897  // Find new undef uses.
898  for (MachineRegisterInfo::reg_nodbg_iterator
899         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
900       I != E; ++I) {
901    MachineOperand &MO = I.getOperand();
902    if (MO.isDef() || MO.isUndef())
903      continue;
904    MachineInstr *MI = MO.getParent();
905    SlotIndex Idx = LIS->getInstructionIndex(MI);
906    if (DstInt->liveAt(Idx))
907      continue;
908    MO.setIsUndef(true);
909    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
910  }
911  return true;
912}
913
914/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
915/// update the subregister number if it is not zero. If DstReg is a
916/// physical register and the existing subregister number of the def / use
917/// being updated is not zero, make sure to set it to the correct physical
918/// subregister.
919void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
920                                          unsigned DstReg,
921                                          unsigned SubIdx) {
922  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
923
924  // Update LiveDebugVariables.
925  LDV->renameRegister(SrcReg, DstReg, SubIdx);
926
927  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
928       MachineInstr *UseMI = I.skipInstruction();) {
929    // A PhysReg copy that won't be coalesced can perhaps be rematerialized
930    // instead.
931    if (DstIsPhys) {
932      if (UseMI->isFullCopy() &&
933          UseMI->getOperand(1).getReg() == SrcReg &&
934          UseMI->getOperand(0).getReg() != SrcReg &&
935          UseMI->getOperand(0).getReg() != DstReg &&
936          !JoinedCopies.count(UseMI) &&
937          reMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
938                                  UseMI->getOperand(0).getReg(), UseMI))
939        continue;
940    }
941
942    SmallVector<unsigned,8> Ops;
943    bool Reads, Writes;
944    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
945
946    // Replace SrcReg with DstReg in all UseMI operands.
947    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
948      MachineOperand &MO = UseMI->getOperand(Ops[i]);
949
950      // Make sure we don't create read-modify-write defs accidentally.  We
951      // assume here that a SrcReg def cannot be joined into a live DstReg.  If
952      // RegisterCoalescer starts tracking partially live registers, we will
953      // need to check the actual LiveInterval to determine if DstReg is live
954      // here.
955      if (SubIdx && !Reads)
956        MO.setIsUndef();
957
958      if (DstIsPhys)
959        MO.substPhysReg(DstReg, *TRI);
960      else
961        MO.substVirtReg(DstReg, SubIdx, *TRI);
962    }
963
964    // This instruction is a copy that will be removed.
965    if (JoinedCopies.count(UseMI))
966      continue;
967
968    DEBUG({
969        dbgs() << "\t\tupdated: ";
970        if (!UseMI->isDebugValue())
971          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
972        dbgs() << *UseMI;
973      });
974  }
975}
976
977/// removeIntervalIfEmpty - Check if the live interval of a physical register
978/// is empty, if so remove it and also remove the empty intervals of its
979/// sub-registers. Return true if live interval is removed.
980static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
981                                  const TargetRegisterInfo *TRI) {
982  if (li.empty()) {
983    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
984      for (const uint16_t* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
985        if (!LIS->hasInterval(*SR))
986          continue;
987        LiveInterval &sli = LIS->getInterval(*SR);
988        if (sli.empty())
989          LIS->removeInterval(*SR);
990      }
991    LIS->removeInterval(li.reg);
992    return true;
993  }
994  return false;
995}
996
997/// removeDeadDef - If a def of a live interval is now determined dead, remove
998/// the val# it defines. If the live interval becomes empty, remove it as well.
999bool RegisterCoalescer::removeDeadDef(LiveInterval &li, MachineInstr *DefMI) {
1000  SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot();
1001  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
1002  if (DefIdx != MLR->valno->def)
1003    return false;
1004  li.removeValNo(MLR->valno);
1005  return removeIntervalIfEmpty(li, LIS, TRI);
1006}
1007
1008/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
1009/// We need to be careful about coalescing a source physical register with a
1010/// virtual register. Once the coalescing is done, it cannot be broken and these
1011/// are not spillable! If the destination interval uses are far away, think
1012/// twice about coalescing them!
1013bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
1014  bool Allocatable = LIS->isAllocatable(CP.getDstReg());
1015  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1016
1017  /// Always join simple intervals that are defined by a single copy from a
1018  /// reserved register. This doesn't increase register pressure, so it is
1019  /// always beneficial.
1020  if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
1021    return true;
1022
1023  if (!EnablePhysicalJoin) {
1024    DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
1025    return false;
1026  }
1027
1028  // Only coalesce to allocatable physreg, we don't want to risk modifying
1029  // reserved registers.
1030  if (!Allocatable) {
1031    DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
1032    return false;  // Not coalescable.
1033  }
1034
1035  // Don't join with physregs that have a ridiculous number of live
1036  // ranges. The data structure performance is really bad when that
1037  // happens.
1038  if (LIS->hasInterval(CP.getDstReg()) &&
1039      LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
1040    ++numAborts;
1041    DEBUG(dbgs()
1042          << "\tPhysical register live interval too complicated, abort!\n");
1043    return false;
1044  }
1045
1046  // FIXME: Why are we skipping this test for partial copies?
1047  //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
1048  if (!CP.isPartial()) {
1049    const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
1050    unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
1051    unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
1052    if (Length > Threshold) {
1053      ++numAborts;
1054      DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
1055      return false;
1056    }
1057  }
1058  return true;
1059}
1060
1061
1062/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1063/// which are the src/dst of the copy instruction CopyMI.  This returns true
1064/// if the copy was successfully coalesced away. If it is not currently
1065/// possible to coalesce this interval, but it may be possible if other
1066/// things get coalesced, then it returns true by reference in 'Again'.
1067bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1068
1069  Again = false;
1070  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1071    return false; // Already done.
1072
1073  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1074
1075  CoalescerPair CP(*TII, *TRI);
1076  if (!CP.setRegisters(CopyMI)) {
1077    DEBUG(dbgs() << "\tNot coalescable.\n");
1078    return false;
1079  }
1080
1081  // If they are already joined we continue.
1082  if (CP.getSrcReg() == CP.getDstReg()) {
1083    markAsJoined(CopyMI);
1084    DEBUG(dbgs() << "\tCopy already coalesced.\n");
1085    return false;  // Not coalescable.
1086  }
1087
1088  // Eliminate undefs.
1089  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1090    markAsJoined(CopyMI);
1091    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1092    return false;  // Not coalescable.
1093  }
1094
1095  // Enforce policies.
1096  if (CP.isPhys()) {
1097    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1098                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1099                 << '\n');
1100    if (!shouldJoinPhys(CP)) {
1101      // Before giving up coalescing, if definition of source is defined by
1102      // trivial computation, try rematerializing it.
1103      if (!CP.isFlipped() &&
1104          reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1105                                  CP.getDstReg(), CopyMI))
1106        return true;
1107      return false;
1108    }
1109  } else {
1110    DEBUG({
1111      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1112             << " with ";
1113      if (CP.getDstIdx() && CP.getSrcIdx())
1114        dbgs() << PrintReg(CP.getDstReg()) << " in "
1115               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1116               << PrintReg(CP.getSrcReg()) << " in "
1117               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1118      else
1119        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1120               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1121    });
1122
1123    // When possible, let DstReg be the larger interval.
1124    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1125                           LIS->getInterval(CP.getDstReg()).ranges.size())
1126      CP.flip();
1127  }
1128
1129  // Okay, attempt to join these two intervals.  On failure, this returns false.
1130  // Otherwise, if one of the intervals being joined is a physreg, this method
1131  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1132  // been modified, so we can use this information below to update aliases.
1133  if (!joinIntervals(CP)) {
1134    // Coalescing failed.
1135
1136    // If definition of source is defined by trivial computation, try
1137    // rematerializing it.
1138    if (!CP.isFlipped() &&
1139        reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1140                                CP.getDstReg(), CopyMI))
1141      return true;
1142
1143    // If we can eliminate the copy without merging the live ranges, do so now.
1144    if (!CP.isPartial()) {
1145      if (adjustCopiesBackFrom(CP, CopyMI) ||
1146          removeCopyByCommutingDef(CP, CopyMI)) {
1147        markAsJoined(CopyMI);
1148        DEBUG(dbgs() << "\tTrivial!\n");
1149        return true;
1150      }
1151    }
1152
1153    // Otherwise, we are unable to join the intervals.
1154    DEBUG(dbgs() << "\tInterference!\n");
1155    Again = true;  // May be possible to coalesce later.
1156    return false;
1157  }
1158
1159  // Coalescing to a virtual register that is of a sub-register class of the
1160  // other. Make sure the resulting register is set to the right register class.
1161  if (CP.isCrossClass()) {
1162    ++numCrossRCs;
1163    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1164  }
1165
1166  // Remember to delete the copy instruction.
1167  markAsJoined(CopyMI);
1168
1169  // Rewrite all SrcReg operands to DstReg.
1170  // Also update DstReg operands to include DstIdx if it is set.
1171  if (CP.getDstIdx())
1172    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1173  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1174
1175  // If we have extended the live range of a physical register, make sure we
1176  // update live-in lists as well.
1177  if (CP.isPhys()) {
1178    SmallVector<MachineBasicBlock*, 16> BlockSeq;
1179    // joinIntervals invalidates the VNInfos in SrcInt, but we only need the
1180    // ranges for this, and they are preserved.
1181    LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
1182    for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
1183         I != E; ++I ) {
1184      LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
1185      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
1186        MachineBasicBlock &block = *BlockSeq[idx];
1187        if (!block.isLiveIn(CP.getDstReg()))
1188          block.addLiveIn(CP.getDstReg());
1189      }
1190      BlockSeq.clear();
1191    }
1192  }
1193
1194  // SrcReg is guaranteed to be the register whose live interval that is
1195  // being merged.
1196  LIS->removeInterval(CP.getSrcReg());
1197
1198  // Update regalloc hint.
1199  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1200
1201  DEBUG({
1202    LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
1203    dbgs() << "\tJoined. Result = ";
1204    DstInt.print(dbgs(), TRI);
1205    dbgs() << "\n";
1206  });
1207
1208  ++numJoins;
1209  return true;
1210}
1211
1212/// Attempt joining with a reserved physreg.
1213bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1214  assert(CP.isPhys() && "Must be a physreg copy");
1215  assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register");
1216  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1217  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1218
1219  assert(CP.isFlipped() && RHS.containsOneValue() &&
1220         "Invalid join with reserved register");
1221
1222  // Optimization for reserved registers like ESP. We can only merge with a
1223  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1224  // The live range of the reserved register will look like a set of dead defs
1225  // - we don't properly track the live range of reserved registers.
1226
1227  // Deny any overlapping intervals.  This depends on all the reserved
1228  // register live ranges to look like dead defs.
1229  for (const uint16_t *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
1230    if (!LIS->hasInterval(*AS)) {
1231      // Make sure at least DstReg itself exists before attempting a join.
1232      if (*AS == CP.getDstReg())
1233        LIS->getOrCreateInterval(CP.getDstReg());
1234      continue;
1235    }
1236    if (RHS.overlaps(LIS->getInterval(*AS))) {
1237      DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
1238      return false;
1239    }
1240  }
1241  // Skip any value computations, we are not adding new values to the
1242  // reserved register.  Also skip merging the live ranges, the reserved
1243  // register live range doesn't need to be accurate as long as all the
1244  // defs are there.
1245  return true;
1246}
1247
1248bool RegisterCoalescer::canJoinPhysReg(CoalescerPair &CP) {
1249  assert(CP.isPhys() && "Must be a physreg copy");
1250  // If a live interval is a physical register, check for interference with any
1251  // aliases. The interference check implemented here is a bit more
1252  // conservative than the full interfeence check below. We allow overlapping
1253  // live ranges only when one is a copy of the other.
1254  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1255  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1256
1257  // Check if a register mask clobbers DstReg.
1258  BitVector UsableRegs;
1259  if (LIS->checkRegMaskInterference(RHS, UsableRegs) &&
1260      !UsableRegs.test(CP.getDstReg())) {
1261    DEBUG(dbgs() << "\t\tRegister mask interference.\n");
1262    return false;
1263  }
1264
1265  for (const uint16_t *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
1266    if (!LIS->hasInterval(*AS))
1267      continue;
1268    const LiveInterval &LHS = LIS->getInterval(*AS);
1269    LiveInterval::const_iterator LI = LHS.begin();
1270    for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
1271         RI != RE; ++RI) {
1272      LI = std::lower_bound(LI, LHS.end(), RI->start);
1273      // Does LHS have an overlapping live range starting before RI?
1274      if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
1275          (RI->start != RI->valno->def ||
1276           !CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
1277        DEBUG({
1278          dbgs() << "\t\tInterference from alias: ";
1279          LHS.print(dbgs(), TRI);
1280          dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
1281        });
1282        return false;
1283      }
1284
1285      // Check that LHS ranges beginning in this range are copies.
1286      for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
1287        if (LI->start != LI->valno->def ||
1288            !CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
1289          DEBUG({
1290            dbgs() << "\t\tInterference from alias: ";
1291            LHS.print(dbgs(), TRI);
1292            dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
1293          });
1294          return false;
1295        }
1296      }
1297    }
1298  }
1299  return true;
1300}
1301
1302/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1303/// compute what the resultant value numbers for each value in the input two
1304/// ranges will be.  This is complicated by copies between the two which can
1305/// and will commonly cause multiple value numbers to be merged into one.
1306///
1307/// VN is the value number that we're trying to resolve.  InstDefiningValue
1308/// keeps track of the new InstDefiningValue assignment for the result
1309/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1310/// whether a value in this or other is a copy from the opposite set.
1311/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1312/// already been assigned.
1313///
1314/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1315/// contains the value number the copy is from.
1316///
1317static unsigned ComputeUltimateVN(VNInfo *VNI,
1318                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1319                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1320                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1321                                  SmallVector<int, 16> &ThisValNoAssignments,
1322                                  SmallVector<int, 16> &OtherValNoAssignments) {
1323  unsigned VN = VNI->id;
1324
1325  // If the VN has already been computed, just return it.
1326  if (ThisValNoAssignments[VN] >= 0)
1327    return ThisValNoAssignments[VN];
1328  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1329
1330  // If this val is not a copy from the other val, then it must be a new value
1331  // number in the destination.
1332  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1333  if (I == ThisFromOther.end()) {
1334    NewVNInfo.push_back(VNI);
1335    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1336  }
1337  VNInfo *OtherValNo = I->second;
1338
1339  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1340  // been computed, return it.
1341  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1342    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1343
1344  // Mark this value number as currently being computed, then ask what the
1345  // ultimate value # of the other value is.
1346  ThisValNoAssignments[VN] = -2;
1347  unsigned UltimateVN =
1348    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1349                      OtherValNoAssignments, ThisValNoAssignments);
1350  return ThisValNoAssignments[VN] = UltimateVN;
1351}
1352
1353
1354// Find out if we have something like
1355// A = X
1356// B = X
1357// if so, we can pretend this is actually
1358// A = X
1359// B = A
1360// which allows us to coalesce A and B.
1361// VNI is the definition of B. LR is the life range of A that includes
1362// the slot just before B. If we return true, we add "B = X" to DupCopies.
1363// This implies that A dominates B.
1364static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1365                                          const TargetRegisterInfo &tri,
1366                                          CoalescerPair &CP,
1367                                          VNInfo *VNI,
1368                                          LiveRange *LR,
1369                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1370  // FIXME: This is very conservative. For example, we don't handle
1371  // physical registers.
1372
1373  MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
1374
1375  if (!MI || !MI->isFullCopy() || CP.isPartial() || CP.isPhys())
1376    return false;
1377
1378  unsigned Dst = MI->getOperand(0).getReg();
1379  unsigned Src = MI->getOperand(1).getReg();
1380
1381  if (!TargetRegisterInfo::isVirtualRegister(Src) ||
1382      !TargetRegisterInfo::isVirtualRegister(Dst))
1383    return false;
1384
1385  unsigned A = CP.getDstReg();
1386  unsigned B = CP.getSrcReg();
1387
1388  if (B == Dst)
1389    std::swap(A, B);
1390  assert(Dst == A);
1391
1392  VNInfo *Other = LR->valno;
1393  const MachineInstr *OtherMI = li.getInstructionFromIndex(Other->def);
1394
1395  if (!OtherMI || !OtherMI->isFullCopy())
1396    return false;
1397
1398  unsigned OtherDst = OtherMI->getOperand(0).getReg();
1399  unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1400
1401  if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
1402      !TargetRegisterInfo::isVirtualRegister(OtherDst))
1403    return false;
1404
1405  assert(OtherDst == B);
1406
1407  if (Src != OtherSrc)
1408    return false;
1409
1410  // If the copies use two different value numbers of X, we cannot merge
1411  // A and B.
1412  LiveInterval &SrcInt = li.getInterval(Src);
1413  // getVNInfoBefore returns NULL for undef copies. In this case, the
1414  // optimization is still safe.
1415  if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def))
1416    return false;
1417
1418  DupCopies.push_back(MI);
1419
1420  return true;
1421}
1422
1423/// joinIntervals - Attempt to join these two intervals.  On failure, this
1424/// returns false.
1425bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
1426  // Handle physreg joins separately.
1427  if (CP.isPhys()) {
1428    if (RegClassInfo.isReserved(CP.getDstReg()))
1429      return joinReservedPhysReg(CP);
1430    if (!canJoinPhysReg(CP))
1431      return false;
1432  }
1433
1434  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1435  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1436
1437  // Compute the final value assignment, assuming that the live ranges can be
1438  // coalesced.
1439  SmallVector<int, 16> LHSValNoAssignments;
1440  SmallVector<int, 16> RHSValNoAssignments;
1441  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1442  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1443  SmallVector<VNInfo*, 16> NewVNInfo;
1444
1445  SmallVector<MachineInstr*, 8> DupCopies;
1446
1447  LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1448  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
1449
1450  // Loop over the value numbers of the LHS, seeing if any are defined from
1451  // the RHS.
1452  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1453       i != e; ++i) {
1454    VNInfo *VNI = *i;
1455    if (VNI->isUnused() || VNI->isPHIDef())
1456      continue;
1457    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1458    assert(MI && "Missing def");
1459    if (!MI->isCopyLike())  // Src not defined by a copy?
1460      continue;
1461
1462    // Figure out the value # from the RHS.
1463    LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1464    // The copy could be to an aliased physreg.
1465    if (!lr) continue;
1466
1467    // DstReg is known to be a register in the LHS interval.  If the src is
1468    // from the RHS interval, we can use its value #.
1469    if (!CP.isCoalescable(MI) &&
1470        !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1471      continue;
1472
1473    LHSValsDefinedFromRHS[VNI] = lr->valno;
1474  }
1475
1476  // Loop over the value numbers of the RHS, seeing if any are defined from
1477  // the LHS.
1478  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1479       i != e; ++i) {
1480    VNInfo *VNI = *i;
1481    if (VNI->isUnused() || VNI->isPHIDef())
1482      continue;
1483    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1484    assert(MI && "Missing def");
1485    if (!MI->isCopyLike())  // Src not defined by a copy?
1486      continue;
1487
1488    // Figure out the value # from the LHS.
1489    LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1490    // The copy could be to an aliased physreg.
1491    if (!lr) continue;
1492
1493    // DstReg is known to be a register in the RHS interval.  If the src is
1494    // from the LHS interval, we can use its value #.
1495    if (!CP.isCoalescable(MI) &&
1496        !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1497        continue;
1498
1499    RHSValsDefinedFromLHS[VNI] = lr->valno;
1500  }
1501
1502  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1503  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1504  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1505
1506  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1507       i != e; ++i) {
1508    VNInfo *VNI = *i;
1509    unsigned VN = VNI->id;
1510    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1511      continue;
1512    ComputeUltimateVN(VNI, NewVNInfo,
1513                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1514                      LHSValNoAssignments, RHSValNoAssignments);
1515  }
1516  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1517       i != e; ++i) {
1518    VNInfo *VNI = *i;
1519    unsigned VN = VNI->id;
1520    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1521      continue;
1522    // If this value number isn't a copy from the LHS, it's a new number.
1523    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1524      NewVNInfo.push_back(VNI);
1525      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1526      continue;
1527    }
1528
1529    ComputeUltimateVN(VNI, NewVNInfo,
1530                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1531                      RHSValNoAssignments, LHSValNoAssignments);
1532  }
1533
1534  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1535  // interval lists to see if these intervals are coalescable.
1536  LiveInterval::const_iterator I = LHS.begin();
1537  LiveInterval::const_iterator IE = LHS.end();
1538  LiveInterval::const_iterator J = RHS.begin();
1539  LiveInterval::const_iterator JE = RHS.end();
1540
1541  // Skip ahead until the first place of potential sharing.
1542  if (I != IE && J != JE) {
1543    if (I->start < J->start) {
1544      I = std::upper_bound(I, IE, J->start);
1545      if (I != LHS.begin()) --I;
1546    } else if (J->start < I->start) {
1547      J = std::upper_bound(J, JE, I->start);
1548      if (J != RHS.begin()) --J;
1549    }
1550  }
1551
1552  while (I != IE && J != JE) {
1553    // Determine if these two live ranges overlap.
1554    bool Overlaps;
1555    if (I->start < J->start) {
1556      Overlaps = I->end > J->start;
1557    } else {
1558      Overlaps = J->end > I->start;
1559    }
1560
1561    // If so, check value # info to determine if they are really different.
1562    if (Overlaps) {
1563      // If the live range overlap will map to the same value number in the
1564      // result liverange, we can still coalesce them.  If not, we can't.
1565      if (LHSValNoAssignments[I->valno->id] !=
1566          RHSValNoAssignments[J->valno->id])
1567        return false;
1568    }
1569
1570    if (I->end < J->end)
1571      ++I;
1572    else
1573      ++J;
1574  }
1575
1576  // Update kill info. Some live ranges are extended due to copy coalescing.
1577  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1578         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1579    VNInfo *VNI = I->first;
1580    unsigned LHSValID = LHSValNoAssignments[VNI->id];
1581    if (VNI->hasPHIKill())
1582      NewVNInfo[LHSValID]->setHasPHIKill(true);
1583  }
1584
1585  // Update kill info. Some live ranges are extended due to copy coalescing.
1586  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1587         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1588    VNInfo *VNI = I->first;
1589    unsigned RHSValID = RHSValNoAssignments[VNI->id];
1590    if (VNI->hasPHIKill())
1591      NewVNInfo[RHSValID]->setHasPHIKill(true);
1592  }
1593
1594  if (LHSValNoAssignments.empty())
1595    LHSValNoAssignments.push_back(-1);
1596  if (RHSValNoAssignments.empty())
1597    RHSValNoAssignments.push_back(-1);
1598
1599  SmallVector<unsigned, 8> SourceRegisters;
1600  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1601         E = DupCopies.end(); I != E; ++I) {
1602    MachineInstr *MI = *I;
1603
1604    // We have pretended that the assignment to B in
1605    // A = X
1606    // B = X
1607    // was actually a copy from A. Now that we decided to coalesce A and B,
1608    // transform the code into
1609    // A = X
1610    // X = X
1611    // and mark the X as coalesced to keep the illusion.
1612    unsigned Src = MI->getOperand(1).getReg();
1613    SourceRegisters.push_back(Src);
1614    MI->getOperand(0).substVirtReg(Src, 0, *TRI);
1615
1616    markAsJoined(MI);
1617  }
1618
1619  // If B = X was the last use of X in a liverange, we have to shrink it now
1620  // that B = X is gone.
1621  for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1622         E = SourceRegisters.end(); I != E; ++I) {
1623    LIS->shrinkToUses(&LIS->getInterval(*I));
1624  }
1625
1626  // If we get here, we know that we can coalesce the live ranges.  Ask the
1627  // intervals to coalesce themselves now.
1628  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1629           MRI);
1630  return true;
1631}
1632
1633namespace {
1634  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1635  // depth of the basic block (the unsigned), and then on the MBB number.
1636  struct DepthMBBCompare {
1637    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1638    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1639      // Deeper loops first
1640      if (LHS.first != RHS.first)
1641        return LHS.first > RHS.first;
1642
1643      // Prefer blocks that are more connected in the CFG. This takes care of
1644      // the most difficult copies first while intervals are short.
1645      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1646      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1647      if (cl != cr)
1648        return cl > cr;
1649
1650      // As a last resort, sort by block number.
1651      return LHS.second->getNumber() < RHS.second->getNumber();
1652    }
1653  };
1654}
1655
1656void
1657RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB,
1658                                     std::vector<MachineInstr*> &TryAgain) {
1659  DEBUG(dbgs() << MBB->getName() << ":\n");
1660
1661  SmallVector<MachineInstr*, 8> VirtCopies;
1662  SmallVector<MachineInstr*, 8> PhysCopies;
1663  SmallVector<MachineInstr*, 8> ImpDefCopies;
1664  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1665       MII != E;) {
1666    MachineInstr *Inst = MII++;
1667
1668    // If this isn't a copy nor a extract_subreg, we can't join intervals.
1669    unsigned SrcReg, DstReg;
1670    if (Inst->isCopy()) {
1671      DstReg = Inst->getOperand(0).getReg();
1672      SrcReg = Inst->getOperand(1).getReg();
1673    } else if (Inst->isSubregToReg()) {
1674      DstReg = Inst->getOperand(0).getReg();
1675      SrcReg = Inst->getOperand(2).getReg();
1676    } else
1677      continue;
1678
1679    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1680    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1681    if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
1682      ImpDefCopies.push_back(Inst);
1683    else if (SrcIsPhys || DstIsPhys)
1684      PhysCopies.push_back(Inst);
1685    else
1686      VirtCopies.push_back(Inst);
1687  }
1688
1689  // Try coalescing implicit copies and insert_subreg <undef> first,
1690  // followed by copies to / from physical registers, then finally copies
1691  // from virtual registers to virtual registers.
1692  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
1693    MachineInstr *TheCopy = ImpDefCopies[i];
1694    bool Again = false;
1695    if (!joinCopy(TheCopy, Again))
1696      if (Again)
1697        TryAgain.push_back(TheCopy);
1698  }
1699  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
1700    MachineInstr *TheCopy = PhysCopies[i];
1701    bool Again = false;
1702    if (!joinCopy(TheCopy, Again))
1703      if (Again)
1704        TryAgain.push_back(TheCopy);
1705  }
1706  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
1707    MachineInstr *TheCopy = VirtCopies[i];
1708    bool Again = false;
1709    if (!joinCopy(TheCopy, Again))
1710      if (Again)
1711        TryAgain.push_back(TheCopy);
1712  }
1713}
1714
1715void RegisterCoalescer::joinAllIntervals() {
1716  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1717
1718  std::vector<MachineInstr*> TryAgainList;
1719  if (Loops->empty()) {
1720    // If there are no loops in the function, join intervals in function order.
1721    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1722         I != E; ++I)
1723      copyCoalesceInMBB(I, TryAgainList);
1724  } else {
1725    // Otherwise, join intervals in inner loops before other intervals.
1726    // Unfortunately we can't just iterate over loop hierarchy here because
1727    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1728
1729    // Join intervals in the function prolog first. We want to join physical
1730    // registers with virtual registers before the intervals got too long.
1731    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1732    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1733      MachineBasicBlock *MBB = I;
1734      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1735    }
1736
1737    // Sort by loop depth.
1738    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1739
1740    // Finally, join intervals in loop nest order.
1741    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1742      copyCoalesceInMBB(MBBs[i].second, TryAgainList);
1743  }
1744
1745  // Joining intervals can allow other intervals to be joined.  Iteratively join
1746  // until we make no progress.
1747  bool ProgressMade = true;
1748  while (ProgressMade) {
1749    ProgressMade = false;
1750
1751    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1752      MachineInstr *&TheCopy = TryAgainList[i];
1753      if (!TheCopy)
1754        continue;
1755
1756      bool Again = false;
1757      bool Success = joinCopy(TheCopy, Again);
1758      if (Success || !Again) {
1759        TheCopy= 0;   // Mark this one as done.
1760        ProgressMade = true;
1761      }
1762    }
1763  }
1764}
1765
1766void RegisterCoalescer::releaseMemory() {
1767  JoinedCopies.clear();
1768  ReMatCopies.clear();
1769  ReMatDefs.clear();
1770}
1771
1772bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1773  MF = &fn;
1774  MRI = &fn.getRegInfo();
1775  TM = &fn.getTarget();
1776  TRI = TM->getRegisterInfo();
1777  TII = TM->getInstrInfo();
1778  LIS = &getAnalysis<LiveIntervals>();
1779  LDV = &getAnalysis<LiveDebugVariables>();
1780  AA = &getAnalysis<AliasAnalysis>();
1781  Loops = &getAnalysis<MachineLoopInfo>();
1782
1783  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1784               << "********** Function: "
1785               << ((Value*)MF->getFunction())->getName() << '\n');
1786
1787  if (VerifyCoalescing)
1788    MF->verify(this, "Before register coalescing");
1789
1790  RegClassInfo.runOnMachineFunction(fn);
1791
1792  // Join (coalesce) intervals if requested.
1793  if (EnableJoining) {
1794    joinAllIntervals();
1795    DEBUG({
1796        dbgs() << "********** INTERVALS POST JOINING **********\n";
1797        for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
1798             I != E; ++I){
1799          I->second->print(dbgs(), TRI);
1800          dbgs() << "\n";
1801        }
1802      });
1803  }
1804
1805  // Perform a final pass over the instructions and compute spill weights
1806  // and remove identity moves.
1807  SmallVector<unsigned, 4> DeadDefs, InflateRegs;
1808  for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
1809       mbbi != mbbe; ++mbbi) {
1810    MachineBasicBlock* mbb = mbbi;
1811    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1812         mii != mie; ) {
1813      MachineInstr *MI = mii;
1814      if (JoinedCopies.count(MI)) {
1815        // Delete all coalesced copies.
1816        bool DoDelete = true;
1817        assert(MI->isCopyLike() && "Unrecognized copy instruction");
1818        unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
1819        unsigned DstReg = MI->getOperand(0).getReg();
1820
1821        // Collect candidates for register class inflation.
1822        if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1823            RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg)))
1824          InflateRegs.push_back(SrcReg);
1825        if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
1826            RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg)))
1827          InflateRegs.push_back(DstReg);
1828
1829        if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1830            MI->getNumOperands() > 2)
1831          // Do not delete extract_subreg, insert_subreg of physical
1832          // registers unless the definition is dead. e.g.
1833          // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1834          // or else the scavenger may complain. LowerSubregs will
1835          // delete them later.
1836          DoDelete = false;
1837
1838        if (MI->allDefsAreDead()) {
1839          if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1840              LIS->hasInterval(SrcReg))
1841            LIS->shrinkToUses(&LIS->getInterval(SrcReg));
1842          DoDelete = true;
1843        }
1844        if (!DoDelete) {
1845          // We need the instruction to adjust liveness, so make it a KILL.
1846          if (MI->isSubregToReg()) {
1847            MI->RemoveOperand(3);
1848            MI->RemoveOperand(1);
1849          }
1850          MI->setDesc(TII->get(TargetOpcode::KILL));
1851          mii = llvm::next(mii);
1852        } else {
1853          LIS->RemoveMachineInstrFromMaps(MI);
1854          mii = mbbi->erase(mii);
1855          ++numPeep;
1856        }
1857        continue;
1858      }
1859
1860      // Now check if this is a remat'ed def instruction which is now dead.
1861      if (ReMatDefs.count(MI)) {
1862        bool isDead = true;
1863        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1864          const MachineOperand &MO = MI->getOperand(i);
1865          if (!MO.isReg())
1866            continue;
1867          unsigned Reg = MO.getReg();
1868          if (!Reg)
1869            continue;
1870          DeadDefs.push_back(Reg);
1871          if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1872            // Remat may also enable register class inflation.
1873            if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)))
1874              InflateRegs.push_back(Reg);
1875          }
1876          if (MO.isDead())
1877            continue;
1878          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
1879              !MRI->use_nodbg_empty(Reg)) {
1880            isDead = false;
1881            break;
1882          }
1883        }
1884        if (isDead) {
1885          while (!DeadDefs.empty()) {
1886            unsigned DeadDef = DeadDefs.back();
1887            DeadDefs.pop_back();
1888            removeDeadDef(LIS->getInterval(DeadDef), MI);
1889          }
1890          LIS->RemoveMachineInstrFromMaps(mii);
1891          mii = mbbi->erase(mii);
1892          continue;
1893        } else
1894          DeadDefs.clear();
1895      }
1896
1897      ++mii;
1898
1899      // Check for now unnecessary kill flags.
1900      if (LIS->isNotInMIMap(MI)) continue;
1901      SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
1902      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1903        MachineOperand &MO = MI->getOperand(i);
1904        if (!MO.isReg() || !MO.isKill()) continue;
1905        unsigned reg = MO.getReg();
1906        if (!reg || !LIS->hasInterval(reg)) continue;
1907        if (!LIS->getInterval(reg).killedAt(DefIdx)) {
1908          MO.setIsKill(false);
1909          continue;
1910        }
1911        // When leaving a kill flag on a physreg, check if any subregs should
1912        // remain alive.
1913        if (!TargetRegisterInfo::isPhysicalRegister(reg))
1914          continue;
1915        for (const uint16_t *SR = TRI->getSubRegisters(reg);
1916             unsigned S = *SR; ++SR)
1917          if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
1918            MI->addRegisterDefined(S, TRI);
1919      }
1920    }
1921  }
1922
1923  // After deleting a lot of copies, register classes may be less constrained.
1924  // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 ->
1925  // DPR inflation.
1926  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1927  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1928                    InflateRegs.end());
1929  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1930  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1931    unsigned Reg = InflateRegs[i];
1932    if (MRI->reg_nodbg_empty(Reg))
1933      continue;
1934    if (MRI->recomputeRegClass(Reg, *TM)) {
1935      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1936                   << MRI->getRegClass(Reg)->getName() << '\n');
1937      ++NumInflated;
1938    }
1939  }
1940
1941  DEBUG(dump());
1942  DEBUG(LDV->dump());
1943  if (VerifyCoalescing)
1944    MF->verify(this, "After register coalescing");
1945  return true;
1946}
1947
1948/// print - Implement the dump method.
1949void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
1950   LIS->print(O, m);
1951}
1952