ScheduleDAGInstrs.cpp revision 020f4106f820648fd7e91956859844a80de13974
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/MC/MCInstrItineraries.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetSubtargetInfo.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/SmallSet.h"
32using namespace llvm;
33
34ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
35                                     const MachineLoopInfo &mli,
36                                     const MachineDominatorTree &mdt)
37  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
38    InstrItins(mf.getTarget().getInstrItineraryData()),
39    Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
40    LoopRegs(MLI, MDT), FirstDbgValue(0) {
41  DbgValues.clear();
42}
43
44/// Run - perform scheduling.
45///
46void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
47                            MachineBasicBlock::iterator begin,
48                            MachineBasicBlock::iterator end,
49                            unsigned endcount) {
50  BB = bb;
51  Begin = begin;
52  InsertPosIndex = endcount;
53
54  ScheduleDAG::Run(bb, end);
55}
56
57/// getUnderlyingObjectFromInt - This is the function that does the work of
58/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
59static const Value *getUnderlyingObjectFromInt(const Value *V) {
60  do {
61    if (const Operator *U = dyn_cast<Operator>(V)) {
62      // If we find a ptrtoint, we can transfer control back to the
63      // regular getUnderlyingObjectFromInt.
64      if (U->getOpcode() == Instruction::PtrToInt)
65        return U->getOperand(0);
66      // If we find an add of a constant or a multiplied value, it's
67      // likely that the other operand will lead us to the base
68      // object. We don't have to worry about the case where the
69      // object address is somehow being computed by the multiply,
70      // because our callers only care when the result is an
71      // identifibale object.
72      if (U->getOpcode() != Instruction::Add ||
73          (!isa<ConstantInt>(U->getOperand(1)) &&
74           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
75        return V;
76      V = U->getOperand(0);
77    } else {
78      return V;
79    }
80    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
81  } while (1);
82}
83
84/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
85/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
86static const Value *getUnderlyingObject(const Value *V) {
87  // First just call Value::getUnderlyingObject to let it do what it does.
88  do {
89    V = GetUnderlyingObject(V);
90    // If it found an inttoptr, use special code to continue climing.
91    if (Operator::getOpcode(V) != Instruction::IntToPtr)
92      break;
93    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
94    // If that succeeded in finding a pointer, continue the search.
95    if (!O->getType()->isPointerTy())
96      break;
97    V = O;
98  } while (1);
99  return V;
100}
101
102/// getUnderlyingObjectForInstr - If this machine instr has memory reference
103/// information and it can be tracked to a normal reference to a known
104/// object, return the Value for that object. Otherwise return null.
105static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
106                                                const MachineFrameInfo *MFI,
107                                                bool &MayAlias) {
108  MayAlias = true;
109  if (!MI->hasOneMemOperand() ||
110      !(*MI->memoperands_begin())->getValue() ||
111      (*MI->memoperands_begin())->isVolatile())
112    return 0;
113
114  const Value *V = (*MI->memoperands_begin())->getValue();
115  if (!V)
116    return 0;
117
118  V = getUnderlyingObject(V);
119  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
120    // For now, ignore PseudoSourceValues which may alias LLVM IR values
121    // because the code that uses this function has no way to cope with
122    // such aliases.
123    if (PSV->isAliased(MFI))
124      return 0;
125
126    MayAlias = PSV->mayAlias(MFI);
127    return V;
128  }
129
130  if (isIdentifiedObject(V))
131    return V;
132
133  return 0;
134}
135
136void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
137  LoopRegs.Deps.clear();
138  if (MachineLoop *ML = MLI.getLoopFor(BB))
139    if (BB == ML->getLoopLatch()) {
140      MachineBasicBlock *Header = ML->getHeader();
141      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
142           E = Header->livein_end(); I != E; ++I)
143        LoopLiveInRegs.insert(*I);
144      LoopRegs.VisitLoop(ML);
145    }
146}
147
148/// AddSchedBarrierDeps - Add dependencies from instructions in the current
149/// list of instructions being scheduled to scheduling barrier by adding
150/// the exit SU to the register defs and use list. This is because we want to
151/// make sure instructions which define registers that are either used by
152/// the terminator or are live-out are properly scheduled. This is
153/// especially important when the definition latency of the return value(s)
154/// are too high to be hidden by the branch or when the liveout registers
155/// used by instructions in the fallthrough block.
156void ScheduleDAGInstrs::AddSchedBarrierDeps() {
157  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
158  ExitSU.setInstr(ExitMI);
159  bool AllDepKnown = ExitMI &&
160    (ExitMI->isCall() || ExitMI->isBarrier());
161  if (ExitMI && AllDepKnown) {
162    // If it's a call or a barrier, add dependencies on the defs and uses of
163    // instruction.
164    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
165      const MachineOperand &MO = ExitMI->getOperand(i);
166      if (!MO.isReg() || MO.isDef()) continue;
167      unsigned Reg = MO.getReg();
168      if (Reg == 0) continue;
169
170      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
171      Uses[Reg].push_back(&ExitSU);
172    }
173  } else {
174    // For others, e.g. fallthrough, conditional branch, assume the exit
175    // uses all the registers that are livein to the successor blocks.
176    SmallSet<unsigned, 8> Seen;
177    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
178           SE = BB->succ_end(); SI != SE; ++SI)
179      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
180             E = (*SI)->livein_end(); I != E; ++I) {
181        unsigned Reg = *I;
182        if (Seen.insert(Reg))
183          Uses[Reg].push_back(&ExitSU);
184      }
185  }
186}
187
188void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
189  // We'll be allocating one SUnit for each instruction, plus one for
190  // the region exit node.
191  SUnits.reserve(BB->size());
192
193  // We build scheduling units by walking a block's instruction list from bottom
194  // to top.
195
196  // Remember where a generic side-effecting instruction is as we procede.
197  SUnit *BarrierChain = 0, *AliasChain = 0;
198
199  // Memory references to specific known memory locations are tracked
200  // so that they can be given more precise dependencies. We track
201  // separately the known memory locations that may alias and those
202  // that are known not to alias
203  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
204  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
205
206  // Check to see if the scheduler cares about latencies.
207  bool UnitLatencies = ForceUnitLatencies();
208
209  // Ask the target if address-backscheduling is desirable, and if so how much.
210  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
211  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
212
213  // Remove any stale debug info; sometimes BuildSchedGraph is called again
214  // without emitting the info from the previous call.
215  DbgValues.clear();
216  FirstDbgValue = NULL;
217
218  // Model data dependencies between instructions being scheduled and the
219  // ExitSU.
220  AddSchedBarrierDeps();
221
222  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
223    assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
224  }
225
226  // Walk the list of instructions, from bottom moving up.
227  MachineInstr *PrevMI = NULL;
228  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
229       MII != MIE; --MII) {
230    MachineInstr *MI = prior(MII);
231    if (MI && PrevMI) {
232      DbgValues.push_back(std::make_pair(PrevMI, MI));
233      PrevMI = NULL;
234    }
235
236    if (MI->isDebugValue()) {
237      PrevMI = MI;
238      continue;
239    }
240
241    assert(!MI->isTerminator() && !MI->isLabel() &&
242           "Cannot schedule terminators or labels!");
243    // Create the SUnit for this MI.
244    SUnit *SU = NewSUnit(MI);
245    SU->isCall = MI->isCall();
246    SU->isCommutable = MI->isCommutable();
247
248    // Assign the Latency field of SU using target-provided information.
249    if (UnitLatencies)
250      SU->Latency = 1;
251    else
252      ComputeLatency(SU);
253
254    // Add register-based dependencies (data, anti, and output).
255    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
256      const MachineOperand &MO = MI->getOperand(j);
257      if (!MO.isReg()) continue;
258      unsigned Reg = MO.getReg();
259      if (Reg == 0) continue;
260
261      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
262
263      std::vector<SUnit *> &UseList = Uses[Reg];
264      // Defs are push in the order they are visited and never reordered.
265      std::vector<SUnit *> &DefList = Defs[Reg];
266      // Optionally add output and anti dependencies. For anti
267      // dependencies we use a latency of 0 because for a multi-issue
268      // target we want to allow the defining instruction to issue
269      // in the same cycle as the using instruction.
270      // TODO: Using a latency of 1 here for output dependencies assumes
271      //       there's no cost for reusing registers.
272      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
273      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
274      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
275        SUnit *DefSU = DefList[i];
276        if (DefSU == &ExitSU)
277          continue;
278        if (DefSU != SU &&
279            (Kind != SDep::Output || !MO.isDead() ||
280             !DefSU->getInstr()->registerDefIsDead(Reg))) {
281          if (Kind == SDep::Anti)
282            DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/Reg));
283          else {
284            unsigned AOLat = TII->getOutputLatency(InstrItins, MI, j,
285                                                   DefSU->getInstr());
286            DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/Reg));
287          }
288        }
289      }
290      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
291        std::vector<SUnit *> &MemDefList = Defs[*Alias];
292        for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) {
293          SUnit *DefSU = MemDefList[i];
294          if (DefSU == &ExitSU)
295            continue;
296          if (DefSU != SU &&
297              (Kind != SDep::Output || !MO.isDead() ||
298               !DefSU->getInstr()->registerDefIsDead(*Alias)))
299            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
300        }
301      }
302
303      if (MO.isDef()) {
304        // Add any data dependencies.
305        unsigned DataLatency = SU->Latency;
306        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
307          SUnit *UseSU = UseList[i];
308          if (UseSU == SU)
309            continue;
310          unsigned LDataLatency = DataLatency;
311          // Optionally add in a special extra latency for nodes that
312          // feed addresses.
313          // TODO: Do this for register aliases too.
314          // TODO: Perhaps we should get rid of
315          // SpecialAddressLatency and just move this into
316          // adjustSchedDependency for the targets that care about it.
317          if (SpecialAddressLatency != 0 && !UnitLatencies &&
318              UseSU != &ExitSU) {
319            MachineInstr *UseMI = UseSU->getInstr();
320            const MCInstrDesc &UseMCID = UseMI->getDesc();
321            int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
322            assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
323            if (RegUseIndex >= 0 &&
324                (UseMI->mayLoad() || UseMI->mayStore()) &&
325                (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
326                UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
327              LDataLatency += SpecialAddressLatency;
328          }
329          // Adjust the dependence latency using operand def/use
330          // information (if any), and then allow the target to
331          // perform its own adjustments.
332          const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
333          if (!UnitLatencies) {
334            ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
335            ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
336          }
337          UseSU->addPred(dep);
338        }
339        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
340          std::vector<SUnit *> &UseList = Uses[*Alias];
341          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
342            SUnit *UseSU = UseList[i];
343            if (UseSU == SU)
344              continue;
345            const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
346            if (!UnitLatencies) {
347              ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
348              ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
349            }
350            UseSU->addPred(dep);
351          }
352        }
353
354        // If a def is going to wrap back around to the top of the loop,
355        // backschedule it.
356        if (!UnitLatencies && DefList.empty()) {
357          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
358          if (I != LoopRegs.Deps.end()) {
359            const MachineOperand *UseMO = I->second.first;
360            unsigned Count = I->second.second;
361            const MachineInstr *UseMI = UseMO->getParent();
362            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
363            const MCInstrDesc &UseMCID = UseMI->getDesc();
364            // TODO: If we knew the total depth of the region here, we could
365            // handle the case where the whole loop is inside the region but
366            // is large enough that the isScheduleHigh trick isn't needed.
367            if (UseMOIdx < UseMCID.getNumOperands()) {
368              // Currently, we only support scheduling regions consisting of
369              // single basic blocks. Check to see if the instruction is in
370              // the same region by checking to see if it has the same parent.
371              if (UseMI->getParent() != MI->getParent()) {
372                unsigned Latency = SU->Latency;
373                if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
374                  Latency += SpecialAddressLatency;
375                // This is a wild guess as to the portion of the latency which
376                // will be overlapped by work done outside the current
377                // scheduling region.
378                Latency -= std::min(Latency, Count);
379                // Add the artificial edge.
380                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
381                                    /*Reg=*/0, /*isNormalMemory=*/false,
382                                    /*isMustAlias=*/false,
383                                    /*isArtificial=*/true));
384              } else if (SpecialAddressLatency > 0 &&
385                         UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
386                // The entire loop body is within the current scheduling region
387                // and the latency of this operation is assumed to be greater
388                // than the latency of the loop.
389                // TODO: Recursively mark data-edge predecessors as
390                //       isScheduleHigh too.
391                SU->isScheduleHigh = true;
392              }
393            }
394            LoopRegs.Deps.erase(I);
395          }
396        }
397
398        UseList.clear();
399        if (!MO.isDead())
400          DefList.clear();
401
402        // Calls will not be reordered because of chain dependencies (see
403        // below). Since call operands are dead, calls may continue to be added
404        // to the DefList making dependence checking quadratic in the size of
405        // the block. Instead, we leave only one call at the back of the
406        // DefList.
407        if (SU->isCall) {
408          while (!DefList.empty() && DefList.back()->isCall)
409            DefList.pop_back();
410        }
411        DefList.push_back(SU);
412      } else {
413        UseList.push_back(SU);
414      }
415    }
416
417    // Add chain dependencies.
418    // Chain dependencies used to enforce memory order should have
419    // latency of 0 (except for true dependency of Store followed by
420    // aliased Load... we estimate that with a single cycle of latency
421    // assuming the hardware will bypass)
422    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
423    // after stack slots are lowered to actual addresses.
424    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
425    // produce more precise dependence information.
426#define STORE_LOAD_LATENCY 1
427    unsigned TrueMemOrderLatency = 0;
428    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
429        (MI->hasVolatileMemoryRef() &&
430         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
431      // Be conservative with these and add dependencies on all memory
432      // references, even those that are known to not alias.
433      for (std::map<const Value *, SUnit *>::iterator I =
434             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
435        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
436      }
437      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
438             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
439        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
440          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
441      }
442      NonAliasMemDefs.clear();
443      NonAliasMemUses.clear();
444      // Add SU to the barrier chain.
445      if (BarrierChain)
446        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
447      BarrierChain = SU;
448
449      // fall-through
450    new_alias_chain:
451      // Chain all possibly aliasing memory references though SU.
452      if (AliasChain)
453        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
454      AliasChain = SU;
455      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
456        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
457      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
458           E = AliasMemDefs.end(); I != E; ++I) {
459        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
460      }
461      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
462           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
463        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
464          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
465      }
466      PendingLoads.clear();
467      AliasMemDefs.clear();
468      AliasMemUses.clear();
469    } else if (MI->mayStore()) {
470      bool MayAlias = true;
471      TrueMemOrderLatency = STORE_LOAD_LATENCY;
472      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
473        // A store to a specific PseudoSourceValue. Add precise dependencies.
474        // Record the def in MemDefs, first adding a dep if there is
475        // an existing def.
476        std::map<const Value *, SUnit *>::iterator I =
477          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
478        std::map<const Value *, SUnit *>::iterator IE =
479          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
480        if (I != IE) {
481          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
482                                  /*isNormalMemory=*/true));
483          I->second = SU;
484        } else {
485          if (MayAlias)
486            AliasMemDefs[V] = SU;
487          else
488            NonAliasMemDefs[V] = SU;
489        }
490        // Handle the uses in MemUses, if there are any.
491        std::map<const Value *, std::vector<SUnit *> >::iterator J =
492          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
493        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
494          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
495        if (J != JE) {
496          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
497            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
498                                       /*Reg=*/0, /*isNormalMemory=*/true));
499          J->second.clear();
500        }
501        if (MayAlias) {
502          // Add dependencies from all the PendingLoads, i.e. loads
503          // with no underlying object.
504          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
505            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
506          // Add dependence on alias chain, if needed.
507          if (AliasChain)
508            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
509        }
510        // Add dependence on barrier chain, if needed.
511        if (BarrierChain)
512          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
513      } else {
514        // Treat all other stores conservatively.
515        goto new_alias_chain;
516      }
517
518      if (!ExitSU.isPred(SU))
519        // Push store's up a bit to avoid them getting in between cmp
520        // and branches.
521        ExitSU.addPred(SDep(SU, SDep::Order, 0,
522                            /*Reg=*/0, /*isNormalMemory=*/false,
523                            /*isMustAlias=*/false,
524                            /*isArtificial=*/true));
525    } else if (MI->mayLoad()) {
526      bool MayAlias = true;
527      TrueMemOrderLatency = 0;
528      if (MI->isInvariantLoad(AA)) {
529        // Invariant load, no chain dependencies needed!
530      } else {
531        if (const Value *V =
532            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
533          // A load from a specific PseudoSourceValue. Add precise dependencies.
534          std::map<const Value *, SUnit *>::iterator I =
535            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
536          std::map<const Value *, SUnit *>::iterator IE =
537            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
538          if (I != IE)
539            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
540                                    /*isNormalMemory=*/true));
541          if (MayAlias)
542            AliasMemUses[V].push_back(SU);
543          else
544            NonAliasMemUses[V].push_back(SU);
545        } else {
546          // A load with no underlying object. Depend on all
547          // potentially aliasing stores.
548          for (std::map<const Value *, SUnit *>::iterator I =
549                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
550            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
551
552          PendingLoads.push_back(SU);
553          MayAlias = true;
554        }
555
556        // Add dependencies on alias and barrier chains, if needed.
557        if (MayAlias && AliasChain)
558          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
559        if (BarrierChain)
560          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
561      }
562    }
563  }
564  if (PrevMI)
565    FirstDbgValue = PrevMI;
566
567  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
568    Defs[i].clear();
569    Uses[i].clear();
570  }
571  PendingLoads.clear();
572}
573
574void ScheduleDAGInstrs::FinishBlock() {
575  // Nothing to do.
576}
577
578void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
579  // Compute the latency for the node.
580  if (!InstrItins || InstrItins->isEmpty()) {
581    SU->Latency = 1;
582
583    // Simplistic target-independent heuristic: assume that loads take
584    // extra time.
585    if (SU->getInstr()->mayLoad())
586      SU->Latency += 2;
587  } else {
588    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
589  }
590}
591
592void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
593                                              SDep& dep) const {
594  if (!InstrItins || InstrItins->isEmpty())
595    return;
596
597  // For a data dependency with a known register...
598  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
599    return;
600
601  const unsigned Reg = dep.getReg();
602
603  // ... find the definition of the register in the defining
604  // instruction
605  MachineInstr *DefMI = Def->getInstr();
606  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
607  if (DefIdx != -1) {
608    const MachineOperand &MO = DefMI->getOperand(DefIdx);
609    if (MO.isReg() && MO.isImplicit() &&
610        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
611      // This is an implicit def, getOperandLatency() won't return the correct
612      // latency. e.g.
613      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
614      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
615      // What we want is to compute latency between def of %D6/%D7 and use of
616      // %Q3 instead.
617      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
618    }
619    MachineInstr *UseMI = Use->getInstr();
620    // For all uses of the register, calculate the maxmimum latency
621    int Latency = -1;
622    if (UseMI) {
623      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
624        const MachineOperand &MO = UseMI->getOperand(i);
625        if (!MO.isReg() || !MO.isUse())
626          continue;
627        unsigned MOReg = MO.getReg();
628        if (MOReg != Reg)
629          continue;
630
631        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
632                                              UseMI, i);
633        Latency = std::max(Latency, UseCycle);
634      }
635    } else {
636      // UseMI is null, then it must be a scheduling barrier.
637      if (!InstrItins || InstrItins->isEmpty())
638        return;
639      unsigned DefClass = DefMI->getDesc().getSchedClass();
640      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
641    }
642
643    // If we found a latency, then replace the existing dependence latency.
644    if (Latency >= 0)
645      dep.setLatency(Latency);
646  }
647}
648
649void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
650  SU->getInstr()->dump();
651}
652
653std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
654  std::string s;
655  raw_string_ostream oss(s);
656  if (SU == &EntrySU)
657    oss << "<entry>";
658  else if (SU == &ExitSU)
659    oss << "<exit>";
660  else
661    SU->getInstr()->print(oss);
662  return oss.str();
663}
664
665// EmitSchedule - Emit the machine code in scheduled order.
666MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
667  Begin = InsertPos;
668
669  // If first instruction was a DBG_VALUE then put it back.
670  if (FirstDbgValue)
671    BB->splice(InsertPos, BB, FirstDbgValue);
672
673  // Then re-insert them according to the given schedule.
674  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
675    if (SUnit *SU = Sequence[i])
676      BB->splice(InsertPos, BB, SU->getInstr());
677    else
678      // Null SUnit* is a noop.
679      EmitNoop();
680
681    // Update the Begin iterator, as the first instruction in the block
682    // may have been scheduled later.
683    if (i == 0)
684      Begin = prior(InsertPos);
685  }
686
687  // Reinsert any remaining debug_values.
688  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
689         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
690    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
691    MachineInstr *DbgValue = P.first;
692    MachineBasicBlock::iterator OrigPrivMI = P.second;
693    BB->splice(++OrigPrivMI, BB, DbgValue);
694  }
695  DbgValues.clear();
696  FirstDbgValue = NULL;
697  return BB;
698}
699