ScheduleDAG.cpp revision 14bb992f8671302f8fad58ee842aa54e0b31edc1
1//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Support/Debug.h"
22#include <climits>
23using namespace llvm;
24
25ScheduleDAG::ScheduleDAG(MachineFunction &mf)
26  : DAG(0), BB(0), TM(mf.getTarget()),
27    TII(TM.getInstrInfo()),
28    TRI(TM.getRegisterInfo()),
29    TLI(TM.getTargetLowering()),
30    MF(mf), MRI(mf.getRegInfo()),
31    ConstPool(MF.getConstantPool()) {
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
36/// dump - dump the schedule.
37void ScheduleDAG::dumpSchedule() const {
38  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
39    if (SUnit *SU = Sequence[i])
40      SU->dump(this);
41    else
42      cerr << "**** NOOP ****\n";
43  }
44}
45
46
47/// Run - perform scheduling.
48///
49void ScheduleDAG::Run(SelectionDAG *dag, MachineBasicBlock *bb,
50                      MachineBasicBlock::iterator begin,
51                      MachineBasicBlock::iterator end) {
52  assert((!dag || begin == end) &&
53         "An instruction range was given for SelectionDAG scheduling!");
54
55  SUnits.clear();
56  Sequence.clear();
57  DAG = dag;
58  BB = bb;
59  Begin = begin;
60  End = end;
61
62  Schedule();
63
64  DOUT << "*** Final schedule ***\n";
65  DEBUG(dumpSchedule());
66  DOUT << "\n";
67}
68
69/// addPred - This adds the specified edge as a pred of the current node if
70/// not already.  It also adds the current node as a successor of the
71/// specified node.
72void SUnit::addPred(const SDep &D) {
73  // If this node already has this depenence, don't add a redundant one.
74  for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
75    if (Preds[i] == D)
76      return;
77  // Now add a corresponding succ to N.
78  SDep P = D;
79  P.setSUnit(this);
80  SUnit *N = D.getSUnit();
81  // Update the bookkeeping.
82  if (D.getKind() == SDep::Data) {
83    ++NumPreds;
84    ++N->NumSuccs;
85  }
86  if (!N->isScheduled)
87    ++NumPredsLeft;
88  if (!isScheduled)
89    ++N->NumSuccsLeft;
90  Preds.push_back(D);
91  N->Succs.push_back(P);
92  if (P.getLatency() != 0) {
93    this->setDepthDirty();
94    N->setHeightDirty();
95  }
96}
97
98/// removePred - This removes the specified edge as a pred of the current
99/// node if it exists.  It also removes the current node as a successor of
100/// the specified node.
101void SUnit::removePred(const SDep &D) {
102  // Find the matching predecessor.
103  for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
104       I != E; ++I)
105    if (*I == D) {
106      bool FoundSucc = false;
107      // Find the corresponding successor in N.
108      SDep P = D;
109      P.setSUnit(this);
110      SUnit *N = D.getSUnit();
111      for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
112             EE = N->Succs.end(); II != EE; ++II)
113        if (*II == P) {
114          FoundSucc = true;
115          N->Succs.erase(II);
116          break;
117        }
118      assert(FoundSucc && "Mismatching preds / succs lists!");
119      Preds.erase(I);
120      // Update the bookkeeping.
121      if (P.getKind() == SDep::Data) {
122        --NumPreds;
123        --N->NumSuccs;
124      }
125      if (!N->isScheduled)
126        --NumPredsLeft;
127      if (!isScheduled)
128        --N->NumSuccsLeft;
129      if (P.getLatency() != 0) {
130        this->setDepthDirty();
131        N->setHeightDirty();
132      }
133      return;
134    }
135}
136
137void SUnit::setDepthDirty() {
138  if (!isDepthCurrent) return;
139  SmallVector<SUnit*, 8> WorkList;
140  WorkList.push_back(this);
141  do {
142    SUnit *SU = WorkList.pop_back_val();
143    SU->isDepthCurrent = false;
144    for (SUnit::const_succ_iterator I = SU->Succs.begin(),
145         E = SU->Succs.end(); I != E; ++I) {
146      SUnit *SuccSU = I->getSUnit();
147      if (SuccSU->isDepthCurrent)
148        WorkList.push_back(SuccSU);
149    }
150  } while (!WorkList.empty());
151}
152
153void SUnit::setHeightDirty() {
154  if (!isHeightCurrent) return;
155  SmallVector<SUnit*, 8> WorkList;
156  WorkList.push_back(this);
157  do {
158    SUnit *SU = WorkList.pop_back_val();
159    SU->isHeightCurrent = false;
160    for (SUnit::const_pred_iterator I = SU->Preds.begin(),
161         E = SU->Preds.end(); I != E; ++I) {
162      SUnit *PredSU = I->getSUnit();
163      if (PredSU->isHeightCurrent)
164        WorkList.push_back(PredSU);
165    }
166  } while (!WorkList.empty());
167}
168
169/// setDepthToAtLeast - Update this node's successors to reflect the
170/// fact that this node's depth just increased.
171///
172void SUnit::setDepthToAtLeast(unsigned NewDepth) {
173  if (NewDepth <= getDepth())
174    return;
175  setDepthDirty();
176  Depth = NewDepth;
177  isDepthCurrent = true;
178}
179
180/// setHeightToAtLeast - Update this node's predecessors to reflect the
181/// fact that this node's height just increased.
182///
183void SUnit::setHeightToAtLeast(unsigned NewHeight) {
184  if (NewHeight <= getHeight())
185    return;
186  setHeightDirty();
187  Height = NewHeight;
188  isHeightCurrent = true;
189}
190
191/// ComputeDepth - Calculate the maximal path from the node to the exit.
192///
193void SUnit::ComputeDepth() {
194  SmallVector<SUnit*, 8> WorkList;
195  WorkList.push_back(this);
196  do {
197    SUnit *Cur = WorkList.back();
198
199    bool Done = true;
200    unsigned MaxPredDepth = 0;
201    for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
202         E = Cur->Preds.end(); I != E; ++I) {
203      SUnit *PredSU = I->getSUnit();
204      if (PredSU->isDepthCurrent)
205        MaxPredDepth = std::max(MaxPredDepth,
206                                PredSU->Depth + I->getLatency());
207      else {
208        Done = false;
209        WorkList.push_back(PredSU);
210      }
211    }
212
213    if (Done) {
214      WorkList.pop_back();
215      if (MaxPredDepth != Cur->Depth) {
216        Cur->setDepthDirty();
217        Cur->Depth = MaxPredDepth;
218      }
219      Cur->isDepthCurrent = true;
220    }
221  } while (!WorkList.empty());
222}
223
224/// ComputeHeight - Calculate the maximal path from the node to the entry.
225///
226void SUnit::ComputeHeight() {
227  SmallVector<SUnit*, 8> WorkList;
228  WorkList.push_back(this);
229  do {
230    SUnit *Cur = WorkList.back();
231
232    bool Done = true;
233    unsigned MaxSuccHeight = 0;
234    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
235         E = Cur->Succs.end(); I != E; ++I) {
236      SUnit *SuccSU = I->getSUnit();
237      if (SuccSU->isHeightCurrent)
238        MaxSuccHeight = std::max(MaxSuccHeight,
239                                 SuccSU->Height + I->getLatency());
240      else {
241        Done = false;
242        WorkList.push_back(SuccSU);
243      }
244    }
245
246    if (Done) {
247      WorkList.pop_back();
248      if (MaxSuccHeight != Cur->Height) {
249        Cur->setHeightDirty();
250        Cur->Height = MaxSuccHeight;
251      }
252      Cur->isHeightCurrent = true;
253    }
254  } while (!WorkList.empty());
255}
256
257/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
258/// a group of nodes flagged together.
259void SUnit::dump(const ScheduleDAG *G) const {
260  cerr << "SU(" << NodeNum << "): ";
261  G->dumpNode(this);
262}
263
264void SUnit::dumpAll(const ScheduleDAG *G) const {
265  dump(G);
266
267  cerr << "  # preds left       : " << NumPredsLeft << "\n";
268  cerr << "  # succs left       : " << NumSuccsLeft << "\n";
269  cerr << "  Latency            : " << Latency << "\n";
270  cerr << "  Depth              : " << Depth << "\n";
271  cerr << "  Height             : " << Height << "\n";
272
273  if (Preds.size() != 0) {
274    cerr << "  Predecessors:\n";
275    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
276         I != E; ++I) {
277      cerr << "   ";
278      switch (I->getKind()) {
279      case SDep::Data:        cerr << "val "; break;
280      case SDep::Anti:        cerr << "anti"; break;
281      case SDep::Output:      cerr << "out "; break;
282      case SDep::Order:       cerr << "ch  "; break;
283      }
284      cerr << "#";
285      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
286      if (I->isArtificial())
287        cerr << " *";
288      cerr << "\n";
289    }
290  }
291  if (Succs.size() != 0) {
292    cerr << "  Successors:\n";
293    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
294         I != E; ++I) {
295      cerr << "   ";
296      switch (I->getKind()) {
297      case SDep::Data:        cerr << "val "; break;
298      case SDep::Anti:        cerr << "anti"; break;
299      case SDep::Output:      cerr << "out "; break;
300      case SDep::Order:       cerr << "ch  "; break;
301      }
302      cerr << "#";
303      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
304      if (I->isArtificial())
305        cerr << " *";
306      cerr << "\n";
307    }
308  }
309  cerr << "\n";
310}
311
312#ifndef NDEBUG
313/// VerifySchedule - Verify that all SUnits were scheduled and that
314/// their state is consistent.
315///
316void ScheduleDAG::VerifySchedule(bool isBottomUp) {
317  bool AnyNotSched = false;
318  unsigned DeadNodes = 0;
319  unsigned Noops = 0;
320  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
321    if (!SUnits[i].isScheduled) {
322      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
323        ++DeadNodes;
324        continue;
325      }
326      if (!AnyNotSched)
327        cerr << "*** Scheduling failed! ***\n";
328      SUnits[i].dump(this);
329      cerr << "has not been scheduled!\n";
330      AnyNotSched = true;
331    }
332    if (SUnits[i].isScheduled &&
333        (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
334          unsigned(INT_MAX)) {
335      if (!AnyNotSched)
336        cerr << "*** Scheduling failed! ***\n";
337      SUnits[i].dump(this);
338      cerr << "has an unexpected "
339           << (isBottomUp ? "Height" : "Depth") << " value!\n";
340      AnyNotSched = true;
341    }
342    if (isBottomUp) {
343      if (SUnits[i].NumSuccsLeft != 0) {
344        if (!AnyNotSched)
345          cerr << "*** Scheduling failed! ***\n";
346        SUnits[i].dump(this);
347        cerr << "has successors left!\n";
348        AnyNotSched = true;
349      }
350    } else {
351      if (SUnits[i].NumPredsLeft != 0) {
352        if (!AnyNotSched)
353          cerr << "*** Scheduling failed! ***\n";
354        SUnits[i].dump(this);
355        cerr << "has predecessors left!\n";
356        AnyNotSched = true;
357      }
358    }
359  }
360  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
361    if (!Sequence[i])
362      ++Noops;
363  assert(!AnyNotSched);
364  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
365         "The number of nodes scheduled doesn't match the expected number!");
366}
367#endif
368
369/// InitDAGTopologicalSorting - create the initial topological
370/// ordering from the DAG to be scheduled.
371///
372/// The idea of the algorithm is taken from
373/// "Online algorithms for managing the topological order of
374/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
375/// This is the MNR algorithm, which was first introduced by
376/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
377/// "Maintaining a topological order under edge insertions".
378///
379/// Short description of the algorithm:
380///
381/// Topological ordering, ord, of a DAG maps each node to a topological
382/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
383///
384/// This means that if there is a path from the node X to the node Z,
385/// then ord(X) < ord(Z).
386///
387/// This property can be used to check for reachability of nodes:
388/// if Z is reachable from X, then an insertion of the edge Z->X would
389/// create a cycle.
390///
391/// The algorithm first computes a topological ordering for the DAG by
392/// initializing the Index2Node and Node2Index arrays and then tries to keep
393/// the ordering up-to-date after edge insertions by reordering the DAG.
394///
395/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
396/// the nodes reachable from Y, and then shifts them using Shift to lie
397/// immediately after X in Index2Node.
398void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
399  unsigned DAGSize = SUnits.size();
400  std::vector<SUnit*> WorkList;
401  WorkList.reserve(DAGSize);
402
403  Index2Node.resize(DAGSize);
404  Node2Index.resize(DAGSize);
405
406  // Initialize the data structures.
407  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
408    SUnit *SU = &SUnits[i];
409    int NodeNum = SU->NodeNum;
410    unsigned Degree = SU->Succs.size();
411    // Temporarily use the Node2Index array as scratch space for degree counts.
412    Node2Index[NodeNum] = Degree;
413
414    // Is it a node without dependencies?
415    if (Degree == 0) {
416      assert(SU->Succs.empty() && "SUnit should have no successors");
417      // Collect leaf nodes.
418      WorkList.push_back(SU);
419    }
420  }
421
422  int Id = DAGSize;
423  while (!WorkList.empty()) {
424    SUnit *SU = WorkList.back();
425    WorkList.pop_back();
426    Allocate(SU->NodeNum, --Id);
427    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
428         I != E; ++I) {
429      SUnit *SU = I->getSUnit();
430      if (!--Node2Index[SU->NodeNum])
431        // If all dependencies of the node are processed already,
432        // then the node can be computed now.
433        WorkList.push_back(SU);
434    }
435  }
436
437  Visited.resize(DAGSize);
438
439#ifndef NDEBUG
440  // Check correctness of the ordering
441  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
442    SUnit *SU = &SUnits[i];
443    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
444         I != E; ++I) {
445      assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
446      "Wrong topological sorting");
447    }
448  }
449#endif
450}
451
452/// AddPred - Updates the topological ordering to accomodate an edge
453/// to be added from SUnit X to SUnit Y.
454void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
455  int UpperBound, LowerBound;
456  LowerBound = Node2Index[Y->NodeNum];
457  UpperBound = Node2Index[X->NodeNum];
458  bool HasLoop = false;
459  // Is Ord(X) < Ord(Y) ?
460  if (LowerBound < UpperBound) {
461    // Update the topological order.
462    Visited.reset();
463    DFS(Y, UpperBound, HasLoop);
464    assert(!HasLoop && "Inserted edge creates a loop!");
465    // Recompute topological indexes.
466    Shift(Visited, LowerBound, UpperBound);
467  }
468}
469
470/// RemovePred - Updates the topological ordering to accomodate an
471/// an edge to be removed from the specified node N from the predecessors
472/// of the current node M.
473void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
474  // InitDAGTopologicalSorting();
475}
476
477/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
478/// all nodes affected by the edge insertion. These nodes will later get new
479/// topological indexes by means of the Shift method.
480void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
481                                     bool& HasLoop) {
482  std::vector<const SUnit*> WorkList;
483  WorkList.reserve(SUnits.size());
484
485  WorkList.push_back(SU);
486  do {
487    SU = WorkList.back();
488    WorkList.pop_back();
489    Visited.set(SU->NodeNum);
490    for (int I = SU->Succs.size()-1; I >= 0; --I) {
491      int s = SU->Succs[I].getSUnit()->NodeNum;
492      if (Node2Index[s] == UpperBound) {
493        HasLoop = true;
494        return;
495      }
496      // Visit successors if not already and in affected region.
497      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
498        WorkList.push_back(SU->Succs[I].getSUnit());
499      }
500    }
501  } while (!WorkList.empty());
502}
503
504/// Shift - Renumber the nodes so that the topological ordering is
505/// preserved.
506void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
507                                       int UpperBound) {
508  std::vector<int> L;
509  int shift = 0;
510  int i;
511
512  for (i = LowerBound; i <= UpperBound; ++i) {
513    // w is node at topological index i.
514    int w = Index2Node[i];
515    if (Visited.test(w)) {
516      // Unmark.
517      Visited.reset(w);
518      L.push_back(w);
519      shift = shift + 1;
520    } else {
521      Allocate(w, i - shift);
522    }
523  }
524
525  for (unsigned j = 0; j < L.size(); ++j) {
526    Allocate(L[j], i - shift);
527    i = i + 1;
528  }
529}
530
531
532/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
533/// create a cycle.
534bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
535  if (IsReachable(TargetSU, SU))
536    return true;
537  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
538       I != E; ++I)
539    if (I->isAssignedRegDep() &&
540        IsReachable(TargetSU, I->getSUnit()))
541      return true;
542  return false;
543}
544
545/// IsReachable - Checks if SU is reachable from TargetSU.
546bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
547                                             const SUnit *TargetSU) {
548  // If insertion of the edge SU->TargetSU would create a cycle
549  // then there is a path from TargetSU to SU.
550  int UpperBound, LowerBound;
551  LowerBound = Node2Index[TargetSU->NodeNum];
552  UpperBound = Node2Index[SU->NodeNum];
553  bool HasLoop = false;
554  // Is Ord(TargetSU) < Ord(SU) ?
555  if (LowerBound < UpperBound) {
556    Visited.reset();
557    // There may be a path from TargetSU to SU. Check for it.
558    DFS(TargetSU, UpperBound, HasLoop);
559  }
560  return HasLoop;
561}
562
563/// Allocate - assign the topological index to the node n.
564void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
565  Node2Index[n] = index;
566  Index2Node[index] = n;
567}
568
569ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
570                                                     std::vector<SUnit> &sunits)
571 : SUnits(sunits) {}
572
573ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
574