ScheduleDAG.cpp revision 7a9397bc59204daeccf89e32e1af1ed2b8c26ac4
1//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Support/Debug.h"
21#include <climits>
22using namespace llvm;
23
24ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
25                         const TargetMachine &tm)
26  : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
27  TII = TM.getInstrInfo();
28  MF  = BB->getParent();
29  TRI = TM.getRegisterInfo();
30  TLI = TM.getTargetLowering();
31  ConstPool = MF->getConstantPool();
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
36/// dump - dump the schedule.
37void ScheduleDAG::dumpSchedule() const {
38  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
39    if (SUnit *SU = Sequence[i])
40      SU->dump(this);
41    else
42      cerr << "**** NOOP ****\n";
43  }
44}
45
46
47/// Run - perform scheduling.
48///
49void ScheduleDAG::Run() {
50  Schedule();
51
52  DOUT << "*** Final schedule ***\n";
53  DEBUG(dumpSchedule());
54  DOUT << "\n";
55}
56
57/// addPred - This adds the specified edge as a pred of the current node if
58/// not already.  It also adds the current node as a successor of the
59/// specified node.
60void SUnit::addPred(const SDep &D) {
61  // If this node already has this depenence, don't add a redundant one.
62  for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
63    if (Preds[i] == D)
64      return;
65  // Now add a corresponding succ to N.
66  SDep P = D;
67  P.setSUnit(this);
68  SUnit *N = D.getSUnit();
69  // Update the bookkeeping.
70  if (D.getKind() == SDep::Data) {
71    ++NumPreds;
72    ++N->NumSuccs;
73  }
74  if (!N->isScheduled)
75    ++NumPredsLeft;
76  if (!isScheduled)
77    ++N->NumSuccsLeft;
78  N->Succs.push_back(P);
79  Preds.push_back(D);
80  this->setDepthDirty();
81  N->setHeightDirty();
82}
83
84/// removePred - This removes the specified edge as a pred of the current
85/// node if it exists.  It also removes the current node as a successor of
86/// the specified node.
87void SUnit::removePred(const SDep &D) {
88  // Find the matching predecessor.
89  for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
90       I != E; ++I)
91    if (*I == D) {
92      bool FoundSucc = false;
93      // Find the corresponding successor in N.
94      SDep P = D;
95      P.setSUnit(this);
96      SUnit *N = D.getSUnit();
97      for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
98             EE = N->Succs.end(); II != EE; ++II)
99        if (*II == P) {
100          FoundSucc = true;
101          N->Succs.erase(II);
102          break;
103        }
104      assert(FoundSucc && "Mismatching preds / succs lists!");
105      Preds.erase(I);
106      // Update the bookkeeping;
107      if (D.getKind() == SDep::Data) {
108        --NumPreds;
109        --N->NumSuccs;
110      }
111      if (!N->isScheduled)
112        --NumPredsLeft;
113      if (!isScheduled)
114        --N->NumSuccsLeft;
115      this->setDepthDirty();
116      N->setHeightDirty();
117      return;
118    }
119}
120
121void SUnit::setDepthDirty() {
122  SmallVector<SUnit*, 8> WorkList;
123  WorkList.push_back(this);
124  while (!WorkList.empty()) {
125    SUnit *SU = WorkList.back();
126    WorkList.pop_back();
127    if (!SU->isDepthCurrent) continue;
128    SU->isDepthCurrent = false;
129    for (SUnit::const_succ_iterator I = Succs.begin(),
130         E = Succs.end(); I != E; ++I)
131      WorkList.push_back(I->getSUnit());
132  }
133}
134
135void SUnit::setHeightDirty() {
136  SmallVector<SUnit*, 8> WorkList;
137  WorkList.push_back(this);
138  while (!WorkList.empty()) {
139    SUnit *SU = WorkList.back();
140    WorkList.pop_back();
141    if (!SU->isHeightCurrent) continue;
142    SU->isHeightCurrent = false;
143    for (SUnit::const_pred_iterator I = Preds.begin(),
144         E = Preds.end(); I != E; ++I)
145      WorkList.push_back(I->getSUnit());
146  }
147}
148
149/// setDepthToAtLeast - Update this node's successors to reflect the
150/// fact that this node's depth just increased.
151///
152void SUnit::setDepthToAtLeast(unsigned NewDepth) {
153  if (NewDepth <= getDepth())
154    return;
155  setDepthDirty();
156  Depth = NewDepth;
157  isDepthCurrent = true;
158}
159
160/// setHeightToAtLeast - Update this node's predecessors to reflect the
161/// fact that this node's height just increased.
162///
163void SUnit::setHeightToAtLeast(unsigned NewHeight) {
164  if (NewHeight <= getHeight())
165    return;
166  setHeightDirty();
167  Height = NewHeight;
168  isHeightCurrent = true;
169}
170
171/// ComputeDepth - Calculate the maximal path from the node to the exit.
172///
173void SUnit::ComputeDepth() {
174  SmallVector<SUnit*, 8> WorkList;
175  WorkList.push_back(this);
176  while (!WorkList.empty()) {
177    SUnit *Cur = WorkList.back();
178
179    bool Done = true;
180    unsigned MaxPredDepth = 0;
181    for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
182         E = Cur->Preds.end(); I != E; ++I) {
183      SUnit *PredSU = I->getSUnit();
184      if (PredSU->isDepthCurrent)
185        MaxPredDepth = std::max(MaxPredDepth,
186                                PredSU->Depth + I->getLatency());
187      else {
188        Done = false;
189        WorkList.push_back(PredSU);
190      }
191    }
192
193    if (Done) {
194      WorkList.pop_back();
195      if (MaxPredDepth != Cur->Depth) {
196        Cur->setDepthDirty();
197        Cur->Depth = MaxPredDepth;
198      }
199      Cur->isDepthCurrent = true;
200    }
201  }
202}
203
204/// ComputeHeight - Calculate the maximal path from the node to the entry.
205///
206void SUnit::ComputeHeight() {
207  SmallVector<SUnit*, 8> WorkList;
208  WorkList.push_back(this);
209  while (!WorkList.empty()) {
210    SUnit *Cur = WorkList.back();
211
212    bool Done = true;
213    unsigned MaxSuccHeight = 0;
214    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
215         E = Cur->Succs.end(); I != E; ++I) {
216      SUnit *SuccSU = I->getSUnit();
217      if (SuccSU->isHeightCurrent)
218        MaxSuccHeight = std::max(MaxSuccHeight,
219                                 SuccSU->Height + I->getLatency());
220      else {
221        Done = false;
222        WorkList.push_back(SuccSU);
223      }
224    }
225
226    if (Done) {
227      WorkList.pop_back();
228      if (MaxSuccHeight != Cur->Height) {
229        Cur->setHeightDirty();
230        Cur->Height = MaxSuccHeight;
231      }
232      Cur->isHeightCurrent = true;
233    }
234  }
235}
236
237/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
238/// a group of nodes flagged together.
239void SUnit::dump(const ScheduleDAG *G) const {
240  cerr << "SU(" << NodeNum << "): ";
241  G->dumpNode(this);
242}
243
244void SUnit::dumpAll(const ScheduleDAG *G) const {
245  dump(G);
246
247  cerr << "  # preds left       : " << NumPredsLeft << "\n";
248  cerr << "  # succs left       : " << NumSuccsLeft << "\n";
249  cerr << "  Latency            : " << Latency << "\n";
250  cerr << "  Depth              : " << Depth << "\n";
251  cerr << "  Height             : " << Height << "\n";
252
253  if (Preds.size() != 0) {
254    cerr << "  Predecessors:\n";
255    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
256         I != E; ++I) {
257      cerr << "   ";
258      switch (I->getKind()) {
259      case SDep::Data:        cerr << "val "; break;
260      case SDep::Anti:        cerr << "anti"; break;
261      case SDep::Output:      cerr << "out "; break;
262      case SDep::Order:       cerr << "ch  "; break;
263      }
264      cerr << "#";
265      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
266      if (I->isArtificial())
267        cerr << " *";
268      cerr << "\n";
269    }
270  }
271  if (Succs.size() != 0) {
272    cerr << "  Successors:\n";
273    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
274         I != E; ++I) {
275      cerr << "   ";
276      switch (I->getKind()) {
277      case SDep::Data:        cerr << "val "; break;
278      case SDep::Anti:        cerr << "anti"; break;
279      case SDep::Output:      cerr << "out "; break;
280      case SDep::Order:       cerr << "ch  "; break;
281      }
282      cerr << "#";
283      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
284      if (I->isArtificial())
285        cerr << " *";
286      cerr << "\n";
287    }
288  }
289  cerr << "\n";
290}
291
292#ifndef NDEBUG
293/// VerifySchedule - Verify that all SUnits were scheduled and that
294/// their state is consistent.
295///
296void ScheduleDAG::VerifySchedule(bool isBottomUp) {
297  bool AnyNotSched = false;
298  unsigned DeadNodes = 0;
299  unsigned Noops = 0;
300  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
301    if (!SUnits[i].isScheduled) {
302      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
303        ++DeadNodes;
304        continue;
305      }
306      if (!AnyNotSched)
307        cerr << "*** Scheduling failed! ***\n";
308      SUnits[i].dump(this);
309      cerr << "has not been scheduled!\n";
310      AnyNotSched = true;
311    }
312    if (SUnits[i].isScheduled &&
313        (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
314          unsigned(INT_MAX)) {
315      if (!AnyNotSched)
316        cerr << "*** Scheduling failed! ***\n";
317      SUnits[i].dump(this);
318      cerr << "has an unexpected "
319           << (isBottomUp ? "Height" : "Depth") << " value!\n";
320      AnyNotSched = true;
321    }
322    if (isBottomUp) {
323      if (SUnits[i].NumSuccsLeft != 0) {
324        if (!AnyNotSched)
325          cerr << "*** Scheduling failed! ***\n";
326        SUnits[i].dump(this);
327        cerr << "has successors left!\n";
328        AnyNotSched = true;
329      }
330    } else {
331      if (SUnits[i].NumPredsLeft != 0) {
332        if (!AnyNotSched)
333          cerr << "*** Scheduling failed! ***\n";
334        SUnits[i].dump(this);
335        cerr << "has predecessors left!\n";
336        AnyNotSched = true;
337      }
338    }
339  }
340  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
341    if (!Sequence[i])
342      ++Noops;
343  assert(!AnyNotSched);
344  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
345         "The number of nodes scheduled doesn't match the expected number!");
346}
347#endif
348
349/// InitDAGTopologicalSorting - create the initial topological
350/// ordering from the DAG to be scheduled.
351///
352/// The idea of the algorithm is taken from
353/// "Online algorithms for managing the topological order of
354/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
355/// This is the MNR algorithm, which was first introduced by
356/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
357/// "Maintaining a topological order under edge insertions".
358///
359/// Short description of the algorithm:
360///
361/// Topological ordering, ord, of a DAG maps each node to a topological
362/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
363///
364/// This means that if there is a path from the node X to the node Z,
365/// then ord(X) < ord(Z).
366///
367/// This property can be used to check for reachability of nodes:
368/// if Z is reachable from X, then an insertion of the edge Z->X would
369/// create a cycle.
370///
371/// The algorithm first computes a topological ordering for the DAG by
372/// initializing the Index2Node and Node2Index arrays and then tries to keep
373/// the ordering up-to-date after edge insertions by reordering the DAG.
374///
375/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
376/// the nodes reachable from Y, and then shifts them using Shift to lie
377/// immediately after X in Index2Node.
378void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
379  unsigned DAGSize = SUnits.size();
380  std::vector<SUnit*> WorkList;
381  WorkList.reserve(DAGSize);
382
383  Index2Node.resize(DAGSize);
384  Node2Index.resize(DAGSize);
385
386  // Initialize the data structures.
387  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
388    SUnit *SU = &SUnits[i];
389    int NodeNum = SU->NodeNum;
390    unsigned Degree = SU->Succs.size();
391    // Temporarily use the Node2Index array as scratch space for degree counts.
392    Node2Index[NodeNum] = Degree;
393
394    // Is it a node without dependencies?
395    if (Degree == 0) {
396      assert(SU->Succs.empty() && "SUnit should have no successors");
397      // Collect leaf nodes.
398      WorkList.push_back(SU);
399    }
400  }
401
402  int Id = DAGSize;
403  while (!WorkList.empty()) {
404    SUnit *SU = WorkList.back();
405    WorkList.pop_back();
406    Allocate(SU->NodeNum, --Id);
407    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
408         I != E; ++I) {
409      SUnit *SU = I->getSUnit();
410      if (!--Node2Index[SU->NodeNum])
411        // If all dependencies of the node are processed already,
412        // then the node can be computed now.
413        WorkList.push_back(SU);
414    }
415  }
416
417  Visited.resize(DAGSize);
418
419#ifndef NDEBUG
420  // Check correctness of the ordering
421  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
422    SUnit *SU = &SUnits[i];
423    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
424         I != E; ++I) {
425      assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
426      "Wrong topological sorting");
427    }
428  }
429#endif
430}
431
432/// AddPred - Updates the topological ordering to accomodate an edge
433/// to be added from SUnit X to SUnit Y.
434void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
435  int UpperBound, LowerBound;
436  LowerBound = Node2Index[Y->NodeNum];
437  UpperBound = Node2Index[X->NodeNum];
438  bool HasLoop = false;
439  // Is Ord(X) < Ord(Y) ?
440  if (LowerBound < UpperBound) {
441    // Update the topological order.
442    Visited.reset();
443    DFS(Y, UpperBound, HasLoop);
444    assert(!HasLoop && "Inserted edge creates a loop!");
445    // Recompute topological indexes.
446    Shift(Visited, LowerBound, UpperBound);
447  }
448}
449
450/// RemovePred - Updates the topological ordering to accomodate an
451/// an edge to be removed from the specified node N from the predecessors
452/// of the current node M.
453void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
454  // InitDAGTopologicalSorting();
455}
456
457/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
458/// all nodes affected by the edge insertion. These nodes will later get new
459/// topological indexes by means of the Shift method.
460void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
461                                     bool& HasLoop) {
462  std::vector<const SUnit*> WorkList;
463  WorkList.reserve(SUnits.size());
464
465  WorkList.push_back(SU);
466  while (!WorkList.empty()) {
467    SU = WorkList.back();
468    WorkList.pop_back();
469    Visited.set(SU->NodeNum);
470    for (int I = SU->Succs.size()-1; I >= 0; --I) {
471      int s = SU->Succs[I].getSUnit()->NodeNum;
472      if (Node2Index[s] == UpperBound) {
473        HasLoop = true;
474        return;
475      }
476      // Visit successors if not already and in affected region.
477      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
478        WorkList.push_back(SU->Succs[I].getSUnit());
479      }
480    }
481  }
482}
483
484/// Shift - Renumber the nodes so that the topological ordering is
485/// preserved.
486void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
487                                       int UpperBound) {
488  std::vector<int> L;
489  int shift = 0;
490  int i;
491
492  for (i = LowerBound; i <= UpperBound; ++i) {
493    // w is node at topological index i.
494    int w = Index2Node[i];
495    if (Visited.test(w)) {
496      // Unmark.
497      Visited.reset(w);
498      L.push_back(w);
499      shift = shift + 1;
500    } else {
501      Allocate(w, i - shift);
502    }
503  }
504
505  for (unsigned j = 0; j < L.size(); ++j) {
506    Allocate(L[j], i - shift);
507    i = i + 1;
508  }
509}
510
511
512/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
513/// create a cycle.
514bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
515  if (IsReachable(TargetSU, SU))
516    return true;
517  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
518       I != E; ++I)
519    if (I->isAssignedRegDep() &&
520        IsReachable(TargetSU, I->getSUnit()))
521      return true;
522  return false;
523}
524
525/// IsReachable - Checks if SU is reachable from TargetSU.
526bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
527                                             const SUnit *TargetSU) {
528  // If insertion of the edge SU->TargetSU would create a cycle
529  // then there is a path from TargetSU to SU.
530  int UpperBound, LowerBound;
531  LowerBound = Node2Index[TargetSU->NodeNum];
532  UpperBound = Node2Index[SU->NodeNum];
533  bool HasLoop = false;
534  // Is Ord(TargetSU) < Ord(SU) ?
535  if (LowerBound < UpperBound) {
536    Visited.reset();
537    // There may be a path from TargetSU to SU. Check for it.
538    DFS(TargetSU, UpperBound, HasLoop);
539  }
540  return HasLoop;
541}
542
543/// Allocate - assign the topological index to the node n.
544void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
545  Node2Index[n] = index;
546  Index2Node[index] = n;
547}
548
549ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
550                                                     std::vector<SUnit> &sunits)
551 : SUnits(sunits) {}
552