ScheduleDAG.cpp revision 47ac0f0c7c39289f5970688154e385be22b7f293
1//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Support/Debug.h"
22#include <climits>
23using namespace llvm;
24
25ScheduleDAG::ScheduleDAG(MachineFunction &mf)
26  : TM(mf.getTarget()),
27    TII(TM.getInstrInfo()),
28    TRI(TM.getRegisterInfo()),
29    TLI(TM.getTargetLowering()),
30    MF(mf), MRI(mf.getRegInfo()),
31    ConstPool(MF.getConstantPool()),
32    EntrySU(), ExitSU() {
33}
34
35ScheduleDAG::~ScheduleDAG() {}
36
37/// dump - dump the schedule.
38void ScheduleDAG::dumpSchedule() const {
39  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
40    if (SUnit *SU = Sequence[i])
41      SU->dump(this);
42    else
43      cerr << "**** NOOP ****\n";
44  }
45}
46
47
48/// Run - perform scheduling.
49///
50void ScheduleDAG::Run(MachineBasicBlock *bb,
51                      MachineBasicBlock::iterator insertPos) {
52  BB = bb;
53  InsertPos = insertPos;
54
55  SUnits.clear();
56  Sequence.clear();
57  EntrySU = SUnit();
58  ExitSU = SUnit();
59
60  Schedule();
61
62  DOUT << "*** Final schedule ***\n";
63  DEBUG(dumpSchedule());
64  DOUT << "\n";
65}
66
67/// addPred - This adds the specified edge as a pred of the current node if
68/// not already.  It also adds the current node as a successor of the
69/// specified node.
70void SUnit::addPred(const SDep &D) {
71  // If this node already has this depenence, don't add a redundant one.
72  for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end();
73       I != E; ++I)
74    if (*I == D)
75      return;
76  // Now add a corresponding succ to N.
77  SDep P = D;
78  P.setSUnit(this);
79  SUnit *N = D.getSUnit();
80  // Update the bookkeeping.
81  if (D.getKind() == SDep::Data) {
82    ++NumPreds;
83    ++N->NumSuccs;
84  }
85  if (!N->isScheduled)
86    ++NumPredsLeft;
87  if (!isScheduled)
88    ++N->NumSuccsLeft;
89  Preds.push_back(D);
90  N->Succs.push_back(P);
91  if (P.getLatency() != 0) {
92    this->setDepthDirty();
93    N->setHeightDirty();
94  }
95}
96
97/// removePred - This removes the specified edge as a pred of the current
98/// node if it exists.  It also removes the current node as a successor of
99/// the specified node.
100void SUnit::removePred(const SDep &D) {
101  // Find the matching predecessor.
102  for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
103       I != E; ++I)
104    if (*I == D) {
105      bool FoundSucc = false;
106      // Find the corresponding successor in N.
107      SDep P = D;
108      P.setSUnit(this);
109      SUnit *N = D.getSUnit();
110      for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
111             EE = N->Succs.end(); II != EE; ++II)
112        if (*II == P) {
113          FoundSucc = true;
114          N->Succs.erase(II);
115          break;
116        }
117      assert(FoundSucc && "Mismatching preds / succs lists!");
118      Preds.erase(I);
119      // Update the bookkeeping.
120      if (P.getKind() == SDep::Data) {
121        --NumPreds;
122        --N->NumSuccs;
123      }
124      if (!N->isScheduled)
125        --NumPredsLeft;
126      if (!isScheduled)
127        --N->NumSuccsLeft;
128      if (P.getLatency() != 0) {
129        this->setDepthDirty();
130        N->setHeightDirty();
131      }
132      return;
133    }
134}
135
136void SUnit::setDepthDirty() {
137  if (!isDepthCurrent) return;
138  SmallVector<SUnit*, 8> WorkList;
139  WorkList.push_back(this);
140  do {
141    SUnit *SU = WorkList.pop_back_val();
142    SU->isDepthCurrent = false;
143    for (SUnit::const_succ_iterator I = SU->Succs.begin(),
144         E = SU->Succs.end(); I != E; ++I) {
145      SUnit *SuccSU = I->getSUnit();
146      if (SuccSU->isDepthCurrent)
147        WorkList.push_back(SuccSU);
148    }
149  } while (!WorkList.empty());
150}
151
152void SUnit::setHeightDirty() {
153  if (!isHeightCurrent) return;
154  SmallVector<SUnit*, 8> WorkList;
155  WorkList.push_back(this);
156  do {
157    SUnit *SU = WorkList.pop_back_val();
158    SU->isHeightCurrent = false;
159    for (SUnit::const_pred_iterator I = SU->Preds.begin(),
160         E = SU->Preds.end(); I != E; ++I) {
161      SUnit *PredSU = I->getSUnit();
162      if (PredSU->isHeightCurrent)
163        WorkList.push_back(PredSU);
164    }
165  } while (!WorkList.empty());
166}
167
168/// setDepthToAtLeast - Update this node's successors to reflect the
169/// fact that this node's depth just increased.
170///
171void SUnit::setDepthToAtLeast(unsigned NewDepth) {
172  if (NewDepth <= getDepth())
173    return;
174  setDepthDirty();
175  Depth = NewDepth;
176  isDepthCurrent = true;
177}
178
179/// setHeightToAtLeast - Update this node's predecessors to reflect the
180/// fact that this node's height just increased.
181///
182void SUnit::setHeightToAtLeast(unsigned NewHeight) {
183  if (NewHeight <= getHeight())
184    return;
185  setHeightDirty();
186  Height = NewHeight;
187  isHeightCurrent = true;
188}
189
190/// ComputeDepth - Calculate the maximal path from the node to the exit.
191///
192void SUnit::ComputeDepth() {
193  SmallVector<SUnit*, 8> WorkList;
194  WorkList.push_back(this);
195  do {
196    SUnit *Cur = WorkList.back();
197
198    bool Done = true;
199    unsigned MaxPredDepth = 0;
200    for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
201         E = Cur->Preds.end(); I != E; ++I) {
202      SUnit *PredSU = I->getSUnit();
203      if (PredSU->isDepthCurrent)
204        MaxPredDepth = std::max(MaxPredDepth,
205                                PredSU->Depth + I->getLatency());
206      else {
207        Done = false;
208        WorkList.push_back(PredSU);
209      }
210    }
211
212    if (Done) {
213      WorkList.pop_back();
214      if (MaxPredDepth != Cur->Depth) {
215        Cur->setDepthDirty();
216        Cur->Depth = MaxPredDepth;
217      }
218      Cur->isDepthCurrent = true;
219    }
220  } while (!WorkList.empty());
221}
222
223/// ComputeHeight - Calculate the maximal path from the node to the entry.
224///
225void SUnit::ComputeHeight() {
226  SmallVector<SUnit*, 8> WorkList;
227  WorkList.push_back(this);
228  do {
229    SUnit *Cur = WorkList.back();
230
231    bool Done = true;
232    unsigned MaxSuccHeight = 0;
233    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
234         E = Cur->Succs.end(); I != E; ++I) {
235      SUnit *SuccSU = I->getSUnit();
236      if (SuccSU->isHeightCurrent)
237        MaxSuccHeight = std::max(MaxSuccHeight,
238                                 SuccSU->Height + I->getLatency());
239      else {
240        Done = false;
241        WorkList.push_back(SuccSU);
242      }
243    }
244
245    if (Done) {
246      WorkList.pop_back();
247      if (MaxSuccHeight != Cur->Height) {
248        Cur->setHeightDirty();
249        Cur->Height = MaxSuccHeight;
250      }
251      Cur->isHeightCurrent = true;
252    }
253  } while (!WorkList.empty());
254}
255
256/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
257/// a group of nodes flagged together.
258void SUnit::dump(const ScheduleDAG *G) const {
259  cerr << "SU(" << NodeNum << "): ";
260  G->dumpNode(this);
261}
262
263void SUnit::dumpAll(const ScheduleDAG *G) const {
264  dump(G);
265
266  cerr << "  # preds left       : " << NumPredsLeft << "\n";
267  cerr << "  # succs left       : " << NumSuccsLeft << "\n";
268  cerr << "  Latency            : " << Latency << "\n";
269  cerr << "  Depth              : " << Depth << "\n";
270  cerr << "  Height             : " << Height << "\n";
271
272  if (Preds.size() != 0) {
273    cerr << "  Predecessors:\n";
274    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
275         I != E; ++I) {
276      cerr << "   ";
277      switch (I->getKind()) {
278      case SDep::Data:        cerr << "val "; break;
279      case SDep::Anti:        cerr << "anti"; break;
280      case SDep::Output:      cerr << "out "; break;
281      case SDep::Order:       cerr << "ch  "; break;
282      }
283      cerr << "#";
284      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
285      if (I->isArtificial())
286        cerr << " *";
287      cerr << "\n";
288    }
289  }
290  if (Succs.size() != 0) {
291    cerr << "  Successors:\n";
292    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
293         I != E; ++I) {
294      cerr << "   ";
295      switch (I->getKind()) {
296      case SDep::Data:        cerr << "val "; break;
297      case SDep::Anti:        cerr << "anti"; break;
298      case SDep::Output:      cerr << "out "; break;
299      case SDep::Order:       cerr << "ch  "; break;
300      }
301      cerr << "#";
302      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
303      if (I->isArtificial())
304        cerr << " *";
305      cerr << "\n";
306    }
307  }
308  cerr << "\n";
309}
310
311#ifndef NDEBUG
312/// VerifySchedule - Verify that all SUnits were scheduled and that
313/// their state is consistent.
314///
315void ScheduleDAG::VerifySchedule(bool isBottomUp) {
316  bool AnyNotSched = false;
317  unsigned DeadNodes = 0;
318  unsigned Noops = 0;
319  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
320    if (!SUnits[i].isScheduled) {
321      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
322        ++DeadNodes;
323        continue;
324      }
325      if (!AnyNotSched)
326        cerr << "*** Scheduling failed! ***\n";
327      SUnits[i].dump(this);
328      cerr << "has not been scheduled!\n";
329      AnyNotSched = true;
330    }
331    if (SUnits[i].isScheduled &&
332        (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
333          unsigned(INT_MAX)) {
334      if (!AnyNotSched)
335        cerr << "*** Scheduling failed! ***\n";
336      SUnits[i].dump(this);
337      cerr << "has an unexpected "
338           << (isBottomUp ? "Height" : "Depth") << " value!\n";
339      AnyNotSched = true;
340    }
341    if (isBottomUp) {
342      if (SUnits[i].NumSuccsLeft != 0) {
343        if (!AnyNotSched)
344          cerr << "*** Scheduling failed! ***\n";
345        SUnits[i].dump(this);
346        cerr << "has successors left!\n";
347        AnyNotSched = true;
348      }
349    } else {
350      if (SUnits[i].NumPredsLeft != 0) {
351        if (!AnyNotSched)
352          cerr << "*** Scheduling failed! ***\n";
353        SUnits[i].dump(this);
354        cerr << "has predecessors left!\n";
355        AnyNotSched = true;
356      }
357    }
358  }
359  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
360    if (!Sequence[i])
361      ++Noops;
362  assert(!AnyNotSched);
363  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
364         "The number of nodes scheduled doesn't match the expected number!");
365}
366#endif
367
368/// InitDAGTopologicalSorting - create the initial topological
369/// ordering from the DAG to be scheduled.
370///
371/// The idea of the algorithm is taken from
372/// "Online algorithms for managing the topological order of
373/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
374/// This is the MNR algorithm, which was first introduced by
375/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
376/// "Maintaining a topological order under edge insertions".
377///
378/// Short description of the algorithm:
379///
380/// Topological ordering, ord, of a DAG maps each node to a topological
381/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
382///
383/// This means that if there is a path from the node X to the node Z,
384/// then ord(X) < ord(Z).
385///
386/// This property can be used to check for reachability of nodes:
387/// if Z is reachable from X, then an insertion of the edge Z->X would
388/// create a cycle.
389///
390/// The algorithm first computes a topological ordering for the DAG by
391/// initializing the Index2Node and Node2Index arrays and then tries to keep
392/// the ordering up-to-date after edge insertions by reordering the DAG.
393///
394/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
395/// the nodes reachable from Y, and then shifts them using Shift to lie
396/// immediately after X in Index2Node.
397void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
398  unsigned DAGSize = SUnits.size();
399  std::vector<SUnit*> WorkList;
400  WorkList.reserve(DAGSize);
401
402  Index2Node.resize(DAGSize);
403  Node2Index.resize(DAGSize);
404
405  // Initialize the data structures.
406  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
407    SUnit *SU = &SUnits[i];
408    int NodeNum = SU->NodeNum;
409    unsigned Degree = SU->Succs.size();
410    // Temporarily use the Node2Index array as scratch space for degree counts.
411    Node2Index[NodeNum] = Degree;
412
413    // Is it a node without dependencies?
414    if (Degree == 0) {
415      assert(SU->Succs.empty() && "SUnit should have no successors");
416      // Collect leaf nodes.
417      WorkList.push_back(SU);
418    }
419  }
420
421  int Id = DAGSize;
422  while (!WorkList.empty()) {
423    SUnit *SU = WorkList.back();
424    WorkList.pop_back();
425    Allocate(SU->NodeNum, --Id);
426    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
427         I != E; ++I) {
428      SUnit *SU = I->getSUnit();
429      if (!--Node2Index[SU->NodeNum])
430        // If all dependencies of the node are processed already,
431        // then the node can be computed now.
432        WorkList.push_back(SU);
433    }
434  }
435
436  Visited.resize(DAGSize);
437
438#ifndef NDEBUG
439  // Check correctness of the ordering
440  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
441    SUnit *SU = &SUnits[i];
442    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
443         I != E; ++I) {
444      assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
445      "Wrong topological sorting");
446    }
447  }
448#endif
449}
450
451/// AddPred - Updates the topological ordering to accomodate an edge
452/// to be added from SUnit X to SUnit Y.
453void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
454  int UpperBound, LowerBound;
455  LowerBound = Node2Index[Y->NodeNum];
456  UpperBound = Node2Index[X->NodeNum];
457  bool HasLoop = false;
458  // Is Ord(X) < Ord(Y) ?
459  if (LowerBound < UpperBound) {
460    // Update the topological order.
461    Visited.reset();
462    DFS(Y, UpperBound, HasLoop);
463    assert(!HasLoop && "Inserted edge creates a loop!");
464    // Recompute topological indexes.
465    Shift(Visited, LowerBound, UpperBound);
466  }
467}
468
469/// RemovePred - Updates the topological ordering to accomodate an
470/// an edge to be removed from the specified node N from the predecessors
471/// of the current node M.
472void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
473  // InitDAGTopologicalSorting();
474}
475
476/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
477/// all nodes affected by the edge insertion. These nodes will later get new
478/// topological indexes by means of the Shift method.
479void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
480                                     bool& HasLoop) {
481  std::vector<const SUnit*> WorkList;
482  WorkList.reserve(SUnits.size());
483
484  WorkList.push_back(SU);
485  do {
486    SU = WorkList.back();
487    WorkList.pop_back();
488    Visited.set(SU->NodeNum);
489    for (int I = SU->Succs.size()-1; I >= 0; --I) {
490      int s = SU->Succs[I].getSUnit()->NodeNum;
491      if (Node2Index[s] == UpperBound) {
492        HasLoop = true;
493        return;
494      }
495      // Visit successors if not already and in affected region.
496      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
497        WorkList.push_back(SU->Succs[I].getSUnit());
498      }
499    }
500  } while (!WorkList.empty());
501}
502
503/// Shift - Renumber the nodes so that the topological ordering is
504/// preserved.
505void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
506                                       int UpperBound) {
507  std::vector<int> L;
508  int shift = 0;
509  int i;
510
511  for (i = LowerBound; i <= UpperBound; ++i) {
512    // w is node at topological index i.
513    int w = Index2Node[i];
514    if (Visited.test(w)) {
515      // Unmark.
516      Visited.reset(w);
517      L.push_back(w);
518      shift = shift + 1;
519    } else {
520      Allocate(w, i - shift);
521    }
522  }
523
524  for (unsigned j = 0; j < L.size(); ++j) {
525    Allocate(L[j], i - shift);
526    i = i + 1;
527  }
528}
529
530
531/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
532/// create a cycle.
533bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
534  if (IsReachable(TargetSU, SU))
535    return true;
536  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
537       I != E; ++I)
538    if (I->isAssignedRegDep() &&
539        IsReachable(TargetSU, I->getSUnit()))
540      return true;
541  return false;
542}
543
544/// IsReachable - Checks if SU is reachable from TargetSU.
545bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
546                                             const SUnit *TargetSU) {
547  // If insertion of the edge SU->TargetSU would create a cycle
548  // then there is a path from TargetSU to SU.
549  int UpperBound, LowerBound;
550  LowerBound = Node2Index[TargetSU->NodeNum];
551  UpperBound = Node2Index[SU->NodeNum];
552  bool HasLoop = false;
553  // Is Ord(TargetSU) < Ord(SU) ?
554  if (LowerBound < UpperBound) {
555    Visited.reset();
556    // There may be a path from TargetSU to SU. Check for it.
557    DFS(TargetSU, UpperBound, HasLoop);
558  }
559  return HasLoop;
560}
561
562/// Allocate - assign the topological index to the node n.
563void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
564  Node2Index[n] = index;
565  Index2Node[index] = n;
566}
567
568ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
569                                                     std::vector<SUnit> &sunits)
570 : SUnits(sunits) {}
571
572ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
573