ScheduleDAG.cpp revision e9b95fd1ebb1f046d17afd0123d7c3afcd4ddef0
1//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23#include <climits>
24using namespace llvm;
25
26ScheduleDAG::ScheduleDAG(MachineFunction &mf)
27  : TM(mf.getTarget()),
28    TII(TM.getInstrInfo()),
29    TRI(TM.getRegisterInfo()),
30    TLI(TM.getTargetLowering()),
31    MF(mf), MRI(mf.getRegInfo()),
32    ConstPool(MF.getConstantPool()),
33    EntrySU(), ExitSU() {
34}
35
36ScheduleDAG::~ScheduleDAG() {}
37
38/// dump - dump the schedule.
39void ScheduleDAG::dumpSchedule() const {
40  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
41    if (SUnit *SU = Sequence[i])
42      SU->dump(this);
43    else
44      errs() << "**** NOOP ****\n";
45  }
46}
47
48
49/// Run - perform scheduling.
50///
51void ScheduleDAG::Run(MachineBasicBlock *bb,
52                      MachineBasicBlock::iterator insertPos) {
53  BB = bb;
54  InsertPos = insertPos;
55
56  SUnits.clear();
57  Sequence.clear();
58  EntrySU = SUnit();
59  ExitSU = SUnit();
60
61  Schedule();
62
63  DEBUG({
64      errs() << "*** Final schedule ***\n";
65      dumpSchedule();
66      errs() << '\n';
67    });
68}
69
70/// addPred - This adds the specified edge as a pred of the current node if
71/// not already.  It also adds the current node as a successor of the
72/// specified node.
73void SUnit::addPred(const SDep &D) {
74  // If this node already has this depenence, don't add a redundant one.
75  for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end();
76       I != E; ++I)
77    if (*I == D)
78      return;
79  // Now add a corresponding succ to N.
80  SDep P = D;
81  P.setSUnit(this);
82  SUnit *N = D.getSUnit();
83  // Update the bookkeeping.
84  if (D.getKind() == SDep::Data) {
85    assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
86    assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
87    ++NumPreds;
88    ++N->NumSuccs;
89  }
90  if (!N->isScheduled) {
91    assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
92    ++NumPredsLeft;
93  }
94  if (!isScheduled) {
95    assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
96    ++N->NumSuccsLeft;
97  }
98  Preds.push_back(D);
99  N->Succs.push_back(P);
100  if (P.getLatency() != 0) {
101    this->setDepthDirty();
102    N->setHeightDirty();
103  }
104}
105
106/// removePred - This removes the specified edge as a pred of the current
107/// node if it exists.  It also removes the current node as a successor of
108/// the specified node.
109void SUnit::removePred(const SDep &D) {
110  // Find the matching predecessor.
111  for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
112       I != E; ++I)
113    if (*I == D) {
114      bool FoundSucc = false;
115      // Find the corresponding successor in N.
116      SDep P = D;
117      P.setSUnit(this);
118      SUnit *N = D.getSUnit();
119      for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
120             EE = N->Succs.end(); II != EE; ++II)
121        if (*II == P) {
122          FoundSucc = true;
123          N->Succs.erase(II);
124          break;
125        }
126      assert(FoundSucc && "Mismatching preds / succs lists!");
127      Preds.erase(I);
128      // Update the bookkeeping.
129      if (P.getKind() == SDep::Data) {
130        assert(NumPreds > 0 && "NumPreds will underflow!");
131        assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
132        --NumPreds;
133        --N->NumSuccs;
134      }
135      if (!N->isScheduled) {
136        assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
137        --NumPredsLeft;
138      }
139      if (!isScheduled) {
140        assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
141        --N->NumSuccsLeft;
142      }
143      if (P.getLatency() != 0) {
144        this->setDepthDirty();
145        N->setHeightDirty();
146      }
147      return;
148    }
149}
150
151void SUnit::setDepthDirty() {
152  if (!isDepthCurrent) return;
153  SmallVector<SUnit*, 8> WorkList;
154  WorkList.push_back(this);
155  do {
156    SUnit *SU = WorkList.pop_back_val();
157    SU->isDepthCurrent = false;
158    for (SUnit::const_succ_iterator I = SU->Succs.begin(),
159         E = SU->Succs.end(); I != E; ++I) {
160      SUnit *SuccSU = I->getSUnit();
161      if (SuccSU->isDepthCurrent)
162        WorkList.push_back(SuccSU);
163    }
164  } while (!WorkList.empty());
165}
166
167void SUnit::setHeightDirty() {
168  if (!isHeightCurrent) return;
169  SmallVector<SUnit*, 8> WorkList;
170  WorkList.push_back(this);
171  do {
172    SUnit *SU = WorkList.pop_back_val();
173    SU->isHeightCurrent = false;
174    for (SUnit::const_pred_iterator I = SU->Preds.begin(),
175         E = SU->Preds.end(); I != E; ++I) {
176      SUnit *PredSU = I->getSUnit();
177      if (PredSU->isHeightCurrent)
178        WorkList.push_back(PredSU);
179    }
180  } while (!WorkList.empty());
181}
182
183/// setDepthToAtLeast - Update this node's successors to reflect the
184/// fact that this node's depth just increased.
185///
186void SUnit::setDepthToAtLeast(unsigned NewDepth) {
187  if (NewDepth <= getDepth())
188    return;
189  setDepthDirty();
190  Depth = NewDepth;
191  isDepthCurrent = true;
192}
193
194/// setHeightToAtLeast - Update this node's predecessors to reflect the
195/// fact that this node's height just increased.
196///
197void SUnit::setHeightToAtLeast(unsigned NewHeight) {
198  if (NewHeight <= getHeight())
199    return;
200  setHeightDirty();
201  Height = NewHeight;
202  isHeightCurrent = true;
203}
204
205/// ComputeDepth - Calculate the maximal path from the node to the exit.
206///
207void SUnit::ComputeDepth() {
208  SmallVector<SUnit*, 8> WorkList;
209  WorkList.push_back(this);
210  do {
211    SUnit *Cur = WorkList.back();
212
213    bool Done = true;
214    unsigned MaxPredDepth = 0;
215    for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
216         E = Cur->Preds.end(); I != E; ++I) {
217      SUnit *PredSU = I->getSUnit();
218      if (PredSU->isDepthCurrent)
219        MaxPredDepth = std::max(MaxPredDepth,
220                                PredSU->Depth + I->getLatency());
221      else {
222        Done = false;
223        WorkList.push_back(PredSU);
224      }
225    }
226
227    if (Done) {
228      WorkList.pop_back();
229      if (MaxPredDepth != Cur->Depth) {
230        Cur->setDepthDirty();
231        Cur->Depth = MaxPredDepth;
232      }
233      Cur->isDepthCurrent = true;
234    }
235  } while (!WorkList.empty());
236}
237
238/// ComputeHeight - Calculate the maximal path from the node to the entry.
239///
240void SUnit::ComputeHeight() {
241  SmallVector<SUnit*, 8> WorkList;
242  WorkList.push_back(this);
243  do {
244    SUnit *Cur = WorkList.back();
245
246    bool Done = true;
247    unsigned MaxSuccHeight = 0;
248    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
249         E = Cur->Succs.end(); I != E; ++I) {
250      SUnit *SuccSU = I->getSUnit();
251      if (SuccSU->isHeightCurrent)
252        MaxSuccHeight = std::max(MaxSuccHeight,
253                                 SuccSU->Height + I->getLatency());
254      else {
255        Done = false;
256        WorkList.push_back(SuccSU);
257      }
258    }
259
260    if (Done) {
261      WorkList.pop_back();
262      if (MaxSuccHeight != Cur->Height) {
263        Cur->setHeightDirty();
264        Cur->Height = MaxSuccHeight;
265      }
266      Cur->isHeightCurrent = true;
267    }
268  } while (!WorkList.empty());
269}
270
271/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
272/// a group of nodes flagged together.
273void SUnit::dump(const ScheduleDAG *G) const {
274  errs() << "SU(" << NodeNum << "): ";
275  G->dumpNode(this);
276}
277
278void SUnit::dumpAll(const ScheduleDAG *G) const {
279  dump(G);
280
281  errs() << "  # preds left       : " << NumPredsLeft << "\n";
282  errs() << "  # succs left       : " << NumSuccsLeft << "\n";
283  errs() << "  Latency            : " << Latency << "\n";
284  errs() << "  Depth              : " << Depth << "\n";
285  errs() << "  Height             : " << Height << "\n";
286
287  if (Preds.size() != 0) {
288    errs() << "  Predecessors:\n";
289    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
290         I != E; ++I) {
291      errs() << "   ";
292      switch (I->getKind()) {
293      case SDep::Data:        errs() << "val "; break;
294      case SDep::Anti:        errs() << "anti"; break;
295      case SDep::Output:      errs() << "out "; break;
296      case SDep::Order:       errs() << "ch  "; break;
297      }
298      errs() << "#";
299      errs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
300      if (I->isArtificial())
301        errs() << " *";
302      errs() << ": Latency=" << I->getLatency();
303      errs() << "\n";
304    }
305  }
306  if (Succs.size() != 0) {
307    errs() << "  Successors:\n";
308    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
309         I != E; ++I) {
310      errs() << "   ";
311      switch (I->getKind()) {
312      case SDep::Data:        errs() << "val "; break;
313      case SDep::Anti:        errs() << "anti"; break;
314      case SDep::Output:      errs() << "out "; break;
315      case SDep::Order:       errs() << "ch  "; break;
316      }
317      errs() << "#";
318      errs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
319      if (I->isArtificial())
320        errs() << " *";
321      errs() << ": Latency=" << I->getLatency();
322      errs() << "\n";
323    }
324  }
325  errs() << "\n";
326}
327
328#ifndef NDEBUG
329/// VerifySchedule - Verify that all SUnits were scheduled and that
330/// their state is consistent.
331///
332void ScheduleDAG::VerifySchedule(bool isBottomUp) {
333  bool AnyNotSched = false;
334  unsigned DeadNodes = 0;
335  unsigned Noops = 0;
336  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
337    if (!SUnits[i].isScheduled) {
338      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
339        ++DeadNodes;
340        continue;
341      }
342      if (!AnyNotSched)
343        errs() << "*** Scheduling failed! ***\n";
344      SUnits[i].dump(this);
345      errs() << "has not been scheduled!\n";
346      AnyNotSched = true;
347    }
348    if (SUnits[i].isScheduled &&
349        (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
350          unsigned(INT_MAX)) {
351      if (!AnyNotSched)
352        errs() << "*** Scheduling failed! ***\n";
353      SUnits[i].dump(this);
354      errs() << "has an unexpected "
355           << (isBottomUp ? "Height" : "Depth") << " value!\n";
356      AnyNotSched = true;
357    }
358    if (isBottomUp) {
359      if (SUnits[i].NumSuccsLeft != 0) {
360        if (!AnyNotSched)
361          errs() << "*** Scheduling failed! ***\n";
362        SUnits[i].dump(this);
363        errs() << "has successors left!\n";
364        AnyNotSched = true;
365      }
366    } else {
367      if (SUnits[i].NumPredsLeft != 0) {
368        if (!AnyNotSched)
369          errs() << "*** Scheduling failed! ***\n";
370        SUnits[i].dump(this);
371        errs() << "has predecessors left!\n";
372        AnyNotSched = true;
373      }
374    }
375  }
376  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
377    if (!Sequence[i])
378      ++Noops;
379  assert(!AnyNotSched);
380  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
381         "The number of nodes scheduled doesn't match the expected number!");
382}
383#endif
384
385/// InitDAGTopologicalSorting - create the initial topological
386/// ordering from the DAG to be scheduled.
387///
388/// The idea of the algorithm is taken from
389/// "Online algorithms for managing the topological order of
390/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
391/// This is the MNR algorithm, which was first introduced by
392/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
393/// "Maintaining a topological order under edge insertions".
394///
395/// Short description of the algorithm:
396///
397/// Topological ordering, ord, of a DAG maps each node to a topological
398/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
399///
400/// This means that if there is a path from the node X to the node Z,
401/// then ord(X) < ord(Z).
402///
403/// This property can be used to check for reachability of nodes:
404/// if Z is reachable from X, then an insertion of the edge Z->X would
405/// create a cycle.
406///
407/// The algorithm first computes a topological ordering for the DAG by
408/// initializing the Index2Node and Node2Index arrays and then tries to keep
409/// the ordering up-to-date after edge insertions by reordering the DAG.
410///
411/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
412/// the nodes reachable from Y, and then shifts them using Shift to lie
413/// immediately after X in Index2Node.
414void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
415  unsigned DAGSize = SUnits.size();
416  std::vector<SUnit*> WorkList;
417  WorkList.reserve(DAGSize);
418
419  Index2Node.resize(DAGSize);
420  Node2Index.resize(DAGSize);
421
422  // Initialize the data structures.
423  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
424    SUnit *SU = &SUnits[i];
425    int NodeNum = SU->NodeNum;
426    unsigned Degree = SU->Succs.size();
427    // Temporarily use the Node2Index array as scratch space for degree counts.
428    Node2Index[NodeNum] = Degree;
429
430    // Is it a node without dependencies?
431    if (Degree == 0) {
432      assert(SU->Succs.empty() && "SUnit should have no successors");
433      // Collect leaf nodes.
434      WorkList.push_back(SU);
435    }
436  }
437
438  int Id = DAGSize;
439  while (!WorkList.empty()) {
440    SUnit *SU = WorkList.back();
441    WorkList.pop_back();
442    Allocate(SU->NodeNum, --Id);
443    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
444         I != E; ++I) {
445      SUnit *SU = I->getSUnit();
446      if (!--Node2Index[SU->NodeNum])
447        // If all dependencies of the node are processed already,
448        // then the node can be computed now.
449        WorkList.push_back(SU);
450    }
451  }
452
453  Visited.resize(DAGSize);
454
455#ifndef NDEBUG
456  // Check correctness of the ordering
457  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
458    SUnit *SU = &SUnits[i];
459    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
460         I != E; ++I) {
461      assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
462      "Wrong topological sorting");
463    }
464  }
465#endif
466}
467
468/// AddPred - Updates the topological ordering to accomodate an edge
469/// to be added from SUnit X to SUnit Y.
470void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
471  int UpperBound, LowerBound;
472  LowerBound = Node2Index[Y->NodeNum];
473  UpperBound = Node2Index[X->NodeNum];
474  bool HasLoop = false;
475  // Is Ord(X) < Ord(Y) ?
476  if (LowerBound < UpperBound) {
477    // Update the topological order.
478    Visited.reset();
479    DFS(Y, UpperBound, HasLoop);
480    assert(!HasLoop && "Inserted edge creates a loop!");
481    // Recompute topological indexes.
482    Shift(Visited, LowerBound, UpperBound);
483  }
484}
485
486/// RemovePred - Updates the topological ordering to accomodate an
487/// an edge to be removed from the specified node N from the predecessors
488/// of the current node M.
489void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
490  // InitDAGTopologicalSorting();
491}
492
493/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
494/// all nodes affected by the edge insertion. These nodes will later get new
495/// topological indexes by means of the Shift method.
496void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
497                                     bool& HasLoop) {
498  std::vector<const SUnit*> WorkList;
499  WorkList.reserve(SUnits.size());
500
501  WorkList.push_back(SU);
502  do {
503    SU = WorkList.back();
504    WorkList.pop_back();
505    Visited.set(SU->NodeNum);
506    for (int I = SU->Succs.size()-1; I >= 0; --I) {
507      int s = SU->Succs[I].getSUnit()->NodeNum;
508      if (Node2Index[s] == UpperBound) {
509        HasLoop = true;
510        return;
511      }
512      // Visit successors if not already and in affected region.
513      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
514        WorkList.push_back(SU->Succs[I].getSUnit());
515      }
516    }
517  } while (!WorkList.empty());
518}
519
520/// Shift - Renumber the nodes so that the topological ordering is
521/// preserved.
522void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
523                                       int UpperBound) {
524  std::vector<int> L;
525  int shift = 0;
526  int i;
527
528  for (i = LowerBound; i <= UpperBound; ++i) {
529    // w is node at topological index i.
530    int w = Index2Node[i];
531    if (Visited.test(w)) {
532      // Unmark.
533      Visited.reset(w);
534      L.push_back(w);
535      shift = shift + 1;
536    } else {
537      Allocate(w, i - shift);
538    }
539  }
540
541  for (unsigned j = 0; j < L.size(); ++j) {
542    Allocate(L[j], i - shift);
543    i = i + 1;
544  }
545}
546
547
548/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
549/// create a cycle.
550bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
551  if (IsReachable(TargetSU, SU))
552    return true;
553  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
554       I != E; ++I)
555    if (I->isAssignedRegDep() &&
556        IsReachable(TargetSU, I->getSUnit()))
557      return true;
558  return false;
559}
560
561/// IsReachable - Checks if SU is reachable from TargetSU.
562bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
563                                             const SUnit *TargetSU) {
564  // If insertion of the edge SU->TargetSU would create a cycle
565  // then there is a path from TargetSU to SU.
566  int UpperBound, LowerBound;
567  LowerBound = Node2Index[TargetSU->NodeNum];
568  UpperBound = Node2Index[SU->NodeNum];
569  bool HasLoop = false;
570  // Is Ord(TargetSU) < Ord(SU) ?
571  if (LowerBound < UpperBound) {
572    Visited.reset();
573    // There may be a path from TargetSU to SU. Check for it.
574    DFS(TargetSU, UpperBound, HasLoop);
575  }
576  return HasLoop;
577}
578
579/// Allocate - assign the topological index to the node n.
580void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
581  Node2Index[n] = index;
582  Index2Node[index] = n;
583}
584
585ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
586                                                     std::vector<SUnit> &sunits)
587 : SUnits(sunits) {}
588
589ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
590