RegisterCoalescer.cpp revision e25dde550baec1f79caf2fc06edd74e7ae6ffa33
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/LiveRangeEdit.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/Passes.h"
30#include "llvm/CodeGen/RegisterClassInfo.h"
31#include "llvm/CodeGen/VirtRegMap.h"
32#include "llvm/IR/Value.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include <algorithm>
43#include <cmath>
44using namespace llvm;
45
46STATISTIC(numJoins    , "Number of interval joins performed");
47STATISTIC(numCrossRCs , "Number of cross class joins performed");
48STATISTIC(numCommutes , "Number of instruction commuting performed");
49STATISTIC(numExtends  , "Number of copies extended");
50STATISTIC(NumReMats   , "Number of instructions re-materialized");
51STATISTIC(NumInflated , "Number of register classes inflated");
52STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
54
55static cl::opt<bool>
56EnableJoining("join-liveintervals",
57              cl::desc("Coalesce copies (default=true)"),
58              cl::init(true));
59
60// Temporary flag to test critical edge unsplitting.
61static cl::opt<bool>
62EnableJoinSplits("join-splitedges",
63  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
64
65// Temporary flag to test global copy optimization.
66static cl::opt<cl::boolOrDefault>
67EnableGlobalCopies("join-globalcopies",
68  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
69  cl::init(cl::BOU_UNSET), cl::Hidden);
70
71static cl::opt<bool>
72VerifyCoalescing("verify-coalescing",
73         cl::desc("Verify machine instrs before and after register coalescing"),
74         cl::Hidden);
75
76namespace {
77  class RegisterCoalescer : public MachineFunctionPass,
78                            private LiveRangeEdit::Delegate {
79    MachineFunction* MF;
80    MachineRegisterInfo* MRI;
81    const TargetMachine* TM;
82    const TargetRegisterInfo* TRI;
83    const TargetInstrInfo* TII;
84    LiveIntervals *LIS;
85    const MachineLoopInfo* Loops;
86    AliasAnalysis *AA;
87    RegisterClassInfo RegClassInfo;
88
89    /// \brief True if the coalescer should aggressively coalesce global copies
90    /// in favor of keeping local copies.
91    bool JoinGlobalCopies;
92
93    /// \brief True if the coalescer should aggressively coalesce fall-thru
94    /// blocks exclusively containing copies.
95    bool JoinSplitEdges;
96
97    /// WorkList - Copy instructions yet to be coalesced.
98    SmallVector<MachineInstr*, 8> WorkList;
99    SmallVector<MachineInstr*, 8> LocalWorkList;
100
101    /// ErasedInstrs - Set of instruction pointers that have been erased, and
102    /// that may be present in WorkList.
103    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
104
105    /// Dead instructions that are about to be deleted.
106    SmallVector<MachineInstr*, 8> DeadDefs;
107
108    /// Virtual registers to be considered for register class inflation.
109    SmallVector<unsigned, 8> InflateRegs;
110
111    /// Recursively eliminate dead defs in DeadDefs.
112    void eliminateDeadDefs();
113
114    /// LiveRangeEdit callback.
115    void LRE_WillEraseInstruction(MachineInstr *MI);
116
117    /// coalesceLocals - coalesce the LocalWorkList.
118    void coalesceLocals();
119
120    /// joinAllIntervals - join compatible live intervals
121    void joinAllIntervals();
122
123    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
124    /// copies that cannot yet be coalesced into WorkList.
125    void copyCoalesceInMBB(MachineBasicBlock *MBB);
126
127    /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
128    /// true if any progress was made.
129    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
130
131    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
132    /// which are the src/dst of the copy instruction CopyMI.  This returns
133    /// true if the copy was successfully coalesced away. If it is not
134    /// currently possible to coalesce this interval, but it may be possible if
135    /// other things get coalesced, then it returns true by reference in
136    /// 'Again'.
137    bool joinCopy(MachineInstr *TheCopy, bool &Again);
138
139    /// joinIntervals - Attempt to join these two intervals.  On failure, this
140    /// returns false.  The output "SrcInt" will not have been modified, so we
141    /// can use this information below to update aliases.
142    bool joinIntervals(CoalescerPair &CP);
143
144    /// Attempt joining two virtual registers. Return true on success.
145    bool joinVirtRegs(CoalescerPair &CP);
146
147    /// Attempt joining with a reserved physreg.
148    bool joinReservedPhysReg(CoalescerPair &CP);
149
150    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
151    /// the source value number is defined by a copy from the destination reg
152    /// see if we can merge these two destination reg valno# into a single
153    /// value number, eliminating a copy.
154    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
155
156    /// hasOtherReachingDefs - Return true if there are definitions of IntB
157    /// other than BValNo val# that can reach uses of AValno val# of IntA.
158    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
159                              VNInfo *AValNo, VNInfo *BValNo);
160
161    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
162    /// If the source value number is defined by a commutable instruction and
163    /// its other operand is coalesced to the copy dest register, see if we
164    /// can transform the copy into a noop by commuting the definition.
165    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
166
167    /// reMaterializeTrivialDef - If the source of a copy is defined by a
168    /// trivial computation, replace the copy by rematerialize the definition.
169    bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
170                                 bool &IsDefCopy);
171
172    /// canJoinPhys - Return true if a physreg copy should be joined.
173    bool canJoinPhys(const CoalescerPair &CP);
174
175    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
176    /// update the subregister number if it is not zero. If DstReg is a
177    /// physical register and the existing subregister number of the def / use
178    /// being updated is not zero, make sure to set it to the correct physical
179    /// subregister.
180    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
181
182    /// eliminateUndefCopy - Handle copies of undef values.
183    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
184
185  public:
186    static char ID; // Class identification, replacement for typeinfo
187    RegisterCoalescer() : MachineFunctionPass(ID) {
188      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
189    }
190
191    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
192
193    virtual void releaseMemory();
194
195    /// runOnMachineFunction - pass entry point
196    virtual bool runOnMachineFunction(MachineFunction&);
197
198    /// print - Implement the dump method.
199    virtual void print(raw_ostream &O, const Module* = 0) const;
200  };
201} /// end anonymous namespace
202
203char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
204
205INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
206                      "Simple Register Coalescing", false, false)
207INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
208INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
209INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
210INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
211INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
212                    "Simple Register Coalescing", false, false)
213
214char RegisterCoalescer::ID = 0;
215
216static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
217                        unsigned &Src, unsigned &Dst,
218                        unsigned &SrcSub, unsigned &DstSub) {
219  if (MI->isCopy()) {
220    Dst = MI->getOperand(0).getReg();
221    DstSub = MI->getOperand(0).getSubReg();
222    Src = MI->getOperand(1).getReg();
223    SrcSub = MI->getOperand(1).getSubReg();
224  } else if (MI->isSubregToReg()) {
225    Dst = MI->getOperand(0).getReg();
226    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
227                                      MI->getOperand(3).getImm());
228    Src = MI->getOperand(2).getReg();
229    SrcSub = MI->getOperand(2).getSubReg();
230  } else
231    return false;
232  return true;
233}
234
235// Return true if this block should be vacated by the coalescer to eliminate
236// branches. The important cases to handle in the coalescer are critical edges
237// split during phi elimination which contain only copies. Simple blocks that
238// contain non-branches should also be vacated, but this can be handled by an
239// earlier pass similar to early if-conversion.
240static bool isSplitEdge(const MachineBasicBlock *MBB) {
241  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
242    return false;
243
244  for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end();
245       MII != E; ++MII) {
246    if (!MII->isCopyLike() && !MII->isUnconditionalBranch())
247      return false;
248  }
249  return true;
250}
251
252bool CoalescerPair::setRegisters(const MachineInstr *MI) {
253  SrcReg = DstReg = 0;
254  SrcIdx = DstIdx = 0;
255  NewRC = 0;
256  Flipped = CrossClass = false;
257
258  unsigned Src, Dst, SrcSub, DstSub;
259  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
260    return false;
261  Partial = SrcSub || DstSub;
262
263  // If one register is a physreg, it must be Dst.
264  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
265    if (TargetRegisterInfo::isPhysicalRegister(Dst))
266      return false;
267    std::swap(Src, Dst);
268    std::swap(SrcSub, DstSub);
269    Flipped = true;
270  }
271
272  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
273
274  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
275    // Eliminate DstSub on a physreg.
276    if (DstSub) {
277      Dst = TRI.getSubReg(Dst, DstSub);
278      if (!Dst) return false;
279      DstSub = 0;
280    }
281
282    // Eliminate SrcSub by picking a corresponding Dst superregister.
283    if (SrcSub) {
284      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
285      if (!Dst) return false;
286      SrcSub = 0;
287    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
288      return false;
289    }
290  } else {
291    // Both registers are virtual.
292    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
293    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
294
295    // Both registers have subreg indices.
296    if (SrcSub && DstSub) {
297      // Copies between different sub-registers are never coalescable.
298      if (Src == Dst && SrcSub != DstSub)
299        return false;
300
301      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
302                                         SrcIdx, DstIdx);
303      if (!NewRC)
304        return false;
305    } else if (DstSub) {
306      // SrcReg will be merged with a sub-register of DstReg.
307      SrcIdx = DstSub;
308      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
309    } else if (SrcSub) {
310      // DstReg will be merged with a sub-register of SrcReg.
311      DstIdx = SrcSub;
312      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
313    } else {
314      // This is a straight copy without sub-registers.
315      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
316    }
317
318    // The combined constraint may be impossible to satisfy.
319    if (!NewRC)
320      return false;
321
322    // Prefer SrcReg to be a sub-register of DstReg.
323    // FIXME: Coalescer should support subregs symmetrically.
324    if (DstIdx && !SrcIdx) {
325      std::swap(Src, Dst);
326      std::swap(SrcIdx, DstIdx);
327      Flipped = !Flipped;
328    }
329
330    CrossClass = NewRC != DstRC || NewRC != SrcRC;
331  }
332  // Check our invariants
333  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
334  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
335         "Cannot have a physical SubIdx");
336  SrcReg = Src;
337  DstReg = Dst;
338  return true;
339}
340
341bool CoalescerPair::flip() {
342  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
343    return false;
344  std::swap(SrcReg, DstReg);
345  std::swap(SrcIdx, DstIdx);
346  Flipped = !Flipped;
347  return true;
348}
349
350bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
351  if (!MI)
352    return false;
353  unsigned Src, Dst, SrcSub, DstSub;
354  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
355    return false;
356
357  // Find the virtual register that is SrcReg.
358  if (Dst == SrcReg) {
359    std::swap(Src, Dst);
360    std::swap(SrcSub, DstSub);
361  } else if (Src != SrcReg) {
362    return false;
363  }
364
365  // Now check that Dst matches DstReg.
366  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
367    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
368      return false;
369    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
370    // DstSub could be set for a physreg from INSERT_SUBREG.
371    if (DstSub)
372      Dst = TRI.getSubReg(Dst, DstSub);
373    // Full copy of Src.
374    if (!SrcSub)
375      return DstReg == Dst;
376    // This is a partial register copy. Check that the parts match.
377    return TRI.getSubReg(DstReg, SrcSub) == Dst;
378  } else {
379    // DstReg is virtual.
380    if (DstReg != Dst)
381      return false;
382    // Registers match, do the subregisters line up?
383    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
384           TRI.composeSubRegIndices(DstIdx, DstSub);
385  }
386}
387
388void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
389  AU.setPreservesCFG();
390  AU.addRequired<AliasAnalysis>();
391  AU.addRequired<LiveIntervals>();
392  AU.addPreserved<LiveIntervals>();
393  AU.addPreserved<SlotIndexes>();
394  AU.addRequired<MachineLoopInfo>();
395  AU.addPreserved<MachineLoopInfo>();
396  AU.addPreservedID(MachineDominatorsID);
397  MachineFunctionPass::getAnalysisUsage(AU);
398}
399
400void RegisterCoalescer::eliminateDeadDefs() {
401  SmallVector<unsigned, 8> NewRegs;
402  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
403}
404
405// Callback from eliminateDeadDefs().
406void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
407  // MI may be in WorkList. Make sure we don't visit it.
408  ErasedInstrs.insert(MI);
409}
410
411/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
412/// being the source and IntB being the dest, thus this defines a value number
413/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
414/// see if we can merge these two pieces of B into a single value number,
415/// eliminating a copy.  For example:
416///
417///  A3 = B0
418///    ...
419///  B1 = A3      <- this copy
420///
421/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
422/// value number to be replaced with B0 (which simplifies the B liveinterval).
423///
424/// This returns true if an interval was modified.
425///
426bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
427                                             MachineInstr *CopyMI) {
428  assert(!CP.isPartial() && "This doesn't work for partial copies.");
429  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
430
431  LiveInterval &IntA =
432    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
433  LiveInterval &IntB =
434    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
435  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
436
437  // BValNo is a value number in B that is defined by a copy from A.  'B1' in
438  // the example above.
439  LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
440  if (BS == IntB.end()) return false;
441  VNInfo *BValNo = BS->valno;
442
443  // Get the location that B is defined at.  Two options: either this value has
444  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
445  // can't process it.
446  if (BValNo->def != CopyIdx) return false;
447
448  // AValNo is the value number in A that defines the copy, A3 in the example.
449  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
450  LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
451  // The live segment might not exist after fun with physreg coalescing.
452  if (AS == IntA.end()) return false;
453  VNInfo *AValNo = AS->valno;
454
455  // If AValNo is defined as a copy from IntB, we can potentially process this.
456  // Get the instruction that defines this value number.
457  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
458  // Don't allow any partial copies, even if isCoalescable() allows them.
459  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
460    return false;
461
462  // Get the Segment in IntB that this value number starts with.
463  LiveInterval::iterator ValS =
464    IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
465  if (ValS == IntB.end())
466    return false;
467
468  // Make sure that the end of the live segment is inside the same block as
469  // CopyMI.
470  MachineInstr *ValSEndInst =
471    LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
472  if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
473    return false;
474
475  // Okay, we now know that ValS ends in the same block that the CopyMI
476  // live-range starts.  If there are no intervening live segments between them
477  // in IntB, we can merge them.
478  if (ValS+1 != BS) return false;
479
480  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
481
482  SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
483  // We are about to delete CopyMI, so need to remove it as the 'instruction
484  // that defines this value #'. Update the valnum with the new defining
485  // instruction #.
486  BValNo->def = FillerStart;
487
488  // Okay, we can merge them.  We need to insert a new liverange:
489  // [ValS.end, BS.begin) of either value number, then we merge the
490  // two value numbers.
491  IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
492
493  // Okay, merge "B1" into the same value number as "B0".
494  if (BValNo != ValS->valno)
495    IntB.MergeValueNumberInto(BValNo, ValS->valno);
496  DEBUG(dbgs() << "   result = " << IntB << '\n');
497
498  // If the source instruction was killing the source register before the
499  // merge, unset the isKill marker given the live range has been extended.
500  int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
501  if (UIdx != -1) {
502    ValSEndInst->getOperand(UIdx).setIsKill(false);
503  }
504
505  // Rewrite the copy. If the copy instruction was killing the destination
506  // register before the merge, find the last use and trim the live range. That
507  // will also add the isKill marker.
508  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
509  if (AS->end == CopyIdx)
510    LIS->shrinkToUses(&IntA);
511
512  ++numExtends;
513  return true;
514}
515
516/// hasOtherReachingDefs - Return true if there are definitions of IntB
517/// other than BValNo val# that can reach uses of AValno val# of IntA.
518bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
519                                             LiveInterval &IntB,
520                                             VNInfo *AValNo,
521                                             VNInfo *BValNo) {
522  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
523  // the PHI values.
524  if (LIS->hasPHIKill(IntA, AValNo))
525    return true;
526
527  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
528       AI != AE; ++AI) {
529    if (AI->valno != AValNo) continue;
530    LiveInterval::iterator BI =
531      std::upper_bound(IntB.begin(), IntB.end(), AI->start);
532    if (BI != IntB.begin())
533      --BI;
534    for (; BI != IntB.end() && AI->end >= BI->start; ++BI) {
535      if (BI->valno == BValNo)
536        continue;
537      if (BI->start <= AI->start && BI->end > AI->start)
538        return true;
539      if (BI->start > AI->start && BI->start < AI->end)
540        return true;
541    }
542  }
543  return false;
544}
545
546/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
547/// IntA being the source and IntB being the dest, thus this defines a value
548/// number in IntB.  If the source value number (in IntA) is defined by a
549/// commutable instruction and its other operand is coalesced to the copy dest
550/// register, see if we can transform the copy into a noop by commuting the
551/// definition. For example,
552///
553///  A3 = op A2 B0<kill>
554///    ...
555///  B1 = A3      <- this copy
556///    ...
557///     = op A3   <- more uses
558///
559/// ==>
560///
561///  B2 = op B0 A2<kill>
562///    ...
563///  B1 = B2      <- now an identify copy
564///    ...
565///     = op B2   <- more uses
566///
567/// This returns true if an interval was modified.
568///
569bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
570                                                 MachineInstr *CopyMI) {
571  assert (!CP.isPhys());
572
573  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
574
575  LiveInterval &IntA =
576    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
577  LiveInterval &IntB =
578    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
579
580  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
581  // the example above.
582  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
583  if (!BValNo || BValNo->def != CopyIdx)
584    return false;
585
586  // AValNo is the value number in A that defines the copy, A3 in the example.
587  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
588  assert(AValNo && "COPY source not live");
589  if (AValNo->isPHIDef() || AValNo->isUnused())
590    return false;
591  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
592  if (!DefMI)
593    return false;
594  if (!DefMI->isCommutable())
595    return false;
596  // If DefMI is a two-address instruction then commuting it will change the
597  // destination register.
598  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
599  assert(DefIdx != -1);
600  unsigned UseOpIdx;
601  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
602    return false;
603  unsigned Op1, Op2, NewDstIdx;
604  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
605    return false;
606  if (Op1 == UseOpIdx)
607    NewDstIdx = Op2;
608  else if (Op2 == UseOpIdx)
609    NewDstIdx = Op1;
610  else
611    return false;
612
613  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
614  unsigned NewReg = NewDstMO.getReg();
615  if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
616    return false;
617
618  // Make sure there are no other definitions of IntB that would reach the
619  // uses which the new definition can reach.
620  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
621    return false;
622
623  // If some of the uses of IntA.reg is already coalesced away, return false.
624  // It's not possible to determine whether it's safe to perform the coalescing.
625  for (MachineRegisterInfo::use_nodbg_iterator UI =
626         MRI->use_nodbg_begin(IntA.reg),
627       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
628    MachineInstr *UseMI = &*UI;
629    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
630    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
631    if (US == IntA.end() || US->valno != AValNo)
632      continue;
633    // If this use is tied to a def, we can't rewrite the register.
634    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
635      return false;
636  }
637
638  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
639               << *DefMI);
640
641  // At this point we have decided that it is legal to do this
642  // transformation.  Start by commuting the instruction.
643  MachineBasicBlock *MBB = DefMI->getParent();
644  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
645  if (!NewMI)
646    return false;
647  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
648      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
649      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
650    return false;
651  if (NewMI != DefMI) {
652    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
653    MachineBasicBlock::iterator Pos = DefMI;
654    MBB->insert(Pos, NewMI);
655    MBB->erase(DefMI);
656  }
657  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
658  NewMI->getOperand(OpIdx).setIsKill();
659
660  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
661  // A = or A, B
662  // ...
663  // B = A
664  // ...
665  // C = A<kill>
666  // ...
667  //   = B
668
669  // Update uses of IntA of the specific Val# with IntB.
670  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
671         UE = MRI->use_end(); UI != UE;) {
672    MachineOperand &UseMO = UI.getOperand();
673    MachineInstr *UseMI = &*UI;
674    ++UI;
675    if (UseMI->isDebugValue()) {
676      // FIXME These don't have an instruction index.  Not clear we have enough
677      // info to decide whether to do this replacement or not.  For now do it.
678      UseMO.setReg(NewReg);
679      continue;
680    }
681    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
682    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
683    if (US == IntA.end() || US->valno != AValNo)
684      continue;
685    // Kill flags are no longer accurate. They are recomputed after RA.
686    UseMO.setIsKill(false);
687    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
688      UseMO.substPhysReg(NewReg, *TRI);
689    else
690      UseMO.setReg(NewReg);
691    if (UseMI == CopyMI)
692      continue;
693    if (!UseMI->isCopy())
694      continue;
695    if (UseMI->getOperand(0).getReg() != IntB.reg ||
696        UseMI->getOperand(0).getSubReg())
697      continue;
698
699    // This copy will become a noop. If it's defining a new val#, merge it into
700    // BValNo.
701    SlotIndex DefIdx = UseIdx.getRegSlot();
702    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
703    if (!DVNI)
704      continue;
705    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
706    assert(DVNI->def == DefIdx);
707    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
708    ErasedInstrs.insert(UseMI);
709    LIS->RemoveMachineInstrFromMaps(UseMI);
710    UseMI->eraseFromParent();
711  }
712
713  // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
714  // is updated.
715  VNInfo *ValNo = BValNo;
716  ValNo->def = AValNo->def;
717  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
718       AI != AE; ++AI) {
719    if (AI->valno != AValNo) continue;
720    IntB.addSegment(LiveInterval::Segment(AI->start, AI->end, ValNo));
721  }
722  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
723
724  IntA.removeValNo(AValNo);
725  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
726  ++numCommutes;
727  return true;
728}
729
730/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
731/// computation, replace the copy by rematerialize the definition.
732bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
733                                                MachineInstr *CopyMI,
734                                                bool &IsDefCopy) {
735  IsDefCopy = false;
736  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
737  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
738  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
739  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
740  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
741    return false;
742
743  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
744  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
745  VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
746  assert(ValNo && "CopyMI input register not live");
747  if (ValNo->isPHIDef() || ValNo->isUnused())
748    return false;
749  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
750  if (!DefMI)
751    return false;
752  if (DefMI->isCopyLike()) {
753    IsDefCopy = true;
754    return false;
755  }
756  if (!DefMI->isAsCheapAsAMove())
757    return false;
758  if (!TII->isTriviallyReMaterializable(DefMI, AA))
759    return false;
760  bool SawStore = false;
761  if (!DefMI->isSafeToMove(TII, AA, SawStore))
762    return false;
763  const MCInstrDesc &MCID = DefMI->getDesc();
764  if (MCID.getNumDefs() != 1)
765    return false;
766  // Only support subregister destinations when the def is read-undef.
767  MachineOperand &DstOperand = CopyMI->getOperand(0);
768  unsigned CopyDstReg = DstOperand.getReg();
769  if (DstOperand.getSubReg() && !DstOperand.isUndef())
770    return false;
771
772  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
773  if (!DefMI->isImplicitDef()) {
774    if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
775      unsigned NewDstReg = DstReg;
776
777      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
778                                              DefMI->getOperand(0).getSubReg());
779      if (NewDstIdx)
780        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
781
782      // Finally, make sure that the physical subregister that will be
783      // constructed later is permitted for the instruction.
784      if (!DefRC->contains(NewDstReg))
785        return false;
786    } else {
787      // Theoretically, some stack frame reference could exist. Just make sure
788      // it hasn't actually happened.
789      assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
790             "Only expect to deal with virtual or physical registers");
791    }
792  }
793
794  MachineBasicBlock *MBB = CopyMI->getParent();
795  MachineBasicBlock::iterator MII =
796    llvm::next(MachineBasicBlock::iterator(CopyMI));
797  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
798  MachineInstr *NewMI = prior(MII);
799
800  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
801  CopyMI->eraseFromParent();
802  ErasedInstrs.insert(CopyMI);
803
804  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
805  // We need to remember these so we can add intervals once we insert
806  // NewMI into SlotIndexes.
807  SmallVector<unsigned, 4> NewMIImplDefs;
808  for (unsigned i = NewMI->getDesc().getNumOperands(),
809         e = NewMI->getNumOperands(); i != e; ++i) {
810    MachineOperand &MO = NewMI->getOperand(i);
811    if (MO.isReg()) {
812      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
813             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
814      NewMIImplDefs.push_back(MO.getReg());
815    }
816  }
817
818  if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
819    unsigned NewIdx = NewMI->getOperand(0).getSubReg();
820    const TargetRegisterClass *RCForInst;
821    if (NewIdx)
822      RCForInst = TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg), DefRC,
823                                                NewIdx);
824
825    if (MRI->constrainRegClass(DstReg, DefRC)) {
826      // The materialized instruction is quite capable of setting DstReg
827      // directly, but it may still have a now-trivial subregister index which
828      // we should clear.
829      NewMI->getOperand(0).setSubReg(0);
830    } else if (NewIdx && RCForInst) {
831      // The subreg index on NewMI is essential; we still have to make sure
832      // DstReg:idx is in a class that NewMI can use.
833      MRI->constrainRegClass(DstReg, RCForInst);
834    } else {
835      // DstReg is actually incompatible with NewMI, we have to move to a
836      // super-reg's class. This could come from a sequence like:
837      //     GR32 = MOV32r0
838      //     GR8 = COPY GR32:sub_8
839      MRI->setRegClass(DstReg, CP.getNewRC());
840      updateRegDefsUses(DstReg, DstReg, DstIdx);
841      NewMI->getOperand(0).setSubReg(
842          TRI->composeSubRegIndices(SrcIdx, DefMI->getOperand(0).getSubReg()));
843    }
844  } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
845    // The New instruction may be defining a sub-register of what's actually
846    // been asked for. If so it must implicitly define the whole thing.
847    assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
848           "Only expect virtual or physical registers in remat");
849    NewMI->getOperand(0).setIsDead(true);
850    NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
851                                                true  /*IsDef*/,
852                                                true  /*IsImp*/,
853                                                false /*IsKill*/));
854  }
855
856  if (NewMI->getOperand(0).getSubReg())
857    NewMI->getOperand(0).setIsUndef();
858
859  // CopyMI may have implicit operands, transfer them over to the newly
860  // rematerialized instruction. And update implicit def interval valnos.
861  for (unsigned i = CopyMI->getDesc().getNumOperands(),
862         e = CopyMI->getNumOperands(); i != e; ++i) {
863    MachineOperand &MO = CopyMI->getOperand(i);
864    if (MO.isReg()) {
865      assert(MO.isImplicit() && "No explicit operands after implict operands.");
866      // Discard VReg implicit defs.
867      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
868        NewMI->addOperand(MO);
869      }
870    }
871  }
872
873  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
874  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
875    unsigned Reg = NewMIImplDefs[i];
876    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
877      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
878        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
879  }
880
881  DEBUG(dbgs() << "Remat: " << *NewMI);
882  ++NumReMats;
883
884  // The source interval can become smaller because we removed a use.
885  LIS->shrinkToUses(&SrcInt, &DeadDefs);
886  if (!DeadDefs.empty())
887    eliminateDeadDefs();
888
889  return true;
890}
891
892/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
893/// values, it only removes local variables. When we have a copy like:
894///
895///   %vreg1 = COPY %vreg2<undef>
896///
897/// We delete the copy and remove the corresponding value number from %vreg1.
898/// Any uses of that value number are marked as <undef>.
899bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
900                                           const CoalescerPair &CP) {
901  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
902  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
903  if (SrcInt->liveAt(Idx))
904    return false;
905  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
906  if (DstInt->liveAt(Idx))
907    return false;
908
909  // No intervals are live-in to CopyMI - it is undef.
910  if (CP.isFlipped())
911    DstInt = SrcInt;
912  SrcInt = 0;
913
914  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
915  assert(DeadVNI && "No value defined in DstInt");
916  DstInt->removeValNo(DeadVNI);
917
918  // Find new undef uses.
919  for (MachineRegisterInfo::reg_nodbg_iterator
920         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
921       I != E; ++I) {
922    MachineOperand &MO = I.getOperand();
923    if (MO.isDef() || MO.isUndef())
924      continue;
925    MachineInstr *MI = MO.getParent();
926    SlotIndex Idx = LIS->getInstructionIndex(MI);
927    if (DstInt->liveAt(Idx))
928      continue;
929    MO.setIsUndef(true);
930    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
931  }
932  return true;
933}
934
935/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
936/// update the subregister number if it is not zero. If DstReg is a
937/// physical register and the existing subregister number of the def / use
938/// being updated is not zero, make sure to set it to the correct physical
939/// subregister.
940void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
941                                          unsigned DstReg,
942                                          unsigned SubIdx) {
943  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
944  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
945
946  SmallPtrSet<MachineInstr*, 8> Visited;
947  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
948       MachineInstr *UseMI = I.skipInstruction();) {
949    // Each instruction can only be rewritten once because sub-register
950    // composition is not always idempotent. When SrcReg != DstReg, rewriting
951    // the UseMI operands removes them from the SrcReg use-def chain, but when
952    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
953    // operands mentioning the virtual register.
954    if (SrcReg == DstReg && !Visited.insert(UseMI))
955      continue;
956
957    SmallVector<unsigned,8> Ops;
958    bool Reads, Writes;
959    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
960
961    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
962    // because SrcReg is a sub-register.
963    if (DstInt && !Reads && SubIdx)
964      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
965
966    // Replace SrcReg with DstReg in all UseMI operands.
967    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
968      MachineOperand &MO = UseMI->getOperand(Ops[i]);
969
970      // Adjust <undef> flags in case of sub-register joins. We don't want to
971      // turn a full def into a read-modify-write sub-register def and vice
972      // versa.
973      if (SubIdx && MO.isDef())
974        MO.setIsUndef(!Reads);
975
976      if (DstIsPhys)
977        MO.substPhysReg(DstReg, *TRI);
978      else
979        MO.substVirtReg(DstReg, SubIdx, *TRI);
980    }
981
982    DEBUG({
983        dbgs() << "\t\tupdated: ";
984        if (!UseMI->isDebugValue())
985          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
986        dbgs() << *UseMI;
987      });
988  }
989}
990
991/// canJoinPhys - Return true if a copy involving a physreg should be joined.
992bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
993  /// Always join simple intervals that are defined by a single copy from a
994  /// reserved register. This doesn't increase register pressure, so it is
995  /// always beneficial.
996  if (!MRI->isReserved(CP.getDstReg())) {
997    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
998    return false;
999  }
1000
1001  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1002  if (CP.isFlipped() && JoinVInt.containsOneValue())
1003    return true;
1004
1005  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
1006  return false;
1007}
1008
1009/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1010/// which are the src/dst of the copy instruction CopyMI.  This returns true
1011/// if the copy was successfully coalesced away. If it is not currently
1012/// possible to coalesce this interval, but it may be possible if other
1013/// things get coalesced, then it returns true by reference in 'Again'.
1014bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1015
1016  Again = false;
1017  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1018
1019  CoalescerPair CP(*TRI);
1020  if (!CP.setRegisters(CopyMI)) {
1021    DEBUG(dbgs() << "\tNot coalescable.\n");
1022    return false;
1023  }
1024
1025  // Dead code elimination. This really should be handled by MachineDCE, but
1026  // sometimes dead copies slip through, and we can't generate invalid live
1027  // ranges.
1028  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1029    DEBUG(dbgs() << "\tCopy is dead.\n");
1030    DeadDefs.push_back(CopyMI);
1031    eliminateDeadDefs();
1032    return true;
1033  }
1034
1035  // Eliminate undefs.
1036  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1037    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1038    LIS->RemoveMachineInstrFromMaps(CopyMI);
1039    CopyMI->eraseFromParent();
1040    return false;  // Not coalescable.
1041  }
1042
1043  // Coalesced copies are normally removed immediately, but transformations
1044  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1045  // When that happens, just join the values and remove the copy.
1046  if (CP.getSrcReg() == CP.getDstReg()) {
1047    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1048    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1049    LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(CopyMI));
1050    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1051      VNInfo *ReadVNI = LRQ.valueIn();
1052      assert(ReadVNI && "No value before copy and no <undef> flag.");
1053      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1054      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1055      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1056    }
1057    LIS->RemoveMachineInstrFromMaps(CopyMI);
1058    CopyMI->eraseFromParent();
1059    return true;
1060  }
1061
1062  // Enforce policies.
1063  if (CP.isPhys()) {
1064    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1065                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1066                 << '\n');
1067    if (!canJoinPhys(CP)) {
1068      // Before giving up coalescing, if definition of source is defined by
1069      // trivial computation, try rematerializing it.
1070      bool IsDefCopy;
1071      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1072        return true;
1073      if (IsDefCopy)
1074        Again = true;  // May be possible to coalesce later.
1075      return false;
1076    }
1077  } else {
1078    DEBUG({
1079      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1080             << " with ";
1081      if (CP.getDstIdx() && CP.getSrcIdx())
1082        dbgs() << PrintReg(CP.getDstReg()) << " in "
1083               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1084               << PrintReg(CP.getSrcReg()) << " in "
1085               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1086      else
1087        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1088               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1089    });
1090
1091    // When possible, let DstReg be the larger interval.
1092    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1093                           LIS->getInterval(CP.getDstReg()).size())
1094      CP.flip();
1095  }
1096
1097  // Okay, attempt to join these two intervals.  On failure, this returns false.
1098  // Otherwise, if one of the intervals being joined is a physreg, this method
1099  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1100  // been modified, so we can use this information below to update aliases.
1101  if (!joinIntervals(CP)) {
1102    // Coalescing failed.
1103
1104    // If definition of source is defined by trivial computation, try
1105    // rematerializing it.
1106    bool IsDefCopy;
1107    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1108      return true;
1109
1110    // If we can eliminate the copy without merging the live segments, do so
1111    // now.
1112    if (!CP.isPartial() && !CP.isPhys()) {
1113      if (adjustCopiesBackFrom(CP, CopyMI) ||
1114          removeCopyByCommutingDef(CP, CopyMI)) {
1115        LIS->RemoveMachineInstrFromMaps(CopyMI);
1116        CopyMI->eraseFromParent();
1117        DEBUG(dbgs() << "\tTrivial!\n");
1118        return true;
1119      }
1120    }
1121
1122    // Otherwise, we are unable to join the intervals.
1123    DEBUG(dbgs() << "\tInterference!\n");
1124    Again = true;  // May be possible to coalesce later.
1125    return false;
1126  }
1127
1128  // Coalescing to a virtual register that is of a sub-register class of the
1129  // other. Make sure the resulting register is set to the right register class.
1130  if (CP.isCrossClass()) {
1131    ++numCrossRCs;
1132    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1133  }
1134
1135  // Removing sub-register copies can ease the register class constraints.
1136  // Make sure we attempt to inflate the register class of DstReg.
1137  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1138    InflateRegs.push_back(CP.getDstReg());
1139
1140  // CopyMI has been erased by joinIntervals at this point. Remove it from
1141  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1142  // to the work list. This keeps ErasedInstrs from growing needlessly.
1143  ErasedInstrs.erase(CopyMI);
1144
1145  // Rewrite all SrcReg operands to DstReg.
1146  // Also update DstReg operands to include DstIdx if it is set.
1147  if (CP.getDstIdx())
1148    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1149  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1150
1151  // SrcReg is guaranteed to be the register whose live interval that is
1152  // being merged.
1153  LIS->removeInterval(CP.getSrcReg());
1154
1155  // Update regalloc hint.
1156  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1157
1158  DEBUG({
1159    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
1160    if (!CP.isPhys())
1161      dbgs() << LIS->getInterval(CP.getDstReg());
1162     dbgs() << '\n';
1163  });
1164
1165  ++numJoins;
1166  return true;
1167}
1168
1169/// Attempt joining with a reserved physreg.
1170bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1171  assert(CP.isPhys() && "Must be a physreg copy");
1172  assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
1173  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1174  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1175               << '\n');
1176
1177  assert(CP.isFlipped() && RHS.containsOneValue() &&
1178         "Invalid join with reserved register");
1179
1180  // Optimization for reserved registers like ESP. We can only merge with a
1181  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1182  // The live range of the reserved register will look like a set of dead defs
1183  // - we don't properly track the live range of reserved registers.
1184
1185  // Deny any overlapping intervals.  This depends on all the reserved
1186  // register live ranges to look like dead defs.
1187  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1188    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1189      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1190      return false;
1191    }
1192
1193  // Skip any value computations, we are not adding new values to the
1194  // reserved register.  Also skip merging the live ranges, the reserved
1195  // register live range doesn't need to be accurate as long as all the
1196  // defs are there.
1197
1198  // Delete the identity copy.
1199  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
1200  LIS->RemoveMachineInstrFromMaps(CopyMI);
1201  CopyMI->eraseFromParent();
1202
1203  // We don't track kills for reserved registers.
1204  MRI->clearKillFlags(CP.getSrcReg());
1205
1206  return true;
1207}
1208
1209//===----------------------------------------------------------------------===//
1210//                 Interference checking and interval joining
1211//===----------------------------------------------------------------------===//
1212//
1213// In the easiest case, the two live ranges being joined are disjoint, and
1214// there is no interference to consider. It is quite common, though, to have
1215// overlapping live ranges, and we need to check if the interference can be
1216// resolved.
1217//
1218// The live range of a single SSA value forms a sub-tree of the dominator tree.
1219// This means that two SSA values overlap if and only if the def of one value
1220// is contained in the live range of the other value. As a special case, the
1221// overlapping values can be defined at the same index.
1222//
1223// The interference from an overlapping def can be resolved in these cases:
1224//
1225// 1. Coalescable copies. The value is defined by a copy that would become an
1226//    identity copy after joining SrcReg and DstReg. The copy instruction will
1227//    be removed, and the value will be merged with the source value.
1228//
1229//    There can be several copies back and forth, causing many values to be
1230//    merged into one. We compute a list of ultimate values in the joined live
1231//    range as well as a mappings from the old value numbers.
1232//
1233// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1234//    predecessors have a live out value. It doesn't cause real interference,
1235//    and can be merged into the value it overlaps. Like a coalescable copy, it
1236//    can be erased after joining.
1237//
1238// 3. Copy of external value. The overlapping def may be a copy of a value that
1239//    is already in the other register. This is like a coalescable copy, but
1240//    the live range of the source register must be trimmed after erasing the
1241//    copy instruction:
1242//
1243//      %src = COPY %ext
1244//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1245//
1246// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1247//    defining one lane at a time:
1248//
1249//      %dst:ssub0<def,read-undef> = FOO
1250//      %src = BAR
1251//      %dst:ssub1<def> = COPY %src
1252//
1253//    The live range of %src overlaps the %dst value defined by FOO, but
1254//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1255//    which was undef anyway.
1256//
1257//    The value mapping is more complicated in this case. The final live range
1258//    will have different value numbers for both FOO and BAR, but there is no
1259//    simple mapping from old to new values. It may even be necessary to add
1260//    new PHI values.
1261//
1262// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1263//    is live, but never read. This can happen because we don't compute
1264//    individual live ranges per lane.
1265//
1266//      %dst<def> = FOO
1267//      %src = BAR
1268//      %dst:ssub1<def> = COPY %src
1269//
1270//    This kind of interference is only resolved locally. If the clobbered
1271//    lane value escapes the block, the join is aborted.
1272
1273namespace {
1274/// Track information about values in a single virtual register about to be
1275/// joined. Objects of this class are always created in pairs - one for each
1276/// side of the CoalescerPair.
1277class JoinVals {
1278  LiveInterval &LI;
1279
1280  // Location of this register in the final joined register.
1281  // Either CP.DstIdx or CP.SrcIdx.
1282  unsigned SubIdx;
1283
1284  // Values that will be present in the final live range.
1285  SmallVectorImpl<VNInfo*> &NewVNInfo;
1286
1287  const CoalescerPair &CP;
1288  LiveIntervals *LIS;
1289  SlotIndexes *Indexes;
1290  const TargetRegisterInfo *TRI;
1291
1292  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
1293  // This is suitable for passing to LiveInterval::join().
1294  SmallVector<int, 8> Assignments;
1295
1296  // Conflict resolution for overlapping values.
1297  enum ConflictResolution {
1298    // No overlap, simply keep this value.
1299    CR_Keep,
1300
1301    // Merge this value into OtherVNI and erase the defining instruction.
1302    // Used for IMPLICIT_DEF, coalescable copies, and copies from external
1303    // values.
1304    CR_Erase,
1305
1306    // Merge this value into OtherVNI but keep the defining instruction.
1307    // This is for the special case where OtherVNI is defined by the same
1308    // instruction.
1309    CR_Merge,
1310
1311    // Keep this value, and have it replace OtherVNI where possible. This
1312    // complicates value mapping since OtherVNI maps to two different values
1313    // before and after this def.
1314    // Used when clobbering undefined or dead lanes.
1315    CR_Replace,
1316
1317    // Unresolved conflict. Visit later when all values have been mapped.
1318    CR_Unresolved,
1319
1320    // Unresolvable conflict. Abort the join.
1321    CR_Impossible
1322  };
1323
1324  // Per-value info for LI. The lane bit masks are all relative to the final
1325  // joined register, so they can be compared directly between SrcReg and
1326  // DstReg.
1327  struct Val {
1328    ConflictResolution Resolution;
1329
1330    // Lanes written by this def, 0 for unanalyzed values.
1331    unsigned WriteLanes;
1332
1333    // Lanes with defined values in this register. Other lanes are undef and
1334    // safe to clobber.
1335    unsigned ValidLanes;
1336
1337    // Value in LI being redefined by this def.
1338    VNInfo *RedefVNI;
1339
1340    // Value in the other live range that overlaps this def, if any.
1341    VNInfo *OtherVNI;
1342
1343    // Is this value an IMPLICIT_DEF that can be erased?
1344    //
1345    // IMPLICIT_DEF values should only exist at the end of a basic block that
1346    // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1347    // safely erased if they are overlapping a live value in the other live
1348    // interval.
1349    //
1350    // Weird control flow graphs and incomplete PHI handling in
1351    // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1352    // longer live ranges. Such IMPLICIT_DEF values should be treated like
1353    // normal values.
1354    bool ErasableImplicitDef;
1355
1356    // True when the live range of this value will be pruned because of an
1357    // overlapping CR_Replace value in the other live range.
1358    bool Pruned;
1359
1360    // True once Pruned above has been computed.
1361    bool PrunedComputed;
1362
1363    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1364            RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false),
1365            Pruned(false), PrunedComputed(false) {}
1366
1367    bool isAnalyzed() const { return WriteLanes != 0; }
1368  };
1369
1370  // One entry per value number in LI.
1371  SmallVector<Val, 8> Vals;
1372
1373  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
1374  VNInfo *stripCopies(VNInfo *VNI);
1375  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1376  void computeAssignment(unsigned ValNo, JoinVals &Other);
1377  bool taintExtent(unsigned, unsigned, JoinVals&,
1378                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1379  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
1380  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1381
1382public:
1383  JoinVals(LiveInterval &li, unsigned subIdx,
1384           SmallVectorImpl<VNInfo*> &newVNInfo,
1385           const CoalescerPair &cp,
1386           LiveIntervals *lis,
1387           const TargetRegisterInfo *tri)
1388    : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
1389      Indexes(LIS->getSlotIndexes()), TRI(tri),
1390      Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
1391  {}
1392
1393  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
1394  /// Returns false if any conflicts were impossible to resolve.
1395  bool mapValues(JoinVals &Other);
1396
1397  /// Try to resolve conflicts that require all values to be mapped.
1398  /// Returns false if any conflicts were impossible to resolve.
1399  bool resolveConflicts(JoinVals &Other);
1400
1401  /// Prune the live range of values in Other.LI where they would conflict with
1402  /// CR_Replace values in LI. Collect end points for restoring the live range
1403  /// after joining.
1404  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
1405
1406  /// Erase any machine instructions that have been coalesced away.
1407  /// Add erased instructions to ErasedInstrs.
1408  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1409  /// the erased instrs.
1410  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1411                   SmallVectorImpl<unsigned> &ShrinkRegs);
1412
1413  /// Get the value assignments suitable for passing to LiveInterval::join.
1414  const int *getAssignments() const { return Assignments.data(); }
1415};
1416} // end anonymous namespace
1417
1418/// Compute the bitmask of lanes actually written by DefMI.
1419/// Set Redef if there are any partial register definitions that depend on the
1420/// previous value of the register.
1421unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
1422  unsigned L = 0;
1423  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
1424    if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
1425      continue;
1426    L |= TRI->getSubRegIndexLaneMask(
1427           TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
1428    if (MO->readsReg())
1429      Redef = true;
1430  }
1431  return L;
1432}
1433
1434/// Find the ultimate value that VNI was copied from.
1435VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
1436  while (!VNI->isPHIDef()) {
1437    MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
1438    assert(MI && "No defining instruction");
1439    if (!MI->isFullCopy())
1440      break;
1441    unsigned Reg = MI->getOperand(1).getReg();
1442    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1443      break;
1444    LiveQueryResult LRQ = LIS->getInterval(Reg).Query(VNI->def);
1445    if (!LRQ.valueIn())
1446      break;
1447    VNI = LRQ.valueIn();
1448  }
1449  return VNI;
1450}
1451
1452/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1453/// Return a conflict resolution when possible, but leave the hard cases as
1454/// CR_Unresolved.
1455/// Recursively calls computeAssignment() on this and Other, guaranteeing that
1456/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1457/// The recursion always goes upwards in the dominator tree, making loops
1458/// impossible.
1459JoinVals::ConflictResolution
1460JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1461  Val &V = Vals[ValNo];
1462  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1463  VNInfo *VNI = LI.getValNumInfo(ValNo);
1464  if (VNI->isUnused()) {
1465    V.WriteLanes = ~0u;
1466    return CR_Keep;
1467  }
1468
1469  // Get the instruction defining this value, compute the lanes written.
1470  const MachineInstr *DefMI = 0;
1471  if (VNI->isPHIDef()) {
1472    // Conservatively assume that all lanes in a PHI are valid.
1473    V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1474  } else {
1475    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1476    bool Redef = false;
1477    V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1478
1479    // If this is a read-modify-write instruction, there may be more valid
1480    // lanes than the ones written by this instruction.
1481    // This only covers partial redef operands. DefMI may have normal use
1482    // operands reading the register. They don't contribute valid lanes.
1483    //
1484    // This adds ssub1 to the set of valid lanes in %src:
1485    //
1486    //   %src:ssub1<def> = FOO
1487    //
1488    // This leaves only ssub1 valid, making any other lanes undef:
1489    //
1490    //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1491    //
1492    // The <read-undef> flag on the def operand means that old lane values are
1493    // not important.
1494    if (Redef) {
1495      V.RedefVNI = LI.Query(VNI->def).valueIn();
1496      assert(V.RedefVNI && "Instruction is reading nonexistent value");
1497      computeAssignment(V.RedefVNI->id, Other);
1498      V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1499    }
1500
1501    // An IMPLICIT_DEF writes undef values.
1502    if (DefMI->isImplicitDef()) {
1503      // We normally expect IMPLICIT_DEF values to be live only until the end
1504      // of their block. If the value is really live longer and gets pruned in
1505      // another block, this flag is cleared again.
1506      V.ErasableImplicitDef = true;
1507      V.ValidLanes &= ~V.WriteLanes;
1508    }
1509  }
1510
1511  // Find the value in Other that overlaps VNI->def, if any.
1512  LiveQueryResult OtherLRQ = Other.LI.Query(VNI->def);
1513
1514  // It is possible that both values are defined by the same instruction, or
1515  // the values are PHIs defined in the same block. When that happens, the two
1516  // values should be merged into one, but not into any preceding value.
1517  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1518  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1519    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1520
1521    // One value stays, the other is merged. Keep the earlier one, or the first
1522    // one we see.
1523    if (OtherVNI->def < VNI->def)
1524      Other.computeAssignment(OtherVNI->id, *this);
1525    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1526      // This is an early-clobber def overlapping a live-in value in the other
1527      // register. Not mergeable.
1528      V.OtherVNI = OtherLRQ.valueIn();
1529      return CR_Impossible;
1530    }
1531    V.OtherVNI = OtherVNI;
1532    Val &OtherV = Other.Vals[OtherVNI->id];
1533    // Keep this value, check for conflicts when analyzing OtherVNI.
1534    if (!OtherV.isAnalyzed())
1535      return CR_Keep;
1536    // Both sides have been analyzed now.
1537    // Allow overlapping PHI values. Any real interference would show up in a
1538    // predecessor, the PHI itself can't introduce any conflicts.
1539    if (VNI->isPHIDef())
1540      return CR_Merge;
1541    if (V.ValidLanes & OtherV.ValidLanes)
1542      // Overlapping lanes can't be resolved.
1543      return CR_Impossible;
1544    else
1545      return CR_Merge;
1546  }
1547
1548  // No simultaneous def. Is Other live at the def?
1549  V.OtherVNI = OtherLRQ.valueIn();
1550  if (!V.OtherVNI)
1551    // No overlap, no conflict.
1552    return CR_Keep;
1553
1554  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
1555
1556  // We have overlapping values, or possibly a kill of Other.
1557  // Recursively compute assignments up the dominator tree.
1558  Other.computeAssignment(V.OtherVNI->id, *this);
1559  Val &OtherV = Other.Vals[V.OtherVNI->id];
1560
1561  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
1562  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
1563  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
1564  // technically.
1565  //
1566  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
1567  // to erase the IMPLICIT_DEF instruction.
1568  if (OtherV.ErasableImplicitDef && DefMI &&
1569      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
1570    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
1571                 << " extends into BB#" << DefMI->getParent()->getNumber()
1572                 << ", keeping it.\n");
1573    OtherV.ErasableImplicitDef = false;
1574  }
1575
1576  // Allow overlapping PHI values. Any real interference would show up in a
1577  // predecessor, the PHI itself can't introduce any conflicts.
1578  if (VNI->isPHIDef())
1579    return CR_Replace;
1580
1581  // Check for simple erasable conflicts.
1582  if (DefMI->isImplicitDef())
1583    return CR_Erase;
1584
1585  // Include the non-conflict where DefMI is a coalescable copy that kills
1586  // OtherVNI. We still want the copy erased and value numbers merged.
1587  if (CP.isCoalescable(DefMI)) {
1588    // Some of the lanes copied from OtherVNI may be undef, making them undef
1589    // here too.
1590    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
1591    return CR_Erase;
1592  }
1593
1594  // This may not be a real conflict if DefMI simply kills Other and defines
1595  // VNI.
1596  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
1597    return CR_Keep;
1598
1599  // Handle the case where VNI and OtherVNI can be proven to be identical:
1600  //
1601  //   %other = COPY %ext
1602  //   %this  = COPY %ext <-- Erase this copy
1603  //
1604  if (DefMI->isFullCopy() && !CP.isPartial() &&
1605      stripCopies(VNI) == stripCopies(V.OtherVNI))
1606    return CR_Erase;
1607
1608  // If the lanes written by this instruction were all undef in OtherVNI, it is
1609  // still safe to join the live ranges. This can't be done with a simple value
1610  // mapping, though - OtherVNI will map to multiple values:
1611  //
1612  //   1 %dst:ssub0 = FOO                <-- OtherVNI
1613  //   2 %src = BAR                      <-- VNI
1614  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
1615  //   4 BAZ %dst<kill>
1616  //   5 QUUX %src<kill>
1617  //
1618  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
1619  // handles this complex value mapping.
1620  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
1621    return CR_Replace;
1622
1623  // If the other live range is killed by DefMI and the live ranges are still
1624  // overlapping, it must be because we're looking at an early clobber def:
1625  //
1626  //   %dst<def,early-clobber> = ASM %src<kill>
1627  //
1628  // In this case, it is illegal to merge the two live ranges since the early
1629  // clobber def would clobber %src before it was read.
1630  if (OtherLRQ.isKill()) {
1631    // This case where the def doesn't overlap the kill is handled above.
1632    assert(VNI->def.isEarlyClobber() &&
1633           "Only early clobber defs can overlap a kill");
1634    return CR_Impossible;
1635  }
1636
1637  // VNI is clobbering live lanes in OtherVNI, but there is still the
1638  // possibility that no instructions actually read the clobbered lanes.
1639  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
1640  // Otherwise Other.LI wouldn't be live here.
1641  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
1642    return CR_Impossible;
1643
1644  // We need to verify that no instructions are reading the clobbered lanes. To
1645  // save compile time, we'll only check that locally. Don't allow the tainted
1646  // value to escape the basic block.
1647  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1648  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
1649    return CR_Impossible;
1650
1651  // There are still some things that could go wrong besides clobbered lanes
1652  // being read, for example OtherVNI may be only partially redefined in MBB,
1653  // and some clobbered lanes could escape the block. Save this analysis for
1654  // resolveConflicts() when all values have been mapped. We need to know
1655  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
1656  // that now - the recursive analyzeValue() calls must go upwards in the
1657  // dominator tree.
1658  return CR_Unresolved;
1659}
1660
1661/// Compute the value assignment for ValNo in LI.
1662/// This may be called recursively by analyzeValue(), but never for a ValNo on
1663/// the stack.
1664void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
1665  Val &V = Vals[ValNo];
1666  if (V.isAnalyzed()) {
1667    // Recursion should always move up the dominator tree, so ValNo is not
1668    // supposed to reappear before it has been assigned.
1669    assert(Assignments[ValNo] != -1 && "Bad recursion?");
1670    return;
1671  }
1672  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
1673  case CR_Erase:
1674  case CR_Merge:
1675    // Merge this ValNo into OtherVNI.
1676    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
1677    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
1678    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
1679    DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
1680                 << LI.getValNumInfo(ValNo)->def << " into "
1681                 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
1682                 << V.OtherVNI->def << " --> @"
1683                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
1684    break;
1685  case CR_Replace:
1686  case CR_Unresolved:
1687    // The other value is going to be pruned if this join is successful.
1688    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
1689    Other.Vals[V.OtherVNI->id].Pruned = true;
1690    // Fall through.
1691  default:
1692    // This value number needs to go in the final joined live range.
1693    Assignments[ValNo] = NewVNInfo.size();
1694    NewVNInfo.push_back(LI.getValNumInfo(ValNo));
1695    break;
1696  }
1697}
1698
1699bool JoinVals::mapValues(JoinVals &Other) {
1700  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1701    computeAssignment(i, Other);
1702    if (Vals[i].Resolution == CR_Impossible) {
1703      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
1704                   << '@' << LI.getValNumInfo(i)->def << '\n');
1705      return false;
1706    }
1707  }
1708  return true;
1709}
1710
1711/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
1712/// the extent of the tainted lanes in the block.
1713///
1714/// Multiple values in Other.LI can be affected since partial redefinitions can
1715/// preserve previously tainted lanes.
1716///
1717///   1 %dst = VLOAD           <-- Define all lanes in %dst
1718///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1719///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1720///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1721///
1722/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1723/// entry to TaintedVals.
1724///
1725/// Returns false if the tainted lanes extend beyond the basic block.
1726bool JoinVals::
1727taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
1728            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
1729  VNInfo *VNI = LI.getValNumInfo(ValNo);
1730  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1731  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
1732
1733  // Scan Other.LI from VNI.def to MBBEnd.
1734  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
1735  assert(OtherI != Other.LI.end() && "No conflict?");
1736  do {
1737    // OtherI is pointing to a tainted value. Abort the join if the tainted
1738    // lanes escape the block.
1739    SlotIndex End = OtherI->end;
1740    if (End >= MBBEnd) {
1741      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
1742                   << OtherI->valno->id << '@' << OtherI->start << '\n');
1743      return false;
1744    }
1745    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
1746                 << OtherI->valno->id << '@' << OtherI->start
1747                 << " to " << End << '\n');
1748    // A dead def is not a problem.
1749    if (End.isDead())
1750      break;
1751    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
1752
1753    // Check for another def in the MBB.
1754    if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
1755      break;
1756
1757    // Lanes written by the new def are no longer tainted.
1758    const Val &OV = Other.Vals[OtherI->valno->id];
1759    TaintedLanes &= ~OV.WriteLanes;
1760    if (!OV.RedefVNI)
1761      break;
1762  } while (TaintedLanes);
1763  return true;
1764}
1765
1766/// Return true if MI uses any of the given Lanes from Reg.
1767/// This does not include partial redefinitions of Reg.
1768bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
1769                         unsigned Lanes) {
1770  if (MI->isDebugValue())
1771    return false;
1772  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
1773    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
1774      continue;
1775    if (!MO->readsReg())
1776      continue;
1777    if (Lanes & TRI->getSubRegIndexLaneMask(
1778                  TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
1779      return true;
1780  }
1781  return false;
1782}
1783
1784bool JoinVals::resolveConflicts(JoinVals &Other) {
1785  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1786    Val &V = Vals[i];
1787    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
1788    if (V.Resolution != CR_Unresolved)
1789      continue;
1790    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
1791                 << '@' << LI.getValNumInfo(i)->def << '\n');
1792    ++NumLaneConflicts;
1793    assert(V.OtherVNI && "Inconsistent conflict resolution.");
1794    VNInfo *VNI = LI.getValNumInfo(i);
1795    const Val &OtherV = Other.Vals[V.OtherVNI->id];
1796
1797    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
1798    // join, those lanes will be tainted with a wrong value. Get the extent of
1799    // the tainted lanes.
1800    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
1801    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
1802    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
1803      // Tainted lanes would extend beyond the basic block.
1804      return false;
1805
1806    assert(!TaintExtent.empty() && "There should be at least one conflict.");
1807
1808    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
1809    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1810    MachineBasicBlock::iterator MI = MBB->begin();
1811    if (!VNI->isPHIDef()) {
1812      MI = Indexes->getInstructionFromIndex(VNI->def);
1813      // No need to check the instruction defining VNI for reads.
1814      ++MI;
1815    }
1816    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
1817           "Interference ends on VNI->def. Should have been handled earlier");
1818    MachineInstr *LastMI =
1819      Indexes->getInstructionFromIndex(TaintExtent.front().first);
1820    assert(LastMI && "Range must end at a proper instruction");
1821    unsigned TaintNum = 0;
1822    for(;;) {
1823      assert(MI != MBB->end() && "Bad LastMI");
1824      if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
1825        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
1826        return false;
1827      }
1828      // LastMI is the last instruction to use the current value.
1829      if (&*MI == LastMI) {
1830        if (++TaintNum == TaintExtent.size())
1831          break;
1832        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
1833        assert(LastMI && "Range must end at a proper instruction");
1834        TaintedLanes = TaintExtent[TaintNum].second;
1835      }
1836      ++MI;
1837    }
1838
1839    // The tainted lanes are unused.
1840    V.Resolution = CR_Replace;
1841    ++NumLaneResolves;
1842  }
1843  return true;
1844}
1845
1846// Determine if ValNo is a copy of a value number in LI or Other.LI that will
1847// be pruned:
1848//
1849//   %dst = COPY %src
1850//   %src = COPY %dst  <-- This value to be pruned.
1851//   %dst = COPY %src  <-- This value is a copy of a pruned value.
1852//
1853bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
1854  Val &V = Vals[ValNo];
1855  if (V.Pruned || V.PrunedComputed)
1856    return V.Pruned;
1857
1858  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
1859    return V.Pruned;
1860
1861  // Follow copies up the dominator tree and check if any intermediate value
1862  // has been pruned.
1863  V.PrunedComputed = true;
1864  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
1865  return V.Pruned;
1866}
1867
1868void JoinVals::pruneValues(JoinVals &Other,
1869                           SmallVectorImpl<SlotIndex> &EndPoints) {
1870  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1871    SlotIndex Def = LI.getValNumInfo(i)->def;
1872    switch (Vals[i].Resolution) {
1873    case CR_Keep:
1874      break;
1875    case CR_Replace: {
1876      // This value takes precedence over the value in Other.LI.
1877      LIS->pruneValue(&Other.LI, Def, &EndPoints);
1878      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
1879      // instructions are only inserted to provide a live-out value for PHI
1880      // predecessors, so the instruction should simply go away once its value
1881      // has been replaced.
1882      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
1883      bool EraseImpDef = OtherV.ErasableImplicitDef &&
1884                         OtherV.Resolution == CR_Keep;
1885      if (!Def.isBlock()) {
1886        // Remove <def,read-undef> flags. This def is now a partial redef.
1887        // Also remove <def,dead> flags since the joined live range will
1888        // continue past this instruction.
1889        for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
1890             MO.isValid(); ++MO)
1891          if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
1892            MO->setIsUndef(EraseImpDef);
1893            MO->setIsDead(false);
1894          }
1895        // This value will reach instructions below, but we need to make sure
1896        // the live range also reaches the instruction at Def.
1897        if (!EraseImpDef)
1898          EndPoints.push_back(Def);
1899      }
1900      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
1901                   << ": " << Other.LI << '\n');
1902      break;
1903    }
1904    case CR_Erase:
1905    case CR_Merge:
1906      if (isPrunedValue(i, Other)) {
1907        // This value is ultimately a copy of a pruned value in LI or Other.LI.
1908        // We can no longer trust the value mapping computed by
1909        // computeAssignment(), the value that was originally copied could have
1910        // been replaced.
1911        LIS->pruneValue(&LI, Def, &EndPoints);
1912        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
1913                     << Def << ": " << LI << '\n');
1914      }
1915      break;
1916    case CR_Unresolved:
1917    case CR_Impossible:
1918      llvm_unreachable("Unresolved conflicts");
1919    }
1920  }
1921}
1922
1923void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1924                           SmallVectorImpl<unsigned> &ShrinkRegs) {
1925  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1926    // Get the def location before markUnused() below invalidates it.
1927    SlotIndex Def = LI.getValNumInfo(i)->def;
1928    switch (Vals[i].Resolution) {
1929    case CR_Keep:
1930      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
1931      // longer. The IMPLICIT_DEF instructions are only inserted by
1932      // PHIElimination to guarantee that all PHI predecessors have a value.
1933      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
1934        break;
1935      // Remove value number i from LI. Note that this VNInfo is still present
1936      // in NewVNInfo, so it will appear as an unused value number in the final
1937      // joined interval.
1938      LI.getValNumInfo(i)->markUnused();
1939      LI.removeValNo(LI.getValNumInfo(i));
1940      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
1941      // FALL THROUGH.
1942
1943    case CR_Erase: {
1944      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1945      assert(MI && "No instruction to erase");
1946      if (MI->isCopy()) {
1947        unsigned Reg = MI->getOperand(1).getReg();
1948        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
1949            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
1950          ShrinkRegs.push_back(Reg);
1951      }
1952      ErasedInstrs.insert(MI);
1953      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
1954      LIS->RemoveMachineInstrFromMaps(MI);
1955      MI->eraseFromParent();
1956      break;
1957    }
1958    default:
1959      break;
1960    }
1961  }
1962}
1963
1964bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
1965  SmallVector<VNInfo*, 16> NewVNInfo;
1966  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1967  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
1968  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
1969  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
1970
1971  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1972               << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
1973               << '\n');
1974
1975  // First compute NewVNInfo and the simple value mappings.
1976  // Detect impossible conflicts early.
1977  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
1978    return false;
1979
1980  // Some conflicts can only be resolved after all values have been mapped.
1981  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
1982    return false;
1983
1984  // All clear, the live ranges can be merged.
1985
1986  // The merging algorithm in LiveInterval::join() can't handle conflicting
1987  // value mappings, so we need to remove any live ranges that overlap a
1988  // CR_Replace resolution. Collect a set of end points that can be used to
1989  // restore the live range after joining.
1990  SmallVector<SlotIndex, 8> EndPoints;
1991  LHSVals.pruneValues(RHSVals, EndPoints);
1992  RHSVals.pruneValues(LHSVals, EndPoints);
1993
1994  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
1995  // registers to require trimming.
1996  SmallVector<unsigned, 8> ShrinkRegs;
1997  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1998  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1999  while (!ShrinkRegs.empty())
2000    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2001
2002  // Join RHS into LHS.
2003  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2004
2005  // Kill flags are going to be wrong if the live ranges were overlapping.
2006  // Eventually, we should simply clear all kill flags when computing live
2007  // ranges. They are reinserted after register allocation.
2008  MRI->clearKillFlags(LHS.reg);
2009  MRI->clearKillFlags(RHS.reg);
2010
2011  if (EndPoints.empty())
2012    return true;
2013
2014  // Recompute the parts of the live range we had to remove because of
2015  // CR_Replace conflicts.
2016  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2017               << " points: " << LHS << '\n');
2018  LIS->extendToIndices(LHS, EndPoints);
2019  return true;
2020}
2021
2022/// joinIntervals - Attempt to join these two intervals.  On failure, this
2023/// returns false.
2024bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2025  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2026}
2027
2028namespace {
2029// Information concerning MBB coalescing priority.
2030struct MBBPriorityInfo {
2031  MachineBasicBlock *MBB;
2032  unsigned Depth;
2033  bool IsSplit;
2034
2035  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2036    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2037};
2038}
2039
2040// C-style comparator that sorts first based on the loop depth of the basic
2041// block (the unsigned), and then on the MBB number.
2042//
2043// EnableGlobalCopies assumes that the primary sort key is loop depth.
2044static int compareMBBPriority(const MBBPriorityInfo *LHS,
2045                              const MBBPriorityInfo *RHS) {
2046  // Deeper loops first
2047  if (LHS->Depth != RHS->Depth)
2048    return LHS->Depth > RHS->Depth ? -1 : 1;
2049
2050  // Try to unsplit critical edges next.
2051  if (LHS->IsSplit != RHS->IsSplit)
2052    return LHS->IsSplit ? -1 : 1;
2053
2054  // Prefer blocks that are more connected in the CFG. This takes care of
2055  // the most difficult copies first while intervals are short.
2056  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2057  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2058  if (cl != cr)
2059    return cl > cr ? -1 : 1;
2060
2061  // As a last resort, sort by block number.
2062  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2063}
2064
2065/// \returns true if the given copy uses or defines a local live range.
2066static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2067  if (!Copy->isCopy())
2068    return false;
2069
2070  if (Copy->getOperand(1).isUndef())
2071    return false;
2072
2073  unsigned SrcReg = Copy->getOperand(1).getReg();
2074  unsigned DstReg = Copy->getOperand(0).getReg();
2075  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2076      || TargetRegisterInfo::isPhysicalRegister(DstReg))
2077    return false;
2078
2079  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2080    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2081}
2082
2083// Try joining WorkList copies starting from index From.
2084// Null out any successful joins.
2085bool RegisterCoalescer::
2086copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2087  bool Progress = false;
2088  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2089    if (!CurrList[i])
2090      continue;
2091    // Skip instruction pointers that have already been erased, for example by
2092    // dead code elimination.
2093    if (ErasedInstrs.erase(CurrList[i])) {
2094      CurrList[i] = 0;
2095      continue;
2096    }
2097    bool Again = false;
2098    bool Success = joinCopy(CurrList[i], Again);
2099    Progress |= Success;
2100    if (Success || !Again)
2101      CurrList[i] = 0;
2102  }
2103  return Progress;
2104}
2105
2106void
2107RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2108  DEBUG(dbgs() << MBB->getName() << ":\n");
2109
2110  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2111  // yet, it might invalidate the iterator.
2112  const unsigned PrevSize = WorkList.size();
2113  if (JoinGlobalCopies) {
2114    // Coalesce copies bottom-up to coalesce local defs before local uses. They
2115    // are not inherently easier to resolve, but slightly preferable until we
2116    // have local live range splitting. In particular this is required by
2117    // cmp+jmp macro fusion.
2118    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2119         MII != E; ++MII) {
2120      if (!MII->isCopyLike())
2121        continue;
2122      if (isLocalCopy(&(*MII), LIS))
2123        LocalWorkList.push_back(&(*MII));
2124      else
2125        WorkList.push_back(&(*MII));
2126    }
2127  }
2128  else {
2129     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2130          MII != E; ++MII)
2131       if (MII->isCopyLike())
2132         WorkList.push_back(MII);
2133  }
2134  // Try coalescing the collected copies immediately, and remove the nulls.
2135  // This prevents the WorkList from getting too large since most copies are
2136  // joinable on the first attempt.
2137  MutableArrayRef<MachineInstr*>
2138    CurrList(WorkList.begin() + PrevSize, WorkList.end());
2139  if (copyCoalesceWorkList(CurrList))
2140    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2141                               (MachineInstr*)0), WorkList.end());
2142}
2143
2144void RegisterCoalescer::coalesceLocals() {
2145  copyCoalesceWorkList(LocalWorkList);
2146  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2147    if (LocalWorkList[j])
2148      WorkList.push_back(LocalWorkList[j]);
2149  }
2150  LocalWorkList.clear();
2151}
2152
2153void RegisterCoalescer::joinAllIntervals() {
2154  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2155  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2156
2157  std::vector<MBBPriorityInfo> MBBs;
2158  MBBs.reserve(MF->size());
2159  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2160    MachineBasicBlock *MBB = I;
2161    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2162                                   JoinSplitEdges && isSplitEdge(MBB)));
2163  }
2164  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2165
2166  // Coalesce intervals in MBB priority order.
2167  unsigned CurrDepth = UINT_MAX;
2168  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2169    // Try coalescing the collected local copies for deeper loops.
2170    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2171      coalesceLocals();
2172      CurrDepth = MBBs[i].Depth;
2173    }
2174    copyCoalesceInMBB(MBBs[i].MBB);
2175  }
2176  coalesceLocals();
2177
2178  // Joining intervals can allow other intervals to be joined.  Iteratively join
2179  // until we make no progress.
2180  while (copyCoalesceWorkList(WorkList))
2181    /* empty */ ;
2182}
2183
2184void RegisterCoalescer::releaseMemory() {
2185  ErasedInstrs.clear();
2186  WorkList.clear();
2187  DeadDefs.clear();
2188  InflateRegs.clear();
2189}
2190
2191bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2192  MF = &fn;
2193  MRI = &fn.getRegInfo();
2194  TM = &fn.getTarget();
2195  TRI = TM->getRegisterInfo();
2196  TII = TM->getInstrInfo();
2197  LIS = &getAnalysis<LiveIntervals>();
2198  AA = &getAnalysis<AliasAnalysis>();
2199  Loops = &getAnalysis<MachineLoopInfo>();
2200
2201  const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
2202  if (EnableGlobalCopies == cl::BOU_UNSET)
2203    JoinGlobalCopies = ST.useMachineScheduler();
2204  else
2205    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2206
2207  // The MachineScheduler does not currently require JoinSplitEdges. This will
2208  // either be enabled unconditionally or replaced by a more general live range
2209  // splitting optimization.
2210  JoinSplitEdges = EnableJoinSplits;
2211
2212  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2213               << "********** Function: " << MF->getName() << '\n');
2214
2215  if (VerifyCoalescing)
2216    MF->verify(this, "Before register coalescing");
2217
2218  RegClassInfo.runOnMachineFunction(fn);
2219
2220  // Join (coalesce) intervals if requested.
2221  if (EnableJoining)
2222    joinAllIntervals();
2223
2224  // After deleting a lot of copies, register classes may be less constrained.
2225  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2226  // DPR inflation.
2227  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2228  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2229                    InflateRegs.end());
2230  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2231  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2232    unsigned Reg = InflateRegs[i];
2233    if (MRI->reg_nodbg_empty(Reg))
2234      continue;
2235    if (MRI->recomputeRegClass(Reg, *TM)) {
2236      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2237                   << MRI->getRegClass(Reg)->getName() << '\n');
2238      ++NumInflated;
2239    }
2240  }
2241
2242  DEBUG(dump());
2243  if (VerifyCoalescing)
2244    MF->verify(this, "After register coalescing");
2245  return true;
2246}
2247
2248/// print - Implement the dump method.
2249void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2250   LIS->print(O, m);
2251}
2252