ScheduleDAG.cpp revision b1bfe4e108453151c8b8dc01515eb3095385e054
1//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Support/Debug.h"
21#include <climits>
22using namespace llvm;
23
24ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
25                         const TargetMachine &tm)
26  : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
27  TII = TM.getInstrInfo();
28  MF  = BB->getParent();
29  TRI = TM.getRegisterInfo();
30  TLI = TM.getTargetLowering();
31  ConstPool = MF->getConstantPool();
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
36/// dump - dump the schedule.
37void ScheduleDAG::dumpSchedule() const {
38  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
39    if (SUnit *SU = Sequence[i])
40      SU->dump(this);
41    else
42      cerr << "**** NOOP ****\n";
43  }
44}
45
46
47/// Run - perform scheduling.
48///
49void ScheduleDAG::Run() {
50  Schedule();
51
52  DOUT << "*** Final schedule ***\n";
53  DEBUG(dumpSchedule());
54  DOUT << "\n";
55}
56
57/// addPred - This adds the specified edge as a pred of the current node if
58/// not already.  It also adds the current node as a successor of the
59/// specified node.
60void SUnit::addPred(const SDep &D) {
61  // If this node already has this depenence, don't add a redundant one.
62  for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
63    if (Preds[i] == D)
64      return;
65  // Now add a corresponding succ to N.
66  SDep P = D;
67  P.setSUnit(this);
68  SUnit *N = D.getSUnit();
69  // Update the bookkeeping.
70  if (D.getKind() == SDep::Data) {
71    ++NumPreds;
72    ++N->NumSuccs;
73  }
74  if (!N->isScheduled)
75    ++NumPredsLeft;
76  if (!isScheduled)
77    ++N->NumSuccsLeft;
78  Preds.push_back(D);
79  N->Succs.push_back(P);
80  if (P.getLatency() != 0) {
81    this->setDepthDirty();
82    N->setHeightDirty();
83  }
84}
85
86/// removePred - This removes the specified edge as a pred of the current
87/// node if it exists.  It also removes the current node as a successor of
88/// the specified node.
89void SUnit::removePred(const SDep &D) {
90  // Find the matching predecessor.
91  for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
92       I != E; ++I)
93    if (*I == D) {
94      bool FoundSucc = false;
95      // Find the corresponding successor in N.
96      SDep P = D;
97      P.setSUnit(this);
98      SUnit *N = D.getSUnit();
99      for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
100             EE = N->Succs.end(); II != EE; ++II)
101        if (*II == P) {
102          FoundSucc = true;
103          N->Succs.erase(II);
104          break;
105        }
106      assert(FoundSucc && "Mismatching preds / succs lists!");
107      Preds.erase(I);
108      // Update the bookkeeping.
109      if (P.getKind() == SDep::Data) {
110        --NumPreds;
111        --N->NumSuccs;
112      }
113      if (!N->isScheduled)
114        --NumPredsLeft;
115      if (!isScheduled)
116        --N->NumSuccsLeft;
117      if (P.getLatency() != 0) {
118        this->setDepthDirty();
119        N->setHeightDirty();
120      }
121      return;
122    }
123}
124
125void SUnit::setDepthDirty() {
126  if (!isDepthCurrent) return;
127  SmallVector<SUnit*, 8> WorkList;
128  WorkList.push_back(this);
129  do {
130    SUnit *SU = WorkList.pop_back_val();
131    SU->isDepthCurrent = false;
132    for (SUnit::const_succ_iterator I = SU->Succs.begin(),
133         E = SU->Succs.end(); I != E; ++I) {
134      SUnit *SuccSU = I->getSUnit();
135      if (SuccSU->isDepthCurrent)
136        WorkList.push_back(SuccSU);
137    }
138  } while (!WorkList.empty());
139}
140
141void SUnit::setHeightDirty() {
142  if (!isHeightCurrent) return;
143  SmallVector<SUnit*, 8> WorkList;
144  WorkList.push_back(this);
145  do {
146    SUnit *SU = WorkList.pop_back_val();
147    SU->isHeightCurrent = false;
148    for (SUnit::const_pred_iterator I = SU->Preds.begin(),
149         E = SU->Preds.end(); I != E; ++I) {
150      SUnit *PredSU = I->getSUnit();
151      if (PredSU->isHeightCurrent)
152        WorkList.push_back(PredSU);
153    }
154  } while (!WorkList.empty());
155}
156
157/// setDepthToAtLeast - Update this node's successors to reflect the
158/// fact that this node's depth just increased.
159///
160void SUnit::setDepthToAtLeast(unsigned NewDepth) {
161  if (NewDepth <= getDepth())
162    return;
163  setDepthDirty();
164  Depth = NewDepth;
165  isDepthCurrent = true;
166}
167
168/// setHeightToAtLeast - Update this node's predecessors to reflect the
169/// fact that this node's height just increased.
170///
171void SUnit::setHeightToAtLeast(unsigned NewHeight) {
172  if (NewHeight <= getHeight())
173    return;
174  setHeightDirty();
175  Height = NewHeight;
176  isHeightCurrent = true;
177}
178
179/// ComputeDepth - Calculate the maximal path from the node to the exit.
180///
181void SUnit::ComputeDepth() {
182  SmallVector<SUnit*, 8> WorkList;
183  WorkList.push_back(this);
184  do {
185    SUnit *Cur = WorkList.back();
186
187    bool Done = true;
188    unsigned MaxPredDepth = 0;
189    for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
190         E = Cur->Preds.end(); I != E; ++I) {
191      SUnit *PredSU = I->getSUnit();
192      if (PredSU->isDepthCurrent)
193        MaxPredDepth = std::max(MaxPredDepth,
194                                PredSU->Depth + I->getLatency());
195      else {
196        Done = false;
197        WorkList.push_back(PredSU);
198      }
199    }
200
201    if (Done) {
202      WorkList.pop_back();
203      if (MaxPredDepth != Cur->Depth) {
204        Cur->setDepthDirty();
205        Cur->Depth = MaxPredDepth;
206      }
207      Cur->isDepthCurrent = true;
208    }
209  } while (!WorkList.empty());
210}
211
212/// ComputeHeight - Calculate the maximal path from the node to the entry.
213///
214void SUnit::ComputeHeight() {
215  SmallVector<SUnit*, 8> WorkList;
216  WorkList.push_back(this);
217  do {
218    SUnit *Cur = WorkList.back();
219
220    bool Done = true;
221    unsigned MaxSuccHeight = 0;
222    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
223         E = Cur->Succs.end(); I != E; ++I) {
224      SUnit *SuccSU = I->getSUnit();
225      if (SuccSU->isHeightCurrent)
226        MaxSuccHeight = std::max(MaxSuccHeight,
227                                 SuccSU->Height + I->getLatency());
228      else {
229        Done = false;
230        WorkList.push_back(SuccSU);
231      }
232    }
233
234    if (Done) {
235      WorkList.pop_back();
236      if (MaxSuccHeight != Cur->Height) {
237        Cur->setHeightDirty();
238        Cur->Height = MaxSuccHeight;
239      }
240      Cur->isHeightCurrent = true;
241    }
242  } while (!WorkList.empty());
243}
244
245/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
246/// a group of nodes flagged together.
247void SUnit::dump(const ScheduleDAG *G) const {
248  cerr << "SU(" << NodeNum << "): ";
249  G->dumpNode(this);
250}
251
252void SUnit::dumpAll(const ScheduleDAG *G) const {
253  dump(G);
254
255  cerr << "  # preds left       : " << NumPredsLeft << "\n";
256  cerr << "  # succs left       : " << NumSuccsLeft << "\n";
257  cerr << "  Latency            : " << Latency << "\n";
258  cerr << "  Depth              : " << Depth << "\n";
259  cerr << "  Height             : " << Height << "\n";
260
261  if (Preds.size() != 0) {
262    cerr << "  Predecessors:\n";
263    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
264         I != E; ++I) {
265      cerr << "   ";
266      switch (I->getKind()) {
267      case SDep::Data:        cerr << "val "; break;
268      case SDep::Anti:        cerr << "anti"; break;
269      case SDep::Output:      cerr << "out "; break;
270      case SDep::Order:       cerr << "ch  "; break;
271      }
272      cerr << "#";
273      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
274      if (I->isArtificial())
275        cerr << " *";
276      cerr << "\n";
277    }
278  }
279  if (Succs.size() != 0) {
280    cerr << "  Successors:\n";
281    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
282         I != E; ++I) {
283      cerr << "   ";
284      switch (I->getKind()) {
285      case SDep::Data:        cerr << "val "; break;
286      case SDep::Anti:        cerr << "anti"; break;
287      case SDep::Output:      cerr << "out "; break;
288      case SDep::Order:       cerr << "ch  "; break;
289      }
290      cerr << "#";
291      cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
292      if (I->isArtificial())
293        cerr << " *";
294      cerr << "\n";
295    }
296  }
297  cerr << "\n";
298}
299
300#ifndef NDEBUG
301/// VerifySchedule - Verify that all SUnits were scheduled and that
302/// their state is consistent.
303///
304void ScheduleDAG::VerifySchedule(bool isBottomUp) {
305  bool AnyNotSched = false;
306  unsigned DeadNodes = 0;
307  unsigned Noops = 0;
308  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
309    if (!SUnits[i].isScheduled) {
310      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
311        ++DeadNodes;
312        continue;
313      }
314      if (!AnyNotSched)
315        cerr << "*** Scheduling failed! ***\n";
316      SUnits[i].dump(this);
317      cerr << "has not been scheduled!\n";
318      AnyNotSched = true;
319    }
320    if (SUnits[i].isScheduled &&
321        (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
322          unsigned(INT_MAX)) {
323      if (!AnyNotSched)
324        cerr << "*** Scheduling failed! ***\n";
325      SUnits[i].dump(this);
326      cerr << "has an unexpected "
327           << (isBottomUp ? "Height" : "Depth") << " value!\n";
328      AnyNotSched = true;
329    }
330    if (isBottomUp) {
331      if (SUnits[i].NumSuccsLeft != 0) {
332        if (!AnyNotSched)
333          cerr << "*** Scheduling failed! ***\n";
334        SUnits[i].dump(this);
335        cerr << "has successors left!\n";
336        AnyNotSched = true;
337      }
338    } else {
339      if (SUnits[i].NumPredsLeft != 0) {
340        if (!AnyNotSched)
341          cerr << "*** Scheduling failed! ***\n";
342        SUnits[i].dump(this);
343        cerr << "has predecessors left!\n";
344        AnyNotSched = true;
345      }
346    }
347  }
348  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
349    if (!Sequence[i])
350      ++Noops;
351  assert(!AnyNotSched);
352  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
353         "The number of nodes scheduled doesn't match the expected number!");
354}
355#endif
356
357/// InitDAGTopologicalSorting - create the initial topological
358/// ordering from the DAG to be scheduled.
359///
360/// The idea of the algorithm is taken from
361/// "Online algorithms for managing the topological order of
362/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
363/// This is the MNR algorithm, which was first introduced by
364/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
365/// "Maintaining a topological order under edge insertions".
366///
367/// Short description of the algorithm:
368///
369/// Topological ordering, ord, of a DAG maps each node to a topological
370/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
371///
372/// This means that if there is a path from the node X to the node Z,
373/// then ord(X) < ord(Z).
374///
375/// This property can be used to check for reachability of nodes:
376/// if Z is reachable from X, then an insertion of the edge Z->X would
377/// create a cycle.
378///
379/// The algorithm first computes a topological ordering for the DAG by
380/// initializing the Index2Node and Node2Index arrays and then tries to keep
381/// the ordering up-to-date after edge insertions by reordering the DAG.
382///
383/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
384/// the nodes reachable from Y, and then shifts them using Shift to lie
385/// immediately after X in Index2Node.
386void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
387  unsigned DAGSize = SUnits.size();
388  std::vector<SUnit*> WorkList;
389  WorkList.reserve(DAGSize);
390
391  Index2Node.resize(DAGSize);
392  Node2Index.resize(DAGSize);
393
394  // Initialize the data structures.
395  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
396    SUnit *SU = &SUnits[i];
397    int NodeNum = SU->NodeNum;
398    unsigned Degree = SU->Succs.size();
399    // Temporarily use the Node2Index array as scratch space for degree counts.
400    Node2Index[NodeNum] = Degree;
401
402    // Is it a node without dependencies?
403    if (Degree == 0) {
404      assert(SU->Succs.empty() && "SUnit should have no successors");
405      // Collect leaf nodes.
406      WorkList.push_back(SU);
407    }
408  }
409
410  int Id = DAGSize;
411  while (!WorkList.empty()) {
412    SUnit *SU = WorkList.back();
413    WorkList.pop_back();
414    Allocate(SU->NodeNum, --Id);
415    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
416         I != E; ++I) {
417      SUnit *SU = I->getSUnit();
418      if (!--Node2Index[SU->NodeNum])
419        // If all dependencies of the node are processed already,
420        // then the node can be computed now.
421        WorkList.push_back(SU);
422    }
423  }
424
425  Visited.resize(DAGSize);
426
427#ifndef NDEBUG
428  // Check correctness of the ordering
429  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
430    SUnit *SU = &SUnits[i];
431    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
432         I != E; ++I) {
433      assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
434      "Wrong topological sorting");
435    }
436  }
437#endif
438}
439
440/// AddPred - Updates the topological ordering to accomodate an edge
441/// to be added from SUnit X to SUnit Y.
442void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
443  int UpperBound, LowerBound;
444  LowerBound = Node2Index[Y->NodeNum];
445  UpperBound = Node2Index[X->NodeNum];
446  bool HasLoop = false;
447  // Is Ord(X) < Ord(Y) ?
448  if (LowerBound < UpperBound) {
449    // Update the topological order.
450    Visited.reset();
451    DFS(Y, UpperBound, HasLoop);
452    assert(!HasLoop && "Inserted edge creates a loop!");
453    // Recompute topological indexes.
454    Shift(Visited, LowerBound, UpperBound);
455  }
456}
457
458/// RemovePred - Updates the topological ordering to accomodate an
459/// an edge to be removed from the specified node N from the predecessors
460/// of the current node M.
461void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
462  // InitDAGTopologicalSorting();
463}
464
465/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
466/// all nodes affected by the edge insertion. These nodes will later get new
467/// topological indexes by means of the Shift method.
468void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
469                                     bool& HasLoop) {
470  std::vector<const SUnit*> WorkList;
471  WorkList.reserve(SUnits.size());
472
473  WorkList.push_back(SU);
474  do {
475    SU = WorkList.back();
476    WorkList.pop_back();
477    Visited.set(SU->NodeNum);
478    for (int I = SU->Succs.size()-1; I >= 0; --I) {
479      int s = SU->Succs[I].getSUnit()->NodeNum;
480      if (Node2Index[s] == UpperBound) {
481        HasLoop = true;
482        return;
483      }
484      // Visit successors if not already and in affected region.
485      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
486        WorkList.push_back(SU->Succs[I].getSUnit());
487      }
488    }
489  } while (!WorkList.empty());
490}
491
492/// Shift - Renumber the nodes so that the topological ordering is
493/// preserved.
494void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
495                                       int UpperBound) {
496  std::vector<int> L;
497  int shift = 0;
498  int i;
499
500  for (i = LowerBound; i <= UpperBound; ++i) {
501    // w is node at topological index i.
502    int w = Index2Node[i];
503    if (Visited.test(w)) {
504      // Unmark.
505      Visited.reset(w);
506      L.push_back(w);
507      shift = shift + 1;
508    } else {
509      Allocate(w, i - shift);
510    }
511  }
512
513  for (unsigned j = 0; j < L.size(); ++j) {
514    Allocate(L[j], i - shift);
515    i = i + 1;
516  }
517}
518
519
520/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
521/// create a cycle.
522bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
523  if (IsReachable(TargetSU, SU))
524    return true;
525  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
526       I != E; ++I)
527    if (I->isAssignedRegDep() &&
528        IsReachable(TargetSU, I->getSUnit()))
529      return true;
530  return false;
531}
532
533/// IsReachable - Checks if SU is reachable from TargetSU.
534bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
535                                             const SUnit *TargetSU) {
536  // If insertion of the edge SU->TargetSU would create a cycle
537  // then there is a path from TargetSU to SU.
538  int UpperBound, LowerBound;
539  LowerBound = Node2Index[TargetSU->NodeNum];
540  UpperBound = Node2Index[SU->NodeNum];
541  bool HasLoop = false;
542  // Is Ord(TargetSU) < Ord(SU) ?
543  if (LowerBound < UpperBound) {
544    Visited.reset();
545    // There may be a path from TargetSU to SU. Check for it.
546    DFS(TargetSU, UpperBound, HasLoop);
547  }
548  return HasLoop;
549}
550
551/// Allocate - assign the topological index to the node n.
552void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
553  Node2Index[n] = index;
554  Index2Node[index] = n;
555}
556
557ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
558                                                     std::vector<SUnit> &sunits)
559 : SUnits(sunits) {}
560