ScheduleDAG.cpp revision 5cffa6fe271351a8fd80e7767b5d61a999acfa9b
1//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Support/Debug.h"
22#include <climits>
23using namespace llvm;
24
25ScheduleDAG::ScheduleDAG(MachineFunction &mf)
26  : DAG(0), BB(0), TM(mf.getTarget()),
27    TII(TM.getInstrInfo()),
28    TRI(TM.getRegisterInfo()),
29    TLI(TM.getTargetLowering()),
30    MF(mf), MRI(mf.getRegInfo()),
31    ConstPool(MF.getConstantPool()),
32    EntrySU(), ExitSU() {
33}
34
35ScheduleDAG::~ScheduleDAG() {}
36
37/// dump - dump the schedule.
38void ScheduleDAG::dumpSchedule() const {
39  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
40    if (SUnit *SU = Sequence[i])
41      SU->dump(this);
42    else
43      cerr << "**** NOOP ****\n";
44  }
45}
46
47
48/// Run - perform scheduling.
49///
50void ScheduleDAG::Run(SelectionDAG *dag, MachineBasicBlock *bb,
51                      MachineBasicBlock::iterator begin,
52                      MachineBasicBlock::iterator end) {
53  assert((!dag || begin == end) &&
54         "An instruction range was given for SelectionDAG scheduling!");
55
56  SUnits.clear();
57  Sequence.clear();
58  DAG = dag;
59  BB = bb;
60  Begin = begin;
61  End = end;
62  EntrySU = SUnit();
63  ExitSU = SUnit();
64
65  Schedule();
66
67  DOUT << "*** Final schedule ***\n";
68  DEBUG(dumpSchedule());
69  DOUT << "\n";
70}
71
72/// addPred - This adds the specified edge as a pred of the current node if
73/// not already.  It also adds the current node as a successor of the
74/// specified node.
75void SUnit::addPred(const SDep &D) {
76  // If this node already has this depenence, don't add a redundant one.
77  for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end();
78       I != E; ++I)
79    if (*I == D)
80      return;
81  // Now add a corresponding succ to N.
82  SDep P = D;
83  P.setSUnit(this);
84  SUnit *N = D.getSUnit();
85  // Update the bookkeeping.
86  if (D.getKind() == SDep::Data) {
87    ++NumPreds;
88    ++N->NumSuccs;
89  }
90  if (!N->isScheduled)
91    ++NumPredsLeft;
92  if (!isScheduled)
93    ++N->NumSuccsLeft;
94  Preds.push_back(D);
95  N->Succs.push_back(P);
96  if (P.getLatency() != 0) {
97    this->setDepthDirty();
98    N->setHeightDirty();
99  }
100}
101
102/// removePred - This removes the specified edge as a pred of the current
103/// node if it exists.  It also removes the current node as a successor of
104/// the specified node.
105void SUnit::removePred(const SDep &D) {
106  // Find the matching predecessor.
107  for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
108       I != E; ++I)
109    if (*I == D) {
110      bool FoundSucc = false;
111      // Find the corresponding successor in N.
112      SDep P = D;
113      P.setSUnit(this);
114      SUnit *N = D.getSUnit();
115      for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
116             EE = N->Succs.end(); II != EE; ++II)
117        if (*II == P) {
118          FoundSucc = true;
119          N->Succs.erase(II);
120          break;
121        }
122      assert(FoundSucc && "Mismatching preds / succs lists!");
123      Preds.erase(I);
124      // Update the bookkeeping.
125      if (P.getKind() == SDep::Data) {
126        --NumPreds;
127        --N->NumSuccs;
128      }
129      if (!N->isScheduled)
130        --NumPredsLeft;
131      if (!isScheduled)
132        --N->NumSuccsLeft;
133      if (P.getLatency() != 0) {
134        this->setDepthDirty();
135        N->setHeightDirty();
136      }
137      return;
138    }
139}
140
141void SUnit::setDepthDirty() {
142  if (!isDepthCurrent) return;
143  SmallVector<SUnit*, 8> WorkList;
144  WorkList.push_back(this);
145  do {
146    SUnit *SU = WorkList.pop_back_val();
147    SU->isDepthCurrent = false;
148    for (SUnit::const_succ_iterator I = SU->Succs.begin(),
149         E = SU->Succs.end(); I != E; ++I) {
150      SUnit *SuccSU = I->getSUnit();
151      if (SuccSU->isDepthCurrent)
152        WorkList.push_back(SuccSU);
153    }
154  } while (!WorkList.empty());
155}
156
157void SUnit::setHeightDirty() {
158  if (!isHeightCurrent) return;
159  SmallVector<SUnit*, 8> WorkList;
160  WorkList.push_back(this);
161  do {
162    SUnit *SU = WorkList.pop_back_val();
163    SU->isHeightCurrent = false;
164    for (SUnit::const_pred_iterator I = SU->Preds.begin(),
165         E = SU->Preds.end(); I != E; ++I) {
166      SUnit *PredSU = I->getSUnit();
167      if (PredSU->isHeightCurrent)
168        WorkList.push_back(PredSU);
169    }
170  } while (!WorkList.empty());
171}
172
173/// setDepthToAtLeast - Update this node's successors to reflect the
174/// fact that this node's depth just increased.
175///
176void SUnit::setDepthToAtLeast(unsigned NewDepth) {
177  if (NewDepth <= getDepth())
178    return;
179  setDepthDirty();
180  Depth = NewDepth;
181  isDepthCurrent = true;
182}
183
184/// setHeightToAtLeast - Update this node's predecessors to reflect the
185/// fact that this node's height just increased.
186///
187void SUnit::setHeightToAtLeast(unsigned NewHeight) {
188  if (NewHeight <= getHeight())
189    return;
190  setHeightDirty();
191  Height = NewHeight;
192  isHeightCurrent = true;
193}
194
195/// ComputeDepth - Calculate the maximal path from the node to the exit.
196///
197void SUnit::ComputeDepth() {
198  SmallVector<SUnit*, 8> WorkList;
199  WorkList.push_back(this);
200  do {
201    SUnit *Cur = WorkList.back();
202
203    bool Done = true;
204    unsigned MaxPredDepth = 0;
205    for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
206         E = Cur->Preds.end(); I != E; ++I) {
207      SUnit *PredSU = I->getSUnit();
208      if (PredSU->isDepthCurrent)
209        MaxPredDepth = std::max(MaxPredDepth,
210                                PredSU->Depth + I->getLatency());
211      else {
212        Done = false;
213        WorkList.push_back(PredSU);
214      }
215    }
216
217    if (Done) {
218      WorkList.pop_back();
219      if (MaxPredDepth != Cur->Depth) {
220        Cur->setDepthDirty();
221        Cur->Depth = MaxPredDepth;
222      }
223      Cur->isDepthCurrent = true;
224    }
225  } while (!WorkList.empty());
226}
227
228/// ComputeHeight - Calculate the maximal path from the node to the entry.
229///
230void SUnit::ComputeHeight() {
231  SmallVector<SUnit*, 8> WorkList;
232  WorkList.push_back(this);
233  do {
234    SUnit *Cur = WorkList.back();
235
236    bool Done = true;
237    unsigned MaxSuccHeight = 0;
238    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
239         E = Cur->Succs.end(); I != E; ++I) {
240      SUnit *SuccSU = I->getSUnit();
241      if (SuccSU->isHeightCurrent)
242        MaxSuccHeight = std::max(MaxSuccHeight,
243                                 SuccSU->Height + I->getLatency());
244      else {
245        Done = false;
246        WorkList.push_back(SuccSU);
247      }
248    }
249
250    if (Done) {
251      WorkList.pop_back();
252      if (MaxSuccHeight != Cur->Height) {
253        Cur->setHeightDirty();
254        Cur->Height = MaxSuccHeight;
255      }
256      Cur->isHeightCurrent = true;
257    }
258  } while (!WorkList.empty());
259}
260
261/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
262/// a group of nodes flagged together.
263void SUnit::dump(const ScheduleDAG *G) const {
264  cerr << "SU(" << NodeNum << "): ";
265  G->dumpNode(this);
266}
267
268void SUnit::dumpAll(const ScheduleDAG *G) const {
269  dump(G);
270
271  cerr << "  # preds left       : " << NumPredsLeft << "\n";
272  cerr << "  # succs left       : " << NumSuccsLeft << "\n";
273  cerr << "  Latency            : " << Latency << "\n";
274  cerr << "  Depth              : " << Depth << "\n";
275  cerr << "  Height             : " << Height << "\n";
276
277  if (Preds.size() != 0) {
278    cerr << "  Predecessors:\n";
279    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
280         I != E; ++I) {
281      cerr << "   ";
282      switch (I->getKind()) {
283      case SDep::Data:        cerr << "val "; break;
284      case SDep::Anti:        cerr << "anti"; break;
285      case SDep::Output:      cerr << "out "; break;
286      case SDep::Order:       cerr << "ch  "; break;
287      }
288      cerr << "#";
289      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
290      if (I->isArtificial())
291        cerr << " *";
292      cerr << "\n";
293    }
294  }
295  if (Succs.size() != 0) {
296    cerr << "  Successors:\n";
297    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
298         I != E; ++I) {
299      cerr << "   ";
300      switch (I->getKind()) {
301      case SDep::Data:        cerr << "val "; break;
302      case SDep::Anti:        cerr << "anti"; break;
303      case SDep::Output:      cerr << "out "; break;
304      case SDep::Order:       cerr << "ch  "; break;
305      }
306      cerr << "#";
307      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
308      if (I->isArtificial())
309        cerr << " *";
310      cerr << "\n";
311    }
312  }
313  cerr << "\n";
314}
315
316#ifndef NDEBUG
317/// VerifySchedule - Verify that all SUnits were scheduled and that
318/// their state is consistent.
319///
320void ScheduleDAG::VerifySchedule(bool isBottomUp) {
321  bool AnyNotSched = false;
322  unsigned DeadNodes = 0;
323  unsigned Noops = 0;
324  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
325    if (!SUnits[i].isScheduled) {
326      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
327        ++DeadNodes;
328        continue;
329      }
330      if (!AnyNotSched)
331        cerr << "*** Scheduling failed! ***\n";
332      SUnits[i].dump(this);
333      cerr << "has not been scheduled!\n";
334      AnyNotSched = true;
335    }
336    if (SUnits[i].isScheduled &&
337        (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
338          unsigned(INT_MAX)) {
339      if (!AnyNotSched)
340        cerr << "*** Scheduling failed! ***\n";
341      SUnits[i].dump(this);
342      cerr << "has an unexpected "
343           << (isBottomUp ? "Height" : "Depth") << " value!\n";
344      AnyNotSched = true;
345    }
346    if (isBottomUp) {
347      if (SUnits[i].NumSuccsLeft != 0) {
348        if (!AnyNotSched)
349          cerr << "*** Scheduling failed! ***\n";
350        SUnits[i].dump(this);
351        cerr << "has successors left!\n";
352        AnyNotSched = true;
353      }
354    } else {
355      if (SUnits[i].NumPredsLeft != 0) {
356        if (!AnyNotSched)
357          cerr << "*** Scheduling failed! ***\n";
358        SUnits[i].dump(this);
359        cerr << "has predecessors left!\n";
360        AnyNotSched = true;
361      }
362    }
363  }
364  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
365    if (!Sequence[i])
366      ++Noops;
367  assert(!AnyNotSched);
368  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
369         "The number of nodes scheduled doesn't match the expected number!");
370}
371#endif
372
373/// InitDAGTopologicalSorting - create the initial topological
374/// ordering from the DAG to be scheduled.
375///
376/// The idea of the algorithm is taken from
377/// "Online algorithms for managing the topological order of
378/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
379/// This is the MNR algorithm, which was first introduced by
380/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
381/// "Maintaining a topological order under edge insertions".
382///
383/// Short description of the algorithm:
384///
385/// Topological ordering, ord, of a DAG maps each node to a topological
386/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
387///
388/// This means that if there is a path from the node X to the node Z,
389/// then ord(X) < ord(Z).
390///
391/// This property can be used to check for reachability of nodes:
392/// if Z is reachable from X, then an insertion of the edge Z->X would
393/// create a cycle.
394///
395/// The algorithm first computes a topological ordering for the DAG by
396/// initializing the Index2Node and Node2Index arrays and then tries to keep
397/// the ordering up-to-date after edge insertions by reordering the DAG.
398///
399/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
400/// the nodes reachable from Y, and then shifts them using Shift to lie
401/// immediately after X in Index2Node.
402void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
403  unsigned DAGSize = SUnits.size();
404  std::vector<SUnit*> WorkList;
405  WorkList.reserve(DAGSize);
406
407  Index2Node.resize(DAGSize);
408  Node2Index.resize(DAGSize);
409
410  // Initialize the data structures.
411  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
412    SUnit *SU = &SUnits[i];
413    int NodeNum = SU->NodeNum;
414    unsigned Degree = SU->Succs.size();
415    // Temporarily use the Node2Index array as scratch space for degree counts.
416    Node2Index[NodeNum] = Degree;
417
418    // Is it a node without dependencies?
419    if (Degree == 0) {
420      assert(SU->Succs.empty() && "SUnit should have no successors");
421      // Collect leaf nodes.
422      WorkList.push_back(SU);
423    }
424  }
425
426  int Id = DAGSize;
427  while (!WorkList.empty()) {
428    SUnit *SU = WorkList.back();
429    WorkList.pop_back();
430    Allocate(SU->NodeNum, --Id);
431    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
432         I != E; ++I) {
433      SUnit *SU = I->getSUnit();
434      if (!--Node2Index[SU->NodeNum])
435        // If all dependencies of the node are processed already,
436        // then the node can be computed now.
437        WorkList.push_back(SU);
438    }
439  }
440
441  Visited.resize(DAGSize);
442
443#ifndef NDEBUG
444  // Check correctness of the ordering
445  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
446    SUnit *SU = &SUnits[i];
447    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
448         I != E; ++I) {
449      assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
450      "Wrong topological sorting");
451    }
452  }
453#endif
454}
455
456/// AddPred - Updates the topological ordering to accomodate an edge
457/// to be added from SUnit X to SUnit Y.
458void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
459  int UpperBound, LowerBound;
460  LowerBound = Node2Index[Y->NodeNum];
461  UpperBound = Node2Index[X->NodeNum];
462  bool HasLoop = false;
463  // Is Ord(X) < Ord(Y) ?
464  if (LowerBound < UpperBound) {
465    // Update the topological order.
466    Visited.reset();
467    DFS(Y, UpperBound, HasLoop);
468    assert(!HasLoop && "Inserted edge creates a loop!");
469    // Recompute topological indexes.
470    Shift(Visited, LowerBound, UpperBound);
471  }
472}
473
474/// RemovePred - Updates the topological ordering to accomodate an
475/// an edge to be removed from the specified node N from the predecessors
476/// of the current node M.
477void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
478  // InitDAGTopologicalSorting();
479}
480
481/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
482/// all nodes affected by the edge insertion. These nodes will later get new
483/// topological indexes by means of the Shift method.
484void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
485                                     bool& HasLoop) {
486  std::vector<const SUnit*> WorkList;
487  WorkList.reserve(SUnits.size());
488
489  WorkList.push_back(SU);
490  do {
491    SU = WorkList.back();
492    WorkList.pop_back();
493    Visited.set(SU->NodeNum);
494    for (int I = SU->Succs.size()-1; I >= 0; --I) {
495      int s = SU->Succs[I].getSUnit()->NodeNum;
496      if (Node2Index[s] == UpperBound) {
497        HasLoop = true;
498        return;
499      }
500      // Visit successors if not already and in affected region.
501      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
502        WorkList.push_back(SU->Succs[I].getSUnit());
503      }
504    }
505  } while (!WorkList.empty());
506}
507
508/// Shift - Renumber the nodes so that the topological ordering is
509/// preserved.
510void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
511                                       int UpperBound) {
512  std::vector<int> L;
513  int shift = 0;
514  int i;
515
516  for (i = LowerBound; i <= UpperBound; ++i) {
517    // w is node at topological index i.
518    int w = Index2Node[i];
519    if (Visited.test(w)) {
520      // Unmark.
521      Visited.reset(w);
522      L.push_back(w);
523      shift = shift + 1;
524    } else {
525      Allocate(w, i - shift);
526    }
527  }
528
529  for (unsigned j = 0; j < L.size(); ++j) {
530    Allocate(L[j], i - shift);
531    i = i + 1;
532  }
533}
534
535
536/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
537/// create a cycle.
538bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
539  if (IsReachable(TargetSU, SU))
540    return true;
541  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
542       I != E; ++I)
543    if (I->isAssignedRegDep() &&
544        IsReachable(TargetSU, I->getSUnit()))
545      return true;
546  return false;
547}
548
549/// IsReachable - Checks if SU is reachable from TargetSU.
550bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
551                                             const SUnit *TargetSU) {
552  // If insertion of the edge SU->TargetSU would create a cycle
553  // then there is a path from TargetSU to SU.
554  int UpperBound, LowerBound;
555  LowerBound = Node2Index[TargetSU->NodeNum];
556  UpperBound = Node2Index[SU->NodeNum];
557  bool HasLoop = false;
558  // Is Ord(TargetSU) < Ord(SU) ?
559  if (LowerBound < UpperBound) {
560    Visited.reset();
561    // There may be a path from TargetSU to SU. Check for it.
562    DFS(TargetSU, UpperBound, HasLoop);
563  }
564  return HasLoop;
565}
566
567/// Allocate - assign the topological index to the node n.
568void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
569  Node2Index[n] = index;
570  Index2Node[index] = n;
571}
572
573ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
574                                                     std::vector<SUnit> &sunits)
575 : SUnits(sunits) {}
576
577ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
578