ScheduleDAG.cpp revision 5dc982e6b3e6f94a67d8211a0f4c1baba4a5822b
1//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Support/Debug.h"
21#include <climits>
22using namespace llvm;
23
24ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
25                         const TargetMachine &tm)
26  : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
27  TII = TM.getInstrInfo();
28  MF  = BB->getParent();
29  TRI = TM.getRegisterInfo();
30  TLI = TM.getTargetLowering();
31  ConstPool = MF->getConstantPool();
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
36/// dump - dump the schedule.
37void ScheduleDAG::dumpSchedule() const {
38  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
39    if (SUnit *SU = Sequence[i])
40      SU->dump(this);
41    else
42      cerr << "**** NOOP ****\n";
43  }
44}
45
46
47/// Run - perform scheduling.
48///
49void ScheduleDAG::Run() {
50  Schedule();
51
52  DOUT << "*** Final schedule ***\n";
53  DEBUG(dumpSchedule());
54  DOUT << "\n";
55}
56
57/// addPred - This adds the specified edge as a pred of the current node if
58/// not already.  It also adds the current node as a successor of the
59/// specified node.
60void SUnit::addPred(const SDep &D) {
61  // If this node already has this depenence, don't add a redundant one.
62  for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
63    if (Preds[i] == D)
64      return;
65  // Now add a corresponding succ to N.
66  SDep P = D;
67  P.setSUnit(this);
68  SUnit *N = D.getSUnit();
69  // Update the bookkeeping.
70  if (D.getKind() == SDep::Data) {
71    ++NumPreds;
72    ++N->NumSuccs;
73  }
74  if (!N->isScheduled)
75    ++NumPredsLeft;
76  if (!isScheduled)
77    ++N->NumSuccsLeft;
78  N->Succs.push_back(P);
79  Preds.push_back(D);
80  this->setDepthDirty();
81  N->setHeightDirty();
82}
83
84/// removePred - This removes the specified edge as a pred of the current
85/// node if it exists.  It also removes the current node as a successor of
86/// the specified node.
87void SUnit::removePred(const SDep &D) {
88  // Find the matching predecessor.
89  for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
90       I != E; ++I)
91    if (*I == D) {
92      bool FoundSucc = false;
93      // Find the corresponding successor in N.
94      SDep P = D;
95      P.setSUnit(this);
96      SUnit *N = D.getSUnit();
97      for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
98             EE = N->Succs.end(); II != EE; ++II)
99        if (*II == P) {
100          FoundSucc = true;
101          N->Succs.erase(II);
102          break;
103        }
104      assert(FoundSucc && "Mismatching preds / succs lists!");
105      Preds.erase(I);
106      // Update the bookkeeping;
107      if (D.getKind() == SDep::Data) {
108        --NumPreds;
109        --N->NumSuccs;
110      }
111      if (!N->isScheduled)
112        --NumPredsLeft;
113      if (!isScheduled)
114        --N->NumSuccsLeft;
115      this->setDepthDirty();
116      N->setHeightDirty();
117      return;
118    }
119}
120
121void SUnit::setDepthDirty() {
122  if (!isDepthCurrent) return;
123  SmallVector<SUnit*, 8> WorkList;
124  WorkList.push_back(this);
125  do {
126    SUnit *SU = WorkList.pop_back_val();
127    SU->isDepthCurrent = false;
128    for (SUnit::const_succ_iterator I = SU->Succs.begin(),
129         E = SU->Succs.end(); I != E; ++I) {
130      SUnit *SuccSU = I->getSUnit();
131      if (SuccSU->isDepthCurrent)
132        WorkList.push_back(SuccSU);
133    }
134  } while (!WorkList.empty());
135}
136
137void SUnit::setHeightDirty() {
138  if (!isHeightCurrent) return;
139  SmallVector<SUnit*, 8> WorkList;
140  WorkList.push_back(this);
141  do {
142    SUnit *SU = WorkList.pop_back_val();
143    SU->isHeightCurrent = false;
144    for (SUnit::const_pred_iterator I = SU->Preds.begin(),
145         E = SU->Preds.end(); I != E; ++I) {
146      SUnit *PredSU = I->getSUnit();
147      if (PredSU->isHeightCurrent)
148        WorkList.push_back(PredSU);
149    }
150  } while (!WorkList.empty());
151}
152
153/// setDepthToAtLeast - Update this node's successors to reflect the
154/// fact that this node's depth just increased.
155///
156void SUnit::setDepthToAtLeast(unsigned NewDepth) {
157  if (NewDepth <= getDepth())
158    return;
159  setDepthDirty();
160  Depth = NewDepth;
161  isDepthCurrent = true;
162}
163
164/// setHeightToAtLeast - Update this node's predecessors to reflect the
165/// fact that this node's height just increased.
166///
167void SUnit::setHeightToAtLeast(unsigned NewHeight) {
168  if (NewHeight <= getHeight())
169    return;
170  setHeightDirty();
171  Height = NewHeight;
172  isHeightCurrent = true;
173}
174
175/// ComputeDepth - Calculate the maximal path from the node to the exit.
176///
177void SUnit::ComputeDepth() {
178  SmallVector<SUnit*, 8> WorkList;
179  WorkList.push_back(this);
180  while (!WorkList.empty()) {
181    SUnit *Cur = WorkList.back();
182
183    bool Done = true;
184    unsigned MaxPredDepth = 0;
185    for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
186         E = Cur->Preds.end(); I != E; ++I) {
187      SUnit *PredSU = I->getSUnit();
188      if (PredSU->isDepthCurrent)
189        MaxPredDepth = std::max(MaxPredDepth,
190                                PredSU->Depth + I->getLatency());
191      else {
192        Done = false;
193        WorkList.push_back(PredSU);
194      }
195    }
196
197    if (Done) {
198      WorkList.pop_back();
199      if (MaxPredDepth != Cur->Depth) {
200        Cur->setDepthDirty();
201        Cur->Depth = MaxPredDepth;
202      }
203      Cur->isDepthCurrent = true;
204    }
205  }
206}
207
208/// ComputeHeight - Calculate the maximal path from the node to the entry.
209///
210void SUnit::ComputeHeight() {
211  SmallVector<SUnit*, 8> WorkList;
212  WorkList.push_back(this);
213  while (!WorkList.empty()) {
214    SUnit *Cur = WorkList.back();
215
216    bool Done = true;
217    unsigned MaxSuccHeight = 0;
218    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
219         E = Cur->Succs.end(); I != E; ++I) {
220      SUnit *SuccSU = I->getSUnit();
221      if (SuccSU->isHeightCurrent)
222        MaxSuccHeight = std::max(MaxSuccHeight,
223                                 SuccSU->Height + I->getLatency());
224      else {
225        Done = false;
226        WorkList.push_back(SuccSU);
227      }
228    }
229
230    if (Done) {
231      WorkList.pop_back();
232      if (MaxSuccHeight != Cur->Height) {
233        Cur->setHeightDirty();
234        Cur->Height = MaxSuccHeight;
235      }
236      Cur->isHeightCurrent = true;
237    }
238  }
239}
240
241/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
242/// a group of nodes flagged together.
243void SUnit::dump(const ScheduleDAG *G) const {
244  cerr << "SU(" << NodeNum << "): ";
245  G->dumpNode(this);
246}
247
248void SUnit::dumpAll(const ScheduleDAG *G) const {
249  dump(G);
250
251  cerr << "  # preds left       : " << NumPredsLeft << "\n";
252  cerr << "  # succs left       : " << NumSuccsLeft << "\n";
253  cerr << "  Latency            : " << Latency << "\n";
254  cerr << "  Depth              : " << Depth << "\n";
255  cerr << "  Height             : " << Height << "\n";
256
257  if (Preds.size() != 0) {
258    cerr << "  Predecessors:\n";
259    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
260         I != E; ++I) {
261      cerr << "   ";
262      switch (I->getKind()) {
263      case SDep::Data:        cerr << "val "; break;
264      case SDep::Anti:        cerr << "anti"; break;
265      case SDep::Output:      cerr << "out "; break;
266      case SDep::Order:       cerr << "ch  "; break;
267      }
268      cerr << "#";
269      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
270      if (I->isArtificial())
271        cerr << " *";
272      cerr << "\n";
273    }
274  }
275  if (Succs.size() != 0) {
276    cerr << "  Successors:\n";
277    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
278         I != E; ++I) {
279      cerr << "   ";
280      switch (I->getKind()) {
281      case SDep::Data:        cerr << "val "; break;
282      case SDep::Anti:        cerr << "anti"; break;
283      case SDep::Output:      cerr << "out "; break;
284      case SDep::Order:       cerr << "ch  "; break;
285      }
286      cerr << "#";
287      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
288      if (I->isArtificial())
289        cerr << " *";
290      cerr << "\n";
291    }
292  }
293  cerr << "\n";
294}
295
296#ifndef NDEBUG
297/// VerifySchedule - Verify that all SUnits were scheduled and that
298/// their state is consistent.
299///
300void ScheduleDAG::VerifySchedule(bool isBottomUp) {
301  bool AnyNotSched = false;
302  unsigned DeadNodes = 0;
303  unsigned Noops = 0;
304  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
305    if (!SUnits[i].isScheduled) {
306      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
307        ++DeadNodes;
308        continue;
309      }
310      if (!AnyNotSched)
311        cerr << "*** Scheduling failed! ***\n";
312      SUnits[i].dump(this);
313      cerr << "has not been scheduled!\n";
314      AnyNotSched = true;
315    }
316    if (SUnits[i].isScheduled &&
317        (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
318          unsigned(INT_MAX)) {
319      if (!AnyNotSched)
320        cerr << "*** Scheduling failed! ***\n";
321      SUnits[i].dump(this);
322      cerr << "has an unexpected "
323           << (isBottomUp ? "Height" : "Depth") << " value!\n";
324      AnyNotSched = true;
325    }
326    if (isBottomUp) {
327      if (SUnits[i].NumSuccsLeft != 0) {
328        if (!AnyNotSched)
329          cerr << "*** Scheduling failed! ***\n";
330        SUnits[i].dump(this);
331        cerr << "has successors left!\n";
332        AnyNotSched = true;
333      }
334    } else {
335      if (SUnits[i].NumPredsLeft != 0) {
336        if (!AnyNotSched)
337          cerr << "*** Scheduling failed! ***\n";
338        SUnits[i].dump(this);
339        cerr << "has predecessors left!\n";
340        AnyNotSched = true;
341      }
342    }
343  }
344  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
345    if (!Sequence[i])
346      ++Noops;
347  assert(!AnyNotSched);
348  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
349         "The number of nodes scheduled doesn't match the expected number!");
350}
351#endif
352
353/// InitDAGTopologicalSorting - create the initial topological
354/// ordering from the DAG to be scheduled.
355///
356/// The idea of the algorithm is taken from
357/// "Online algorithms for managing the topological order of
358/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
359/// This is the MNR algorithm, which was first introduced by
360/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
361/// "Maintaining a topological order under edge insertions".
362///
363/// Short description of the algorithm:
364///
365/// Topological ordering, ord, of a DAG maps each node to a topological
366/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
367///
368/// This means that if there is a path from the node X to the node Z,
369/// then ord(X) < ord(Z).
370///
371/// This property can be used to check for reachability of nodes:
372/// if Z is reachable from X, then an insertion of the edge Z->X would
373/// create a cycle.
374///
375/// The algorithm first computes a topological ordering for the DAG by
376/// initializing the Index2Node and Node2Index arrays and then tries to keep
377/// the ordering up-to-date after edge insertions by reordering the DAG.
378///
379/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
380/// the nodes reachable from Y, and then shifts them using Shift to lie
381/// immediately after X in Index2Node.
382void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
383  unsigned DAGSize = SUnits.size();
384  std::vector<SUnit*> WorkList;
385  WorkList.reserve(DAGSize);
386
387  Index2Node.resize(DAGSize);
388  Node2Index.resize(DAGSize);
389
390  // Initialize the data structures.
391  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
392    SUnit *SU = &SUnits[i];
393    int NodeNum = SU->NodeNum;
394    unsigned Degree = SU->Succs.size();
395    // Temporarily use the Node2Index array as scratch space for degree counts.
396    Node2Index[NodeNum] = Degree;
397
398    // Is it a node without dependencies?
399    if (Degree == 0) {
400      assert(SU->Succs.empty() && "SUnit should have no successors");
401      // Collect leaf nodes.
402      WorkList.push_back(SU);
403    }
404  }
405
406  int Id = DAGSize;
407  while (!WorkList.empty()) {
408    SUnit *SU = WorkList.back();
409    WorkList.pop_back();
410    Allocate(SU->NodeNum, --Id);
411    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
412         I != E; ++I) {
413      SUnit *SU = I->getSUnit();
414      if (!--Node2Index[SU->NodeNum])
415        // If all dependencies of the node are processed already,
416        // then the node can be computed now.
417        WorkList.push_back(SU);
418    }
419  }
420
421  Visited.resize(DAGSize);
422
423#ifndef NDEBUG
424  // Check correctness of the ordering
425  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
426    SUnit *SU = &SUnits[i];
427    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
428         I != E; ++I) {
429      assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
430      "Wrong topological sorting");
431    }
432  }
433#endif
434}
435
436/// AddPred - Updates the topological ordering to accomodate an edge
437/// to be added from SUnit X to SUnit Y.
438void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
439  int UpperBound, LowerBound;
440  LowerBound = Node2Index[Y->NodeNum];
441  UpperBound = Node2Index[X->NodeNum];
442  bool HasLoop = false;
443  // Is Ord(X) < Ord(Y) ?
444  if (LowerBound < UpperBound) {
445    // Update the topological order.
446    Visited.reset();
447    DFS(Y, UpperBound, HasLoop);
448    assert(!HasLoop && "Inserted edge creates a loop!");
449    // Recompute topological indexes.
450    Shift(Visited, LowerBound, UpperBound);
451  }
452}
453
454/// RemovePred - Updates the topological ordering to accomodate an
455/// an edge to be removed from the specified node N from the predecessors
456/// of the current node M.
457void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
458  // InitDAGTopologicalSorting();
459}
460
461/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
462/// all nodes affected by the edge insertion. These nodes will later get new
463/// topological indexes by means of the Shift method.
464void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
465                                     bool& HasLoop) {
466  std::vector<const SUnit*> WorkList;
467  WorkList.reserve(SUnits.size());
468
469  WorkList.push_back(SU);
470  while (!WorkList.empty()) {
471    SU = WorkList.back();
472    WorkList.pop_back();
473    Visited.set(SU->NodeNum);
474    for (int I = SU->Succs.size()-1; I >= 0; --I) {
475      int s = SU->Succs[I].getSUnit()->NodeNum;
476      if (Node2Index[s] == UpperBound) {
477        HasLoop = true;
478        return;
479      }
480      // Visit successors if not already and in affected region.
481      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
482        WorkList.push_back(SU->Succs[I].getSUnit());
483      }
484    }
485  }
486}
487
488/// Shift - Renumber the nodes so that the topological ordering is
489/// preserved.
490void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
491                                       int UpperBound) {
492  std::vector<int> L;
493  int shift = 0;
494  int i;
495
496  for (i = LowerBound; i <= UpperBound; ++i) {
497    // w is node at topological index i.
498    int w = Index2Node[i];
499    if (Visited.test(w)) {
500      // Unmark.
501      Visited.reset(w);
502      L.push_back(w);
503      shift = shift + 1;
504    } else {
505      Allocate(w, i - shift);
506    }
507  }
508
509  for (unsigned j = 0; j < L.size(); ++j) {
510    Allocate(L[j], i - shift);
511    i = i + 1;
512  }
513}
514
515
516/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
517/// create a cycle.
518bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
519  if (IsReachable(TargetSU, SU))
520    return true;
521  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
522       I != E; ++I)
523    if (I->isAssignedRegDep() &&
524        IsReachable(TargetSU, I->getSUnit()))
525      return true;
526  return false;
527}
528
529/// IsReachable - Checks if SU is reachable from TargetSU.
530bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
531                                             const SUnit *TargetSU) {
532  // If insertion of the edge SU->TargetSU would create a cycle
533  // then there is a path from TargetSU to SU.
534  int UpperBound, LowerBound;
535  LowerBound = Node2Index[TargetSU->NodeNum];
536  UpperBound = Node2Index[SU->NodeNum];
537  bool HasLoop = false;
538  // Is Ord(TargetSU) < Ord(SU) ?
539  if (LowerBound < UpperBound) {
540    Visited.reset();
541    // There may be a path from TargetSU to SU. Check for it.
542    DFS(TargetSU, UpperBound, HasLoop);
543  }
544  return HasLoop;
545}
546
547/// Allocate - assign the topological index to the node n.
548void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
549  Node2Index[n] = index;
550  Index2Node[index] = n;
551}
552
553ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
554                                                     std::vector<SUnit> &sunits)
555 : SUnits(sunits) {}
556